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Abstract: The process of urbanization is accelerating, and land surface temperature (LST) is increasing,
seriously threatening human health. Therefore, it is crucial to explore the differences in LST of
different land use/land cover (LULC) types. Using MOD11A2 and MCD12Q1 data, this study
explored the seasonal differences in LST of each LULC type from the perspective of different climate
zones. The results showed that the maximum and minimum LSTs during the day were higher
than those at night. During the day, the LSTs of urban and built-up and barren lands were higher
than those of forests, grasslands, and water bodies; at night, the LSTs of urban and built-up lands
decreased but remained high, while barren lands showed a significant decrease to LSTs even lower
than those of water bodies. In addition, the difference in daytime LST of the LU16 type (barren lands)
in different climatic zones was the most obvious and was much higher than that of other LULC
types in the middle temperate and south temperate zones, but much lower than those in the middle
subtropical and north subtropical zones. This comparison of the LST differences of each LULC type
under different climate backgrounds provides an important reference for rational urban planning.

Keywords: land surface temperature; land use; climate zones; moderate resolution imaging
spectroradiometer; China

1. Introduction

In the process of global rapid urbanization, numerous natural features have been
transformed into impervious surfaces [1–3], resulting in an annual increase in land surface
temperature (LST). Extreme high-temperature conditions have frequently occurred in large
cities, triggering a series of environmental problems such as the urban heat island effect
and extreme climatic events [4–7], causing serious threats to human physical and mental
health [8–10]. Therefore, research on the spatiotemporal distribution and mechanism of
LST has become a focus of Chinese and foreign scholars [11–13].

In LST research, the LST data acquisition method is a high priority. Compared with
the air temperature data obtained by meteorological stations, LST is easier to obtain, has
larger coverage, and is spatially continuous. With the development of remote sensing
technology, LST acquisition methods mainly include remote sensing image inversion
and numerical simulation [14–16]. The inversion of LST from remote sensing images
mainly calculates LST based on the reflectivity of ground objects in the thermal infrared
band through the thermal infrared band data in satellite sensors, through single-channel
algorithm, split-window algorithm, single-window algorithm, and atmospheric correction
methods [17–20]. At present, there are many remote sensors for LST inversion, such as
Landsat series (TM, ETM+, and TIRS) and Advanced Spaceborne Thermal Emission &
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Reflection Radiometer (ASTER) [21–23], both are more suitable for small-scale research due
to their high resolution. However, for studies across China, with large coverage, large-scale
satellite LST datasets, such as Advanced Very High Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectroradiometer (MODIS), are more suitable, and MODIS
is also widely used due to the easy availability of data [24,25]. For example, Yao et al. [26]
analyzed the differences between MYD11 and MYD21 land surface temperature products
in mainland China.

The drivers of LST are complex and diverse, and mainly include: land use/land cover
(LULC), urban climate, human activities, ecological environment, etc. [27–31]. Due to
the continuous advancement of urbanization, the urban population has rapidly increased
and the LULC has continued to change; hence, the LULC plays a pivotal role in LST
change [32–34]. It is well known that LULC change is the main focus of sustainable
development [35] and is also a very important concept in natural resource management
and monitoring [36,37]. Many scholars have studied the relationship between LULC and
LST [38–42]; however, most of the studies were based on a city, and few studies analyzed
the impact of different LULC types in different cities on LST under different climate
backgrounds. However, it has been found that the cooling effect of urban parks is different
under different climate backgrounds [43]. China has a vast area and diverse climate types.
Hence, taking China as an example to explore the LST differences under the background
of climate differences is arguably more practical than city-scale studies. Therefore, this
study took China as an example to explore the differences of LST corresponding to different
LULC types under different climate backgrounds.

Based on the 2020 MODIS LST (MOD11A2) and LULC (MCD12Q1) products combined
with remote sensing, geographical information system spatial analysis, and other methods,
and with ArcGIS software, this paper explored the seasonal and diurnal differences in
LST and discussed the impact of LULC types on LST under different climate backgrounds.
This paper is structured as follows. Section 2 introduces the case study area, data sources,
and research methods. Section 3 analyzes the results of the spatial distribution of LULC,
LST diurnal, and seasonal differences, and the relationship between them. Following this,
Section 4 discusses the results, and Section 5 concludes this paper.

2. Materials and Methods
2.1. Study Area

Since the reform and opening up, China’s urbanization process has accelerated, and
the population has continued to increase, especially in the eastern coastal cities. China has
a vast territory (Figure 1), with a total land area of approximately 9,600,000 km2, ranking
third in the world. It has a large latitudinal and longitudinal span and is rich in climate
types, including temperate, tropical, subtropical, and plateau climates. The terrain of China
is higher in the west than in the east, with roughly a ladder-like distribution. China has four
distinct seasons. In this paper, according to the meteorological division method, March,
April, and May are regarded as spring; June, July, and August as summer; September,
October, and November as autumn; and December, January, and February as winter.

2.2. Data Sources

This study mainly used MODIS LST product (MOD11A2), MODIS LULC product
(MCD12Q1), digital elevation model (DEM) data, and climate division data. See Table 1
for details.
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Table 1. Data sources and description.

Data Type Time/Year Resolution Sources Data Processing

MOD11A2 2020, 2010 1 km https://ladsweb.modaps.eosdis.nasa.gov/search/
(accessed date: 2 July 2022)

Projection and
format conversion

MCD12Q1 2020, 2010 500 m https://ladsweb.modaps.eosdis.nasa.gov/search/
(accessed date: 2 July 2022)

Projection and
format conversion

GMTED2010 - 900 m DEM data included with ENVI 5.3.1 software
Extraction using China’s
administrative boundaries
as a mask

Climate zones - - https://www.resdc.cn/
(accessed date: 30 May 2022) -

2.3. Methods

At present, the common thermal infrared remote sensing data mainly include Landsat
series (TM, ETM+, and TIRS), Advanced Spaceborne Thermal Emission & Reflection
Radiometer (ASTER), Moderate Resolution Imaging Spectroradiometer (MODIS), and
Advanced Very High Resolution Radiometer (AVHRR) data [26,44–47]. Among them,
compared with MODIS data, Landsat series satellites have higher resolution (TM: 120,
ETM+: 60, TIRS: 100 m); however, their revisit period is longer (16 d), and only daytime
data can be obtained free of charge. ASTER data has a higher resolution (90 m), and the
revisit period is also 16 d, but it can obtain day and night data. The Landsat series and
ASTER are more suitable for small and medium-scale research; Environment-1 B satellite
(HJ-1B) data has a lower resolution (300 m), and the playback period is long (31 d). AVHRR
has a lower resolution (1100 m) but a short revisit period, passing the same area twice a
day. MODIS data resolution is low (250 m, 500 m, and 1000 m), but it can obtain daily
day and night data, which is suitable for large-scale research and is widely used in LST
research [48,49]. At present, most studies take a single city as an example [50–53], which

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://www.resdc.cn/
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lacks general laws from a large-scale perspective. Due to the advantages of MODIS data
in large-scale research, this paper selected the MOD11A2 data and obtained by the split
window algorithm inversion; the error was <1 K in most cases [54–56].

This study selected MODIS LST product (MOD11A2) as the LST data of the study area
(the error of MOD11A2 was <1 K in most cases [54–56]). To study the diurnal and seasonal
differences of LST, this paper selected a total of 1288 image data in 2020 to calculate LST,
and the MRT tool was used to perform projection and stitching processing, and the missing
data were set to null values. Then, ArcGIS 10.4 software (version number: 10.4.1.5686)was
used to clip according to the vector boundary of the study area. Finally, the image pixel
value of MOD11A2 was converted to degrees Celsius by using ArcGIS 10.4 software (digital
numbers [DNs]); the calculation formula is as follows:

LST (◦C) = DN × 0.02 − 273.15, (1)

where DN is the brightness temperature of the MOD11A2 image.
A total of 28 images of MODIS 2020 LULC product (MCD12Q1) were selected as the

LULC data of the study area (accuracy assessment indicated that the Collection 6 product
had an overall accuracy of 73.6% for the primary LCCS layer [57]), and were projected and
spliced using MRT tools. Then, resampling to 1 km by ArcGIS 10.4 software and clipping
according to the vector boundary of the study area were conducted to obtain the LULC
spatial distribution map in China. When calculating the average LST of different LULC
types, we first converted the LULC raster images into vector format and then used the
zonal statistics tool of ArcGIS 10.4 software for calculations.

In order to further analyze the LST changes, this paper used the raster calculator tool
of ArcGIS to calculate the same using the formula:

LSTC = LST2020 − LST2010, (2)

where, LSTC represents LST changes, and LST2020 and LST2010 are the annual average LSTs
in 2020 and 2010, respectively.

3. Results
3.1. LULC Spatial Distribution

From the perspective of the spatial distribution of LULC (Figure 2), croplands were
mainly distributed in the northeastern middle temperate, south temperate, and north
subtropical zones. Barren lands were mainly distributed in the south temperate, middle
temperate, and northwestern plateau climate zones. Grasslands were mainly distributed
in northwestern China. Forests were mainly distributed in the subtropical, tropical, and
northeastern temperate zones of southern China. Urban and built-up areas were mainly
distributed in the eastern coastal areas. In addition, we calculated the proportion of the
area of different LULC types in each climate zone (Table 2). The results showed that barren
land and grasslands were the main land types in the plateau climate zone, accounting
for 90.3% of the total area. The middle tropical zone was dominated by woody savannas,
savannas, grasslands, and evergreen broadleaf forests, accounting for 80.6% of the total
area. In the northern tropics, evergreen broadleaf forests and savannas accounted for 28.4%
and 28.5% of the total area, respectively. Woody savannas and savannas accounted for
relatively large proportions in the south subtropical and middle subtropical zones, and
croplands accounted for the largest proportion in the north subtropical zone, followed
by the savannas. The largest proportions of barren land and croplands were in the south
temperate zone, accounting for 40.4% and 33.7%, respectively. Grasslands and barren land
accounted for the largest proportions in the middle temperate zone (45.6% and 22.2% of the
total area, respectively), and woody savannas (66.8%) accounted for the largest proportion
in the north temperate zone.
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Table 2. Proportion of land use/land cover (LULC) types in different climate zones.

Plateau
Climate Zone

Middle
Tropical North Tropical South

Subtropical
Middle

Subtropical
North

Subtropical
South

Temperate
Middle

Temperate
North

Temperate

LU1 0.015 - 0.003 0.009 0.024 0.009 0.000 0.000 0.000

LU2 0.012 0.201 0.284 0.245 0.094 0.009 - 0.000 -

LU3 0.000 - - - 0.000 - 0.000 0.000 0.070

LU4 0.001 0.003 0.001 0.000 0.024 0.078 0.042 0.076 0.096

LU5 0.013 0.000 0.028 0.035 0.110 0.090 0.011 0.009 0.062

LU6 0.000 - 0.000 0.000 0.000 - 0.002 0.000 -

LU7 0.003 0.000 - 0.000 0.000 - 0.000 0.001 0.000

LU8 0.018 0.203 0.195 0.208 0.306 0.226 0.012 0.023 0.668

LU9 0.005 0.298 0.285 0.303 0.257 0.149 0.033 0.025 0.056

LU10 0.522 0.104 0.020 0.015 0.023 0.017 0.112 0.456 0.038

LU11 0.001 0.005 0.006 0.007 0.002 0.015 0.002 0.002 0.000

LU12 0.003 0.107 0.048 0.044 0.031 0.251 0.337 0.170 0.006

LU13 0.000 0.019 0.023 0.048 0.015 0.049 0.031 0.006 0.003

LU14 0.000 0.043 0.100 0.075 0.109 0.073 0.004 0.004 0.001

LU15 0.014 - - - 0.000 0.000 0.003 0.002 -

LU16 0.381 0.000 0.001 0.001 0.001 0.000 0.404 0.222 -

LU17 0.013 0.016 0.007 0.008 0.005 0.034 0.006 0.004 0.000

3.2. LST Spatial Distribution

The LST calculation results are shown in Figure 3 (validated with metrological station
data, the RMSE result was 2.94 ◦C, and the distribution of meteorological stations is shown
in Figure A1). There were obvious differences in the LSTs between the day, night, and
seasons in China. Overall, the maximum LSTs during the day were higher than those at
night: Annual mean LST: (44.09 ◦C) > (25.43 ◦C); spring: (46.55 ◦C) > (26.78 ◦C); summer:
(63.25 ◦C) > (32.44 ◦C); autumn: (37.50 ◦C) > (26.83 ◦C); winter: (31.94 ◦C) > (22.12 ◦C). This
was also the case for the minimum LSTs: Annual mean LST: (−21.77 ◦C) > (−39.43 ◦C);
spring: (−21.58 ◦C) > (−41.69 ◦C); summer: (−12.47 ◦C) > (−43.57 ◦C); autumn: (−25.15 ◦C)
> (−39.43 ◦C); winter: (−41.07 ◦C) > (−44.91 ◦C). This was mainly due to the rapid heating
of the surface due to the influence of solar radiation during the day; whereas at night,
without the effect of solar radiation, the ground dissipated heat outward, so the LST was
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lower. In addition, LST also showed seasonal differences. During the day, the maximum
LST decreased from that in summer (63.25 ◦C) > spring (46.55 ◦C) > autumn (37.50 ◦C) >
winter (31.94 ◦C). The minimum values decreased in the same order: summer (−12.47 ◦C)
> spring (−21.58 ◦C) > autumn (−25.15 ◦C) > winter (−41.07 ◦C). At night, the maximum
LST decreased from that in summer (32.44 ◦C) > autumn (26.83 ◦C) > spring (26.78 ◦C) >
winter (22.12 ◦C); whereas the minimum LST decreased from that in autumn (−39.43 ◦C)
> spring (−41.69 ◦C) > summer (−43.57 ◦C) > winter (−44.91 ◦C). This was mainly due
to the fact that the maximum daytime LST occurred near the Tarim Basin in the Xinjiang
Uygur Autonomous Region, and the solar radiation was strong during the day, causing
the temperature to sharply increase. However, the Tarim Basin belongs to the temperate
continental climate, which is cold in winter and hot in summer, and the annual and daily
temperature ranges are very large. The maximum LST at night occurred in the southeastern
coastal area, which belongs to the tropical and subtropical monsoon climate, and is affected
by the difference in thermal properties between land and sea. The temperature was the
highest in summer and the lowest in winter, and there was little difference between spring
and autumn.
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3.3. Relationship between LULC and LST

As shown in Figure 4 and Table 3, the mean LST of different LULC types also showed
significant differences in different seasons and between day and night. For the same
LULC type, the annual mean daytime LST was similar to the mean LST in autumn, and
the seasonal trend decreased from summer > spring > autumn > winter; e.g., at LU1 it
decreased from that in summer (19.47 ◦C) > spring (16.84 ◦C) > autumn (14.08 ◦C) > winter
(7.42 ◦C). The annual mean LST at night was similar to that in spring or autumn, and
the seasons showed a trend of summer > spring/autumn > winter; e.g., at LU1 where it
decreased from that in summer (9.44 ◦C) > autumn (6.26 ◦C) > spring (9.44 ◦C) > winter
(−0.35 ◦C), which was consistent with the seasonal differences in LST. For different LULCs,
there were significant differences in the mean LST of the year, season, day, and night.
During the day, the highest LSTs in the year, spring, summer, autumn, and winter occurred
in LU14, LU13, LU16, LU13, and LU2 types, respectively, and the minimum LSTs occurred
in LU15, LU15, LU15, LU3, and LU3 types, respectively. At night, the highest LSTs in the
year, spring, summer, autumn, and winter were in LU2, LU2, LU13, LU2, and LU2 types
respectively, and the minimum LSTs were all in the LU15 type. In addition, during the day,
urban and built-up, and barren lands had higher LSTs, and forests, grasslands, snow and
ice, and water bodies had lower LSTs. The LSTs of urban and built-up lands decreased
at night, but remained high in many LULC types, while that in barren land showed a
significant decrease (to temperatures even lower than that of water bodies), which was
mainly due to the strong solar radiation during the day, and the rapid heating of barren
land and built-up areas. At night, with no solar radiation, the built-up area still had a high
LST due to human activities and other factors, the specific heat capacity of bare soil was
small, and the temperature decreased rapidly.
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Figure 4. Mean land surface temperature (LST) values of different land use/land cover (LULC) types
in the daytime and nighttime, in each season and annually. LU1–LU17 represent evergreen needleleaf
forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed
forests, closed shrublands, open shrublands, woody savannas, savannas, grasslands, permanent
wetlands, croplands, urban and built-up lands, cropland/natural vegetation mosaics, permanent
snow and ice, barren land, and water bodies, respectively. (a) Daytime; (b) nighttime.

To further analyze the LST difference of each LULC type in different climatic zones
and ensure that all LULC types were distributed in each climatic zone, this study took five
land-use types (LU10, LU12, LU13, LU16, and LU17) as examples to analyze the different
LULC types. The LST differences of each LULC type under the climate zone are shown
in Figure 5. Overall, the mean LST of the same LULC type (except LU16) under different
climate backgrounds (except the plateau climate region) showed a trend of being high in
the south and low in the north, which was mainly due to the solar radiation differences
in different regions in the north and south. Specifically, in the daytime, the annual mean
LSTs of LU10 and LU17 exhibited a pattern of decreasing from that in the middle tropical
> north tropical > south subtropical > middle subtropical > north subtropical > south
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temperate > middle temperate > plateau climate zone > north temperate. The annual mean
LSTs of LU12 and LU13 decreased in the order of middle tropical > north tropical > south
subtropical > middle subtropical > north subtropical > south temperate > plateau climate
zone > middle temperate > north temperate. The annual mean LST of LU16 decreased
in the order of middle tropical > south temperate > north tropical > south subtropical >
middle temperate > north subtropical > plateau climate zone > middle subtropical. At
nighttime, the annual mean LST of LU10 presented a decreasing trend from middle tropical
> north tropical > south subtropical > north subtropical > middle subtropical > south
temperate > middle temperate > north temperate > plateau climate zone. The annual mean
LSTs of LU12 and LU13 presented decreasing trends from the middle tropical > north
tropical > south subtropical > middle subtropical > north subtropical > south temperate >
middle temperate > plateau climate zone > north temperate. The annual mean LST of LU16
showed a decreasing trend from north tropical > middle tropical > south subtropical > north
subtropical > south temperate > middle temperate > middle subtropical > plateau climate
zone. For the same climate zone, the LSTs of different LULC types were also different.
Regardless of day and night, the mean LST of each LULC type was different from that
without distinguishing climate zones. When the climatic zones were not distinguished, the
mean LST of different LULC types during daytime showed LU13 > LU16 > LU12 > LU10 >
LU17, and nighttime showed LU13 > LU17 > LU12 > LU16 > LU10. However, there are
significant differences in the statistics of LST differences of LULC types in different climatic
zones. Specifically, in the daytime, among these five LULC types (LU10, LU12, LU13, LU16,
and LU17), except in the south temperate, middle temperate, and north temperate zones,
the remaining climate zones showed that LU12 and LU13 had higher LSTs (in the middle
tropical and north temperate zones, LU12 > LU13, the rest were LU13 > LU12), and that
LU10, LU16, and LU17 had lower LSTs. The LST of LU16 was the highest in the south
temperate and middle temperate zones and the lowest in the middle subtropical and north
subtropical zones. At night, LU17 and LU13 had higher LSTs in the plateau climate zone,
middle subtropical, north subtropical, southern temperate, and middle temperate zones;
whereas LU10, LU12, and LU16 had smaller LSTs. LU13 and LU16 in the middle tropical,
north tropical, and southern subtropical zones had larger LSTs (LU16 > LU13), and LU10,
LU12, and LU17 had smaller LSTs (LU17 > LU12 > LU10, consistent with the results when
no climate zone was distinguished). The LST in the north temperate zone showed a trend
of LU17 > LU10 > LU13 > LU12.
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Figure 5. Distribution map of mean daytime and nighttime annual land surface temperature (LST) in
different land use/land cover (LULC) types in different climate zones of China. LU10, LU12, LU13,
LU16, and LU17 represent grasslands, croplands, urban and built-up lands, barren land, and water
bodies, respectively. (a) Daytime; (b) nighttime.
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Table 3. Mean land surface temperatures (LSTs) of different land use/ land cover (LULC) types in
the day and night, in each season and annually.

LULC Types

LST (◦C) Daytime Nighttime

Annual Spring Summer Autumn Winter Annual Spring Summer Autumn Winter

LU1 13.89 16.84 19.47 14.08 7.42 4.93 4.99 9.44 6.26 −0.35

LU2 21.93 24.28 27.29 21.90 15.79 15.19 16.40 20.64 15.54 9.54

LU3 3.44 9.69 20.99 1.75 −18.13 −5.30 −3.17 11.97 −6.35 −23.34

LU4 11.57 15.76 23.70 11.20 −4.50 2.70 3.63 15.67 2.64 −10.79

LU5 16.24 19.43 24.18 15.70 6.20 8.29 9.15 15.99 8.03 −0.39

LU6 15.95 20.95 26.80 14.38 2.06 5.75 6.29 17.60 5.70 −6.83

LU7 20.60 24.07 33.21 20.71 4.24 −5.11 −6.08 6.89 −4.29 −16.99

LU8 18.18 21.60 26.46 17.46 7.09 9.27 10.40 18.25 8.90 −0.39

LU9 21.48 25.07 28.86 20.69 11.86 11.76 13.20 20.15 11.52 3.00

LU10 14.89 19.58 27.02 14.80 −1.88 −4.36 −3.92 7.91 −3.51 −17.65

LU11 17.80 19.64 26.90 18.60 6.88 11.25 12.04 21.77 12.35 0.40

LU12 18.27 23.48 30.18 18.06 1.81 5.23 6.22 19.09 5.36 −9.21

LU13 23.18 26.65 34.02 23.10 10.05 11.56 12.51 22.93 11.81 0.35

LU14 23.38 26.40 30.50 22.52 13.31 13.72 15.14 22.22 13.22 4.57

LU15 0.33 1.35 11.16 1.76 −12.87 −13.46 −14.83 −2.49 −11.01 −24.22

LU16 21.46 25.53 37.53 20.21 2.13 −2.73 −1.49 10.77 −3.30 −16.89

LU17 11.29 11.33 20.76 13.74 −0.28 6.29 4.48 16.96 9.87 −6.14

LU1–LU17 represent evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests,
deciduous broadleaf forests, mixed forests, closed shrublands, open shrublands, woody savannas, savannas,
grasslands, permanent wetlands, croplands, urban and built-up lands, cropland/natural vegetation mosaics,
permanent snow and ice, barren land, and water bodies, respectively.

3.4. Variations in LST for Different LULC Types Changes

In order to study the effect of land use changes on LST, this paper selected LULC
(MCD12Q1) and LST (MOD11A2, validated with metrological station data, the RMSE
result was 4.14 ◦C, the distribution of LST and LULC in 2010 was shown in Figure A2)
data in 2010 for processing, and obtained LST (Figure A3) and LULC (Figure A4) (Still
taking LU10, LU12, LU13, LU16 and LU17 as examples) changes in 10 years (2010–2020),
and using ArcGIS spatial analysis and zonal statistical tools to calculate the LST changes
caused by LULC changes (Table 4). The results showed that, except for LU12 and LU13
in the south subtropical zone, the LST showed a decreasing trend in other climate zones
even if the types of LULCs did not change. This was because the changes of these five
LULC types mainly occur in southern temperate, middle temperate, plateau climate, and
northern subtropical zones, which were affected by strong cold air in 2020, resulting in
low temperatures (according to the statistics of the China Meteorological Administration,
source: http: //www.cma.gov.cn/, access date: 2 July 2022). Meanwhile, affected by
the Coronavirus disease (COVID-19) in 2020, LST also showed a decreasing trend [58,59].
When analyzing the response of LST to LULC changes, it was found that, except for the
plateau climate zone, the LST changes in the remaining climate zones from LU10, LU12,
LU16, and LU17 to LU13 were larger than those from LU13 to LU10, LU12, LU16, and
LU17, indicating that even under the influence of cold air, urban and built-up lands still
had a certain thermal insulation effect compared with other LULC types. However, the LST
changes from LU12, LU13, LU16, and LU17 to LU10 were smaller than those from LU10
to LU12, LU13, LU16, and LU17, indicating that grasslands had a certain cooling effect
compared with other LULC types.

www.cma.gov.cn/
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Table 4. Variations in land surface temperatures (LSTs) for different land use/land cover (LULC)
types from 2010 to 2020.

Middle Subtropical 2020 South Subtropical 2020

LST Changes (◦C) LU10 LU12 LU13 LU16 LU17 LST Changes (◦C) LU10 LU12 LU13 LU16 LU17

2010

LU10 −1.09 −1.42 −0.51 −0.60 −0.56

2010

LU10 −1.06 −0.79 0.08 −0.12 −0.14

LU12 −1.37 −1.12 −0.56 −2.29 −0.69 LU12 −0.57 −0.25 −0.08 −0.06 −0.24

LU13 −0.71 −0.60 −0.01 −0.84 −0.34 LU13 0.07 −0.19 0.28 0.18 0.27

LU16 −0.49 0.27 −0.22 −0.56 −0.27 LU16 0.39 0.64 0.42 0.14 0.13

LU17 −0.48 −0.68 −0.33 −0.12 −0.16 LU17 −0.23 −0.27 0.33 0.17 −0.17

South temperate 2020 Plateau Climate Zone 2020

LST Changes (◦C) LU10 LU12 LU13 LU16 LU17 LST Changes (◦C) LU10 LU12 LU13 LU16 LU17

2010

LU10 −1.88 −1.70 −0.61 −2.51 −0.19

2010

LU10 −2.25 −2.57 −2.44 −2.06 −2.03

LU12 −1.07 −0.70 −0.39 −0.89 −0.32 LU12 −2.54 −2.77 −2.48 −2.70 -

LU13 −0.84 −0.54 −0.56 −1.87 −0.47 LU13 −2.51 −2.67 −2.52 −3.15 -

LU16 −3.07 −3.63 −1.43 −3.09 −0.79 LU16 −1.96 −1.94 −2.54 −2.12 −2.43

LU17 −0.32 −0.30 −0.36 −0.45 −0.02 LU17 −1.89 - - −1.77 −1.79

North Temperate 2020 North Subtropical 2020

LST Changes (◦C) LU10 LU12 LU13 LU16 LU17 LST Changes (◦C) LU10 LU12 LU13 LU16 LU17

2010

LU10 −2.49 −3.17 −2.73 - -

2010

LU10 −1.52 −0.96 −0.57 −1.13 −0.28

LU12 −2.63 −3.15 −2.87 - - LU12 −0.77 −0.50 −0.40 −0.20 −0.39

LU13 −3.52 −2.83 −3.65 - - LU13 −0.70 −0.40 −0.70 −0.28 −0.32

LU16 - - - - - LU16 −1.40 −0.83 −0.53 −1.36 −0.10

LU17 - - - - - LU17 −0.53 −0.56 −0.39 −0.10 −0.09

Middle Tropical 2020 Middle Temperate 2020

LST Changes (◦C) LU10 LU12 LU13 LU16 LU17 LST Changes (◦C) LU10 LU12 LU13 LU16 LU17

2010

LU10 −0.71 −0.83 −0.43 −0.61

2010

LU10 −2.62 −2.22 −2.20 −2.00 −1.78

LU12 −0.84 −0.68 −0.38 −0.79 −0.42 LU12 −1.65 −1.84 −1.29 −1.79 −1.10

LU13 −0.46 0.00 −0.09 - - LU13 −2.41 −1.41 −1.74 −2.45 −0.39

LU16 −0.44 - −0.30 −0.15 - LU16 −2.12 −2.84 −2.35 −2.43 −3.33

LU17 −0.53 −0.88 −1.07 −0.03 −0.37 LU17 −1.26 −0.95 −0.55 −1.71 −0.55

LU10, LU12, LU13, LU16, and LU17 represent grasslands, croplands, urban and built-up lands, barren land, and
water bodies, respectively. LST changes.

4. Discussion
4.1. Relationship between LULC and LST

Most studies have found that for a city in a certain area, the temperature of vegetation
and water bodies is low, and that of buildings is high [60–64]. There are few studies on the
impact of different LULC types in different cities on LST [65–67], and it has been found
that urban parks have different cooling effects under different climate backgrounds [44].
Therefore, this study discussed the difference in the LST of different LULC types under
different climatic backgrounds in China and analyzed the warming and cooling effects
of each LULC type under different climate backgrounds. For example, we found that the
LU16 type had high LST in the south temperate and middle temperate zones, but a low
LST in the middle subtropical zone. This finding has important significance as a reference
for the rational use of urban land. Meanwhile, we analyzed LST variations for changes in
different LULC types and found that even under the influence of cold air, compared with
other LULC types, LU10 had lower LST and LU13 had higher LST. In addition, we found
that extreme climate had a greater impact on LST.

4.2. Seasonal LST Variations of Different LULC Types

LST also shows seasonal differences under different LULCs [68,69]. For example, Yang
et al. [27] analyzed the relationship between LCZ and LST and found that the mean LST in
barren land was lower than most building types in summer but higher than most building
types in winter. To further analyze the seasonal difference of the mean LST of each LULC
type under different climate zones, in this study we calculated the seasonal difference of
LST of LULC types under different climate zones (Figure 6). The results showed that, for
the same LULC type (except LU16), during the daytime in spring and summer, the mean
LST of each LULC type first decreased, then increased, and then decreased again with the
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increase of the latitude of the climate zones (except the plateau climate zone). However,
during the daytime in autumn and winter, and at night in all seasons, the mean LST of each
LULC type showed a decreasing trend with the increase of the latitude of the climate zones
(except the plateau climate zone), which was consistent with the annual mean LST results.
For the same climate zone, there were differences in the mean LST of each LULC type in
different seasons. Taking the north temperate zone as an example, in daytime in spring and
summer, the mean LST showed a trend of LU12 > LU13 > LU10 > LU17; and in daytime
in autumn, the mean LST showed a trend of LU10 > LU12 > LU13 > LU17. In daytime in
winter, the mean LST showed a trend of LU17 > LU10 > LU13 > LU12, which was mainly
due to the location of the north temperate zone in the northernmost part of China. This
area is covered with a large amount of snow and ice in winter, resulting in a decrease in
the LST to a lower temperature than that of water bodies. In the context of the frequent
occurrence of the global urban heat island effect, the LULC types with lower LSTs in each
climatic zone can be identified by comparing the difference in mean LSTs in different LULC
types in different climatic zones. Then, the proportions of the areas of these LULC types
can be increased to alleviate the LST. This study shows that the proportions of water bodies
and grassland areas in each climate zone can be increased to reduce the LST.Land 2022, 11, x FOR PEER REVIEW 13 of 19 

 

 
Figure 6. Distribution map of daytime and nighttime seasonal mean land surface temperatures 
(LSTs) of different land use/land cover (LULC) types in different climate zones of China. LU10, 
LU12, LU13, LU16, and LU17 represent grasslands, croplands, urban and built-up areas, barren 
land, and water bodies, respectively. 

4.3. Limitations 
Based on the LST and LULC data of MODIS, this paper analyzed the mean LST dif-

ference of each LULC type under different climate zones and found that the LST of each 

Figure 6. Distribution map of daytime and nighttime seasonal mean land surface temperatures (LSTs)
of different land use/land cover (LULC) types in different climate zones of China. LU10, LU12, LU13,
LU16, and LU17 represent grasslands, croplands, urban and built-up areas, barren land, and water
bodies, respectively.
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4.3. Limitations

Based on the LST and LULC data of MODIS, this paper analyzed the mean LST
difference of each LULC type under different climate zones and found that the LST of
each LULC type was significantly different under different climate zones. There were also
differences in LST under the same climate zone, and the LST can be effectively decreased
by increasing the proportion of LULC types with lower LSTs. However, the relationship
between LULC and LST was complex. This study analyzed the mean LST of different LULC
types but did not analyze the landscape pattern of LULC and spatial autocorrelation of
LST. In the future, the difference in LST caused by the spatial agglomeration characteristics
of different LULC types should be analyzed. In addition, the division of climate zones
in this study was mainly based on temperature, and in future studies, factors such as
precipitation should be considered, and the climate zones may be further divided into arid
and humid regions.

5. Conclusions

Using MOD11A2 and MCD12Q1 in 2020 as data sources, this study explored the
seasonal differences in LST of each LULC type from the perspective of different climate
zones in China. The main conclusions were as follows:

(1) Croplands were mainly distributed in the northeast middle temperate, south temper-
ate, and north subtropical zones. Barren lands were mainly distributed in the south
temperate, middle temperate, and northwest plateau climate zones. Grasslands were
mainly distributed in northwest China. Forests were mainly distributed in southern
China subtropical, tropical, and northeastern temperate zones. Urban and built-up
areas were mainly distributed in eastern coastal areas.

(2) Overall, the maximum and minimum LSTs during the day were higher than those at
night. LST also showed seasonal differences. During the daytime, the maximum LST
decreased from that in summer (63.25 ◦C) > spring (46.55 ◦C) > autumn (37.50 ◦C) >
winter (31.94 ◦C), whereas at night, the maximum LST decreased from that in summer
(32.44 ◦C) > autumn (26.83 ◦C) > spring (26.78 ◦C) > winter (22.12 ◦C).

(3) During the day, urban and built-up lands and barren lands had higher LST, and
forests, grasslands, snow and ice, and water bodies had lower LST. At nighttime, LST
decreased in urban and built-up lands; however, the LST remained high at nighttime
in many LULC types. Barren lands showed a significant decrease in LST at nighttime,
i.e., to temperatures even lower than those of water bodies.

These comparisons of the differences in LST of each LULC type under different climate
zones and identification of the LULC types with lower LSTs provide an important reference
for alleviating the increasing urban heat island effect, temperature improvement, and
urban planning.
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Figure A2. Distribution map of LST and LULC in 2010. LU1–LU17 represent evergreen needleleaf
forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed
forests, closed shrublands, open shrublands, woody savannas, savannas, grasslands, permanent
wetlands, croplands, urban and built-up lands, cropland/natural vegetation mosaics, permanent
snow and ice, barren land, and water bodies, respectively. (a) LST, (b) LULC.
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