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Abstract: In grassland open-pit mining areas, net primary productivity (NPP) is mainly affected by
climate conditions and human activities. The identification and assessment of the influence of human
activities on NPP is important for mining production and the implementation of ecological restoration.
In this study, we explored the influence of human activities on the NPP in the Shengli mining area
in Inner Mongolia, China by using the Carnegie–Ames–Stanford Approach (CASA) model and the
Chikugo model, in which a calibration method was applied. An analysis of four representative years
showed that the proportion of NPP induced by human activities reached 56.2%, that the percentage
of pixels with an inhibitory effect on NPP was 99% in 2011 with the highest intensity of mining
activity, and that these two values decreased to 11.9% and 69% in 2020, respectively, with the steady
implementation of ecological restoration. Moreover, from the analysis of global and local spatial
correlation, mining activities and ecological restoration aggravated and weakened the aggregation of
NPP induced by human activities, respectively.

Keywords: net primary productivity; human activities; grassland open-pit mine; CASA

1. Introduction

On the one hand, the development of mineral resources has promoted the economic
development of mining areas and has met energy needs. On the other hand, mining
activities have altered soil properties and hydrological balance, disturbing local ecosystems,
which has led to a decline or even a loss of carbon sequestration capacity in mining
areas [1,2]. It is important to obtain accurate data related to carbon sinks for planning
mining activities and ecological restoration in mining areas.

The net primary productivity (NPP) of vegetation refers to the total amount of organic
matter produced by plants per unit time and unit area through photosynthesis minus the
amount consumed by autotrophic respiration [3–5]. By reflecting the efficiency of plants
in fixing and converting photosynthates, NPP is an important constituent of the surface
carbon cycle, and also serves as a main factor in judging ecosystem carbon sinks [6]. NPP
has attracted increased scientific attention and has been widely used to indicate carbon
sinks of different scales, different periods, and different ecosystems [7,8]. For example,
Field et al. [9] modeled global NPP with reasonably high temporal and spatial resolution
by combining ecological principles with satellite data. Chen [10] provided 1 km raster
data that described the monthly NPP in China’s terrestrial ecosystems north of 18◦ N,
from 1985 to 2015. NPP spatiotemporal datasets in the Tibetan Plateau from 1982 to
2006 and in the Sanjiangyuan from 1985 to 2015 were produced by Zhou [11] and Didan
et al. [12], respectively. In addition, a series of investigations on the NPP of forest [13,14],
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grassland [15–17], urban [18,19], and wetland ecosystems [20,21] have been undertaken
with notable research achievements. In recent years, research on NPP in mining areas has
also attracted more and more attention [2,5,22,23].

Dynamic changes in NPP are influenced by multiple factors such as topographic
conditions, vegetation types, climatic factors, and human activities [24]. However, spa-
tiotemporal variations in NPP are more sensitive to disturbances due to human activities
and changes in climate [25]. Nemani et al. [26] utilized 18 years of data to investigate global
vegetation responses to climatic changes, and revealed that the NPP increased 6% globally
with global changes in climate and the greatest increases were in tropical ecosystems mainly
due to an increase in solar radiation and a decrease in cloud cover. Wang et al. [27] analyzed
MODIS and climate data to construct correlations between climatic variables and NPP,
and reported that temperature and precipitation were the two main climatic variables
with different influences on NPP in different regions and different seasons. Liu et al. [28]
found a gradual improvement in NPP in the Shanxi-Gansu-Ningxia Region due to the
”Grain for Green” policy and other relevant policies formulated by the state. Yang et al. [25]
mainly attributed a decrease in the NPP of research areas to an increase in construction
and urban land areas and a decrease in cultivated land areas. In mining areas, human
activities characterized by mining and ecological restoration have a complex influence on
variations in NPP. Therefore, it is important to conduct studies that identify and quantify
the influence of human activities on NPP variations, which can be helpful for the design
and implementation of ecosystem restoration projects in mining areas [2,5].

Human appropriation of net primary production (HANPP) has been used as an
indicator to measure the impact of human activities [29–31]. With the development of
remote sensing technology and models for different ecological processes, potential NPP and
actual NPP can both be calculated to simulate climate-induced production and combined-
induced production, respectively [28,32]. The difference between potential NPP and actual
NPP indicates the effects of human factors. Using the abovementioned method, Ugbaje
et al. [33] quantified the influences of climate variability and human activities on the
spatiotemporal variability of NPP in Africa; Yang et al. [34] assessed the relative roles
of human activities and climate variations on grassland and concluded that the restored
grassland areas influenced by climate variations and the degraded areas affected by human
activities were 83.9%, 85.1%, 6.7% and 65%, 79.1%, 11.6% in Mongolia, Pakistan, and
Uzbekistan, respectively; Wang et al. [27] distinguished the roles of human activities and
climate changes in NPP dynamics and quantified the effects of these two factors in the
Jinghe River Basin in the Loess Plateau.

Research on the temporal and spatial changes of NPP in mining areas has been
conducted by scholars [35,36]. It is important to identify and assess the influence of
human activities on NPP in mining areas that are characterized by mining and ecological
restoration. However, there are no studies in the literature using the abovementioned
method to study the relative roles of climate conditions and human activities. Therefore, in
this paper, we aim to explore NPP changes and to analyze the effects of human activities
on NPP in a grassland open-pit mining area, considering the existence of a large number of
coal mines of this type in northern China. Specifically, the Shengli mining area in Xilinhot
City, China was selected as a case study. The actual NPP, namely the combined-induced
production, is computed using the Carnegie–Ames–Stanford Approach (CASA) model,
and the potential NPP induced by climate is simulated using the Chikugo model. Since
the research area was a relatively small region located in a grassland open-pit mining area,
the potential NPP estimated by the Chikugo model (a climate-driven model suitable for
grassland ecosystem) could introduce redundancy errors, therefore, a contrast area was
selected to conduct a calibration in the process of calculating the NPP induced by human
activities. Then, a comprehensive analysis of the impact of human activities on NPP was
conducted in the research area, which could provide basic data and reference information
for planning mining activities and ecological restoration in mining areas.
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2. Materials and Methods
2.1. Study Area and Data Collection

The Shengli mining area was selected as the research area, which is located in the city of
Xilinhot, Xilin Gol League, in the Inner Mongolia Autonomous Region, China. The research
area is shown in Figure 1, which covers the zones between longitude 115.7◦ E–116.3◦ E
and latitude 43.8◦ N–44.2◦ N. It is a typical grassland open-pit coal mine, which belongs to
the continental semi-arid climate region in the northern temperate zone, with cold winters
and hot summers [37]. The average annual rainfall is 309 mm and the average annual
temperature is 1.5 ◦C. The extreme maximum and minimum temperatures, in the research
area, were recorded as 38.3 ◦C on 23 July 1955 and −42.4 ◦C on 15 January 1953, respectively.
Rainfall is mainly concentrated in summer, more than 71% of which happens between
June and August. The ranges of the annual evaporation, annual net solar radiation, and
annual sunshine hours are 1500–2700 mm, 4600–7000 MJ/m2, and 2800–3200 h, respectively.
According to the land use classification, the research area includes mainly grassland, bare
land, mining, and city land.

Land 2022, 11, x FOR PEER REVIEW 3 of 16 
 

2. Materials and Methods 

2.1. Study Area and Data Collection 

The Shengli mining area was selected as the research area, which is located in the city 

of Xilinhot, Xilin Gol League, in the Inner Mongolia Autonomous Region, China. The re-

search area is shown in Figure 1, which covers the zones between longitude 115.7° E–

116.3° E and latitude 43.8° N–44.2° N. It is a typical grassland open-pit coal mine, which 

belongs to the continental semi-arid climate region in the northern temperate zone, with 

cold winters and hot summers [37]. The average annual rainfall is 309 mm and the average 

annual temperature is 1.5 °C. The extreme maximum and minimum temperatures, in the 

research area, were recorded as 38.3 °C on 23 July 1955 and −42.4 °C on 15 January 1953, 

respectively. Rainfall is mainly concentrated in summer, more than 71% of which happens 

between June and August. The ranges of the annual evaporation, annual net solar radia-

tion, and annual sunshine hours are 1500–2700 mm, 4600–7000 MJ/m2, and 2800–3200 h, 

respectively. According to the land use classification, the research area includes mainly 

grassland, bare land, mining, and city land. 

 

Figure 1. Map of the study area. 

In the grassland open-pit coal mine, mining activities have become the most im-

portant human factor affecting NPP in the research area. The data of the annual coal pro-

duction were collected from the Xilinhot Mining Company and are shown in Figure 2. It 

can be seen that the mine has been in production since about 2005 and coal production 

continued to increase, reaching its peak annual production in 2011, and then declined year 

by year until 2016, since the continuous implementation of policies such as ecological res-

toration. Since 2017, the mine has maintained a relatively stable annual coal production. 

The annual coal production represents the intensity of the mining activities. Thus, four 

representative years, i.e., 2006, 2011, 2016, and 2020, were selected to study the NPP of the 

mining area. The Google Earth Engine (GEE) [38] was used to collect the remote sensing 

images of the Landsat series satellite with a spatial resolution of 30 m, and the relevant 

meteorological data were derived from the China Meteorological data network 

http://data.cma.cn/ (accessed on 17 May 2022). 

Figure 1. Map of the study area.

In the grassland open-pit coal mine, mining activities have become the most important
human factor affecting NPP in the research area. The data of the annual coal production
were collected from the Xilinhot Mining Company and are shown in Figure 2. It can be seen
that the mine has been in production since about 2005 and coal production continued to
increase, reaching its peak annual production in 2011, and then declined year by year until
2016, since the continuous implementation of policies such as ecological restoration. Since
2017, the mine has maintained a relatively stable annual coal production. The annual coal
production represents the intensity of the mining activities. Thus, four representative years,
i.e., 2006, 2011, 2016, and 2020, were selected to study the NPP of the mining area. The
Google Earth Engine (GEE) [38] was used to collect the remote sensing images of the Land-
sat series satellite with a spatial resolution of 30 m, and the relevant meteorological data
were derived from the China Meteorological data network http://data.cma.cn/ (accessed
on 10 May 2022).

http://data.cma.cn/
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2.2. The CASA Model and the Chikugo Model

Monteith [39] first proposed the concept of estimating NPP according to light energy
use and photosynthetically active radiation (APAR) based on the principle of light energy
use. Then, Potter et al. [40] realized the estimation of regional and global NPP using the
above principle based on remote sensing data, and proposed the Carnegie–Ames–Stanford
Approach (CASA) model, which is the most widely used model in remote sensing retrieval
research on NPP. The NPP calculated by using the CASA model can reflect the influence of
human activities and climate conditions on NPP and is considered to be the actual NPP
such as in the literature [27,33,34]. The main equation of the CASA model is as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where ε(x, t) is the actual light energy utilization rate for the pixel x in month t, unit in
gC/MJ; APAR(x, t) denotes the absorbed photosynthetically active radiation by pixel x in
month t, unit in gC/

(
m2 · month

)
. It depends on the characteristics of vegetation itself and

the total solar radiation, and can be calculated using the following formula:

APAR(x, t) = SOL(x, t)× 0.5 × FPAR(x, t) (2)

where SOL(x, t) represents the total solar radiation in pixel x in month t, unit in MJ/m2.
The constant 0.5 indicates the proportion of effective solar radiation (0.38–0.71 um) that
can be utilized by vegetation. FPAR(x, t) denotes the fractional photosynthetically active
radiation that can be expressed as follows:

FPAR =
(NDVI(x, t)− NDVImin)(FPARmax − FPARmin)

NDVImax − NDVImin
+ FPARmin (3)
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where NDVI(x, t) is the normalized difference vegetation index in pixel x in month t.
NDVImax and NDVImin are the maximum and minimum values of NDVI in the research
area. FPARmax and FPARmin are constants of 0.95 and 0.01, respectively.

The actual light energy utilization rate ε(x, t) is mainly affected by moisture and
temperature [40] and can be calculated as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)× Wε(x, t)× εmax (4)

where Tε1(x, t) and Tε2(x, t) represent the temperature stress coefficients at low and high
temperatures; Wε(x, t) denotes the water stress coefficient; and εmax refers to the maximum
light energy utilization rate of vegetation under ideal conditions, which equals 0.389 gC MJ−1.

The Chikugo model [41], an exclusively climate-driven model, has been utilized to
estimate the potential NPP that is affected only by meteorological factors. This model is
one of the three most commonly used NPP statistical models. It has been proven to have
the smallest standard deviation in simulating the NPP of the grassland in China [42]. The
Chikugo model takes the NPP as a function of net radiation and the radiation drought
index, which represents the effect of solar radiation on temperature and evapotranspiration
as follows:

NPP = 0.29 × e−0.216∗RDI × Rn × 0.45 (5)

where RDI represents the radiation dryness and Rn denotes the net radiation. These two
parameters can be calculated using the following formulas:

RDI =
(

0.629 + 0.237 × PER − 0.0031 × PER2
)2

(6)

Rn = RDI × L × P (7)

where PER is the potential evapotranspiration, L and P are the evaporation latent heat and
the annual precipitation, respectively.

2.3. Calibration Method

It should be noted that the research area is a grassland open-pit mine, which has
certain differences as compared with a grassland ecosystem. The Chikugo model is suitable
for grassland ecosystems and could introduce redundancy errors in the research area.
Therefore, a contrast area was selected when using the above two models to estimate the
actual NPP and potential NPP in the research area for the experimental years. Based on
the land use classification from 2006 to 2020, the contrast area should be grassland without
surrounding roads, cultivated land, and other human activities. Figure 3 shows the selected
contrast area which is far from the impact of the Shengli mines, i.e., about 40 km from the
center of the mining area, about 47.4 m2 in area, and also has a north temperate continental
semi-arid climate with the same latitude as the research area. Thus, the NPP in the contrast
area is considered to be only affected by climatic factors. In this case, the potential NPP
estimated by the Chikugo model in the contrast area should be close to the actual NPP
calculated by the CASA model.

The differences between the potential and actual NPP for each pixel in the experimental
years were calculated in the contrast area using the following formula:

NPPdi f f (i, t) = NPPa(i, t)− NPPp(i, t) (8)

where NPPa and NPPp denote the actual NPP calculated by the CASA model and potential
NPP estimated by the Chikugo model, respectively, i refers to the pixel i in the contrast
area, and t is the corresponding year.
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Figure 3. Map of the contrast area.

In Figure 4, the NPP differences of the four study years in the contrast area are shown
in the form of boxplots, which are used to explore the statistical characteristics of the NPP
differences. The characteristic values marked in the boxplots are the Q1, Q2, Q3, and the
upper/lower bounds. Q1 and Q3 represent the first and third quartiles that are located at
the bottom and top of the box, the second quartile (Q2) refers to the median that is located
inside the box; the upper and lower bounds are located at Q1 − 1.5 (IQR) and Q3 + 1.5
(IQR), respectively. IQR is the interquartile range, defined as the difference between the Q3
and the Q1, and reflects the discreteness of a set of data.

It can be seen that the characteristic values in 2011 are all relatively greater than those in
the other three years. On the one hand, this indicates that the NPP differences between the
potential and actual NPP in the contrast area have different distributions in the four study
years. Specifically, the characteristic values of the Q1 are 30.6, 34.2, 16.5, and 21.2 gC/m2

for the four experimental years, respectively. On the other hand, it can be observed that
the length of the box and the range of the bounds are small for each year, indicating a
relatively stable distribution of the NPP differences. The values of the IQR are 6.4, 6.5, 9.2,
and 9.6 gC/m2 for the four years, 2006, 2011, 2016, and 2020, respectively. Therefore, the
median values of the NPP differences in each year are selected as the calibration values for
the Chikugo model estimating the potential NPP in the corresponding year, i.e., 33.8 gC/m2

for 2006, 37.4 gC/m2 for 2011, 21.5 gC/m2 for 2016, and 26.2 gC/m2 for 2020, respectively.
In the research area, the influence of human activities on NPP is obtained after cali-

brating the potential NPP estimated by the Chikugo model, and the formulas are expressed
as follows:

NPPpc = NPPp + cali (9)

NPPh = NPPpc − NPPa (10)

where NPPpc refers to the calibrated potential NPP, NPPh denotes human activities induced
NPP, and cali represents the calibration values in experimental years.
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2.4. Statistical Method

The global Moran’s I and Getis-Ord Gi* were selected as the statistical values to explore
the spatial correlation and the aggregation degree of the impact of human activities on NPP
in the research area. The global Moran’s I has been widely used in the field of geographic
information science to measure how closely clustered different features are in a certain area.
It ranges between −1 and +1 and is described in detail in the relevant literature [43]. The
formula is as follows:

I =

N
N
∑

i=1

N
∑

j−1
Cij(xi − x)

(
xj − x

)
N
∑

i=1
(xi − x)2 N

∑
i=1

N
∑

j=1
Cij

(11)

where N refer to the total number of pixels; xi and xj are the attribute values of pixel i and j,
respectively; Cij represents the spatial adjacency matrix of pixel i and j; and Cij = 1 when
these two pixels are adjacent.

The Getis-Ord Gi* takes distance as the measure to identify and calculate the spatial
distribution of high-value clusters and low-value clusters at different spatial locations,
namely hot spots and cold spots [44]. The formula is as follows:

G(d) =

N
∑

i=1

N
∑

j=1
Wij(d)xixj

N
∑

i=1

N
∑

j=1
xixj

(12)

where d denotes the distance, Wij(d) represents the distance weight between pixel i and j,
and the other parameters are the same as those in Equation (11). Then, the G coefficient is
normalized by the following formula:

Z(G) =
(G(d)− E(G(d)))√

Var(G(d))
(13)

where E(G(d)) and Var(G(d)) denote its expectation and variance, respectively.



Land 2022, 11, 743 8 of 15

3. Results

The NPP values calculated by the CASA model and shown in Figure 5 illustrate the
spatial distribution of the actual NPP in the research area in the experimental years. It
can be seen from the overall distribution that the NPP in 2020 is the highest, followed by
2011, 2016, and 2006. This does not match the order of mining intensity in the experimental
years, especially the NPP in 2011 with the highest mining production, which is greater
than both that in 2006 at the beginning of mining and that in 2016 with a valley value of
mining production. The summer means of temperature/precipitation are 21.3 ◦C/48.3 mm,
21.5 ◦C/87.6 mm, 22.7 ◦C/52.4 mm, and 20.6 ◦C/101.3 mm for the four years, respectively.
It shows that the interannual difference of the mean temperature is relatively small, while
the mean precipitation appears as an obvious interannual difference in the relatively small
grassland open-pit mine. The variations in the actual NPP are consistent with the changes
in the mean precipitation, indicating the importance of climatic factors for NPP in grassland
open-pit mining areas.

Land 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

Figure 5. Distribution of the actual NPP in the experimental years. 

The statistical results of the actual NPP including maximum, minimum, and mean 

values of all pixels in the research area in the corresponding years are listed in Table 1. It 

can be observed that the minimum NPP value for each year in the research area is stable 

at around 0.5 gC/m2 year, and the maximum NPP value reaches 511 gC/m2 year in 2020. 

Note that the maximum value in 2011 is 351 gC/m2 year, which is smaller than that in 2016, 

but its mean value still reaches 116 gC/m2 year, achieving a 19% improvement as com-

pared with that in 2016. The mean NPP value in each year shows the same trend as that 

in Figure 5. It is difficult to show the characteristics of NPP and its variations in the grass-

land open-pit mine. Thus, a more detailed study on the impact of human activities on NPP 

is necessary in the selected research area. 

Table 1. The statistical results of the actual NPP in the experimental years. 

 
Maximum 

(gC/m2 year) 

Minimum 

(gC/m2 year) 

Average 

(gC/m2 year) 

2006 334.7 0.46 90.0 

2011 351.6 0.47 116.4 

2016 379.7 0.45 97.4 

2020 511.4 0.59 159.2 

The NPP induced by human activities was calculated for each study year based on 

the proposed calibration method. The spatial distributions of NPP induced by human ac-

tivities in the experimental years are shown in Figure 6. A value of NPPh greater than zero 

indicates that human activities have an inhibitory effect on NPP in the research area, and 

the greater the value, the more serious the inhibitory effect. While a value of NPPh less 

than zero indicates that human activities promote NPP in the research area, and the larger 

the absolute value, the stronger the promotion of NPP.  Figure 6 shows that the impact 

of human activities on NPP had an inhibitory effect in the research area as a whole in the 
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The statistical results of the actual NPP including maximum, minimum, and mean
values of all pixels in the research area in the corresponding years are listed in Table 1. It
can be observed that the minimum NPP value for each year in the research area is stable
at around 0.5 gC/m2 year, and the maximum NPP value reaches 511 gC/m2 year in 2020.
Note that the maximum value in 2011 is 351 gC/m2 year, which is smaller than that in
2016, but its mean value still reaches 116 gC/m2 year, achieving a 19% improvement as
compared with that in 2016. The mean NPP value in each year shows the same trend as
that in Figure 5. It is difficult to show the characteristics of NPP and its variations in the
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grassland open-pit mine. Thus, a more detailed study on the impact of human activities on
NPP is necessary in the selected research area.

Table 1. The statistical results of the actual NPP in the experimental years.

Maximum
(gC/m2 year)

Minimum
(gC/m2 year)

Average
(gC/m2 year)

2006 334.7 0.46 90.0
2011 351.6 0.47 116.4
2016 379.7 0.45 97.4
2020 511.4 0.59 159.2

The NPP induced by human activities was calculated for each study year based on
the proposed calibration method. The spatial distributions of NPP induced by human
activities in the experimental years are shown in Figure 6. A value of NPPh greater than
zero indicates that human activities have an inhibitory effect on NPP in the research area,
and the greater the value, the more serious the inhibitory effect. While a value of NPPh less
than zero indicates that human activities promote NPP in the research area, and the larger
the absolute value, the stronger the promotion of NPP. Figure 6 shows that the impact of
human activities on NPP had an inhibitory effect in the research area as a whole in the
initial period of mining in 2006, that the highest mining intensity was in 2011, and that the
valley value of coal production was in 2016. Specifically, the percentages of pixels with
NPPh greater than zero in the research area are 98%, 99%, and 97% for the first three years
(2006, 2011, and 2016), respectively. For 2020, the impact of human activities appears to
have a promotion effect on NPP in the research area as a whole, and the percentage of
pixel with NPPh less than zero reaches 31%. From 2006 to 2011, with the expansion of
the mining area and city, a surge in coal production, and the quarrying activities in the
southern area, the inhibitory effect of human activities on NPP in the research area increased
significantly in the corresponding areas. From 2011 to 2016, with a continuous reduction
in coal production and steady implementation of the ecological restoration polices, the
inhibitory effect of human activities on NPP in the research area appears to be an obvious
weakening phenomenon, for example, in the northeast of the research area. In 2020, the
mining area has stable coal production and the ecological restoration projects have been
completed, for example, the reclamation of the dump and artificial vegetation planting near
the open pit have been completed and the forest park in the southern of the city has been
constructed with a green area of 2.52 km2. Thus, the promotion of NPP by the ecological
restoration and other activities exceeds the inhibitory effect of mining on NPP in some
certain pixels.

Considering the expansions of the open pit and the city in these four years, the mean
value of NPPh for the research area in each year is calculated to better show the changes
in NPP induced by human activities. The mean value refers to the ratio of the total NPPh
generated in the whole research area to the area of the corresponding pixels. The mean
values are 47.587 gC/m2 year, 65.443 gC/m2 year, 55.378 gC/m2 year, and 18.93 gC/m2

year for the four years, respectively, showing a trend of increasing first, and then decreasing,
which is consistent with changes in the coal production and ecological restoration in the
research area. It indicated that the impact of human activities on NPP varied year by
year, since the intensities of various human activities were different and changed in the
experimental years.



Land 2022, 11, 743 10 of 15

Land 2022, 11, x FOR PEER REVIEW 10 of 16 
 

initial period of mining in 2006, that the highest mining intensity was in 2011, and that the 

valley value of coal production was in 2016. Specifically, the percentages of pixels with 

NPPh greater than zero in the research area are 98%, 99%, and 97% for the first three years 

(2006, 2011, and 2016), respectively. For 2020, the impact of human activities appears to 

have a promotion effect on NPP in the research area as a whole, and the percentage of 

pixel with NPPh less than zero reaches 31%. From 2006 to 2011, with the expansion of the 

mining area and city, a surge in coal production, and the quarrying activities in the south-

ern area, the inhibitory effect of human activities on NPP in the research area increased 

significantly in the corresponding areas. From 2011 to 2016, with a continuous reduction 

in coal production and steady implementation of the ecological restoration polices, the 

inhibitory effect of human activities on NPP in the research area appears to be an obvious 

weakening phenomenon, for example, in the northeast of the research area. In 2020, the 

mining area has stable coal production and the ecological restoration projects have been 

completed, for example, the reclamation of the dump and artificial vegetation planting 

near the open pit have been completed and the forest park in the southern of the city has 

been constructed with a green area of 2.52 km2. Thus, the promotion of NPP by the eco-

logical restoration and other activities exceeds the inhibitory effect of mining on NPP in 

some certain pixels. 

 

Figure 6. Spatial distribution of NPP induced by human activities in the experimental years. 

Considering the expansions of the open pit and the city in these four years, the mean 

value of NPPh for the research area in each year is calculated to better show the changes 

in NPP induced by human activities. The mean value refers to the ratio of the total NPPh 

generated in the whole research area to the area of the corresponding pixels. The mean 

values are 47.587 gC/m2 year, 65.443 gC/m2 year, 55.378 gC/m2 year, and 18.93 gC/m2 year 

for the four years, respectively, showing a trend of increasing first, and then decreasing, 

which is consistent with changes in the coal production and ecological restoration in the 

research area. It indicated that the impact of human activities on NPP varied year by year, 

Figure 6. Spatial distribution of NPP induced by human activities in the experimental years.

Further, the total NPPh and NPPa were counted in each year to calculate the proportion
of NPP induced by climate conditions and human activities. Table 2 lists the statistical
values. It shows that the proportion reaches 52.9% even in the initial period of mining
in 2006, indicating that NPP in the grassland open-pit mine is easily affected by human
activities such as mining. In 2011 with the highest mining intensity, the proportion reaches
the maximum in the four years with a value of 56.2%. As compared with the proportions
of 2006 and 2016, 56.2% does not refer to a large increase, since a better climate condition
for NPP appeared in 2011. The proportion of NPP induced by human activities still reaches
the highest value under a more suitable climate, indicating that human activities, mainly
mining activities, have a significant inhibitory effect on NPP in this year. The impact of
human activities accounted for only 11.9% in 2020, which was due to stable mining, steady
implementation of ecological restoration, and very favorable climate conditions.

Table 2. Proportion of NPP that is induced by climate conditions and human activities.

Climate (%) Human Activities (%)

2006 47.1 52.9
2011 43.8 56.2
2016 53.9 46.1
2020 88.1 11.9

4. Discussion

Since carbon sinks in mining areas have attracted more and more attention, in this
study, we aimed to explore the spatiotemporal changes of NPP and to analyze the im-
pact of human activities on NPP in a grassland open-pit mine. This is because there are
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many grassland open-pit mines in northern China that need to be studied, and NPP is an
important constituent of the surface carbon cycle and serves as a main factor in judging
ecosystem carbon sinks.

The variations in actual NPP indicate that total NPP in a grassland open-pit mine
is still mainly affected by climatic factors. One of the most critical factors for vegetation
growth and its photosynthesis is climate conditions. In the Shengli mining area, located
in the semi-arid grassland region of northern China, the influence of precipitation on
vegetation is particularly obvious. This largely obscures the impact of human activities
including coal mining and ecological restoration, which are a greater concern in a grassland
open-pit mining area.

NPP induced by human activities was calculated using the calibration method pro-
posed by this study, and effectively showed the corresponding relationships among mining
intensity, ecological restoration, and NPPh changes. In the initial period of mining in 2006,
a large number of grasslands in the research area were developed as mining and building
areas, and during this time, human activities appeared to have had an inhibitory effect
on NPP [45]. With the completion of mining construction and the largest mining intensity
occurring in 2011, the impact analysis of human activities on NPP showed that the intense
mining activities had an inhibitory effect. Since ecological restoration was at an early stage
in 2016, the inhibitory effect was still observed as a whole in the research area even though
the coal production experienced the valley value [46]. In 2020 with stable mining and steady
implementation of ecological restoration, the impact of human activities on NPP appears
to have had a promotion effect in the research area as a whole. This demonstrates the
importance of setting a reasonable mining intensity and carrying out ecological restoration
for NPP in grassland open-pit mining areas.

Further, to explore the spatial correlation of the influence of human activities on NPP
in the research area, the global Moran’s I was calculated and is listed in Table 3. A global
Moran’s I greater than zero represents a positive spatial correlation, and the larger the
value the more obvious the correlation. On the contrary, a global Moran’s I less than zero
indicates a spatial negative correlation, and the smaller the value the greater the spatial
difference. Thus, it is useful for demonstrating the aggregation characteristics of the NPP
impact induced by human activities in the research area. From Table 3, it can be seen that
the values of the four-year Moran’s I are all greater than 0.85, indicating that the impact of
human activities on NPP have a strong spatial autocorrelation in each period of mining in
the grassland open-pit mine. That is, pixels with similar NPPh values are clustered together
in the research area, which reflects the impact characteristics of mining activities on NPP. In
addition, the global Moran’s I increased from 2006 to 2011, and then decreased until 2020.
This shows that an increase in mining intensity tends to aggravate the aggregation, and the
implementation of ecological restoration could help to weaken the aggregation.

Table 3. Moran’s I values for the four study years.

Year Global Moran’s I

2006 0.91
2011 0.93
2016 0.89
2020 0.85

To further illustrate the aggregation degree of the impact of human activities on NPP in
local areas, the Getis-Ord Gi* was adopted. The local sum for a feature in the neighborhood
of a grid cell was compared proportionally to the sum of all features using the Getis-Ord
Gi* statistic [45], and then the Z-score was obtained, as shown in Figure 7. A positive and
larger Z-score indicates more intense clustering of high values (hot spot) and a negative
and smaller Z-score signifies more intense clustering of low values (cold spot) [47]. It can
be seen from Figure 7 that the hot spots increased obviously from 2006 to 2011, especially
near the mining area and the quarrying area in the south of the city. As compared with the
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large NPPh values clustered in hot spots, these values in the eastern part of the research
area are relatively small and accumulated to form new cold spots. With the stabilization
of mining activities and the continuous implementation of ecological restoration, the area
of the cold and hot spots decreased gradually in the whole research area. Especially in
2020, the internal spatial aggregation of the impact of human activities on NPP reaches the
lowest level in the four study years.
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In this grassland open-pit mining area, human activities mainly consist of mining
activities, expansion of the mining area and city, and ecological restoration. Different types
of human activities have different effects on NPP, among which ecological restoration is
stimulatory and the other human activities are inhibitory. The impacts of human activities
on NPP varied year by year since the intensities of various human activities were different
and changed in different years. Moreover, edaphoclimatic and land management practices
are important conditioning factors, which need more attention in follow-up research.

It should be noted that the remote sensing images are affect by clouds and other factors
in the research area, and therefore, they are not suitable to use for calculating the actual
NPP based on the CASA model. Thus, it was difficult to obtain the actual NPP with high
accuracy in each year. Moreover, there are four years that are special mining periods, i.e.,
the initial period of mining, the year with intense mining activities, the year that the coal
production experienced the valley value, and the year with stable annual coal production.
Therefore, only four years (2006, 2011, 2016, and 2020) were selected to analyze the NPP
changes and the impact of human activities on NPP in the grassland open-pit mining area.
More detailed results could be obtained if data from consecutive years were available in
follow-up research.
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5. Conclusions

In this study, we attempted to assess the influence of human activities on the NPP in a
grassland open-pit mine in China. The CASA model was utilized to calculate the actual
NPP, and we proposed a method for selecting a contrast area to calibrate the potential
NPP estimated by the Chikugo model to obtain the NPP induced by human activities. The
Shengli mining area, located in the city of Xilinhot, Xilin Gol League, in the Inner Mongolia
Autonomous Region, China, was selected as the research area to explore the NPP in four
representative years.

We concluded that the human activities-induced NPP is a better indicator than the
actual NPP to reflect the characteristics of carbon sinks in grassland open-pit mines. The
impact of human activities on NPP varied year by year, since the intensities of coal mining
and the implementation of ecological restoration were different in each year. The per-
centages of pixels with an inhibitory effect on NPP were 98%, 99%, 97%, and 69% for the
four study years. The proportion of NPP induced by human activities reached maximum
and minimum values of 56.2% and 11.9% in 2011 and 2020, respectively. In addition, the
analysis based on the Moran’s I and the Getis-Ord Gi* showed that mining activities and
ecological restoration could aggravate and weaken the aggregation of NPPh, respectively.

The method proposed can be adopted for use in other study areas that are also
grassland open-pit mining areas. In follow-up research, a more detail method to select the
contrast area should be explored for obtaining more accurate calibration values. With more
available images from the remote sensing satellite, a more continuous NPP time series in
the research area would better reflect the impact of human activities on NPP in grassland
open-pit mining areas.
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