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Abstract: In the evolving field of digital soil mapping (DSM), the determination of sample size
remains a pivotal challenge, particularly for large-scale regional projects. We introduced the Jensen-
Shannon Divergence (DJS), a novel tool recently applied to DSM, to determine optimal sample sizes
for a 2790 km2 area in Ontario, Canada. Utilizing 1791 observations, we generated maps for cation
exchange capacity (CEC), clay content, pH, and soil organic carbon (SOC). We then assessed sample
sets ranging from 50 to 4000 through conditioned Latin hypercube sampling (cLHS), feature space
coverage sampling (FSCS), and simple random sampling (SRS) to calibrate random forest models,
analyzing performance via concordance correlation coefficient and root mean square error. Findings
reveal DJS as a robust estimator for optimal sample sizes—865 for cLHS, 874 for FSCS, and 869 for
SRS, with property-specific optimal sizes indicating the potential for enhanced DSM accuracy. This
methodology facilitates a strategic approach to sample size determination, significantly improving
the precision of large-scale soil mapping. Conclusively, our research validates the utility of DJS in
DSM, offering a scalable solution. This advancement holds considerable promise for improving
soil management and sustainability practices, underpinning the critical role of precise soil data in
agricultural productivity and environmental conservation.

Keywords: Jensen–Shannon divergence; sample size; sample density; conditioned Latin hypercube;
feature space coverage; simple random sampling; calibration; learning curve

1. Introduction

The advent of digital soil mapping (DSM) has revolutionized the field of pedology,
transitioning from conventional soil survey methods characterized by intensive ground
inspections to leveraging advanced computational techniques. This shift has necessitated a
reevaluation of sampling intensity and design, pivotal for the accurate representation of soil
properties across vast landscapes. Historically, the century-long tradition of soil surveys in
Canada is anchored in the survey intensity level (SIL) framework, which guides sampling
intensity, methods, and the scale of soil map publications [1]. SIL classifications span from
detailed (SIL1) to exploratory (SIL5), with the majority of surveys conducted at broad
reconnaissance (SIL4, ~1:125,000 scale), reconnaissance (SIL3, ~1:50,000 scale), or detailed
levels (SIL2, ~1:20,000 scale) [2]. Inspection density, crucial for project-specific needs,
ranged widely from 5–50 inspections/km2 for SIL2 to 0.1–1 inspections/km2 for SIL3,
standardized as 0.2 to 2 inspections per cm2 of map area to maintain scale independence [2].
Finally, the customary sample design was transect sampling, adjusting transect proximity
based on the required detail level.

The shift to DSM has redefined sampling strategies and the soil-landscape model,
integrating environmental covariates, machine learning, and high-performance computing.
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This evolution enables pedologists to use technology for model development and validation,
offering a chance to refine sampling methods for enhanced model accuracy. However,
despite progress in DSM, challenges persist, particularly in defining effective sampling
designs and intensities for optimal algorithm performance [3,4]. Regarding sample design,
much emphasis has been placed on strategies that create a sample plan representative of
the environmental covariates, commonly referred to as feature space sampling. Among
the feature space sampling designs, conditioned Latin hypercube sampling (cLHS) [5]
has been widely used within the DSM community [6]. The cLHS seeks to reproduce the
marginal distributions of the population with the sample design [7]. More recently, Brus [6]
elaborated on feature space coverage sampling (FSCS) using hard k-means, where the
k-means algorithm is used to cluster raster cells from the environmental covariates, and the
number of clusters is equal to the number of samples required. The sampling locations are
selected by choosing the raster cells with the shortest Euclidean distance to the centroid of
the clusters [6]. These methods have gained popularity for their ability to mirror population
distributions and strategically select sampling locations. Yet, these methods still struggle
with determining the right sample size, highlighting a gap in DSM methodology that
needs addressing.

The importance of sample size extends well beyond the concept of creating maps
of soil properties and classes as baseline information (i.e., soil resource inventory). Tech-
niques to estimate optimal sample size are critical to supporting soil management, crop
productivity, and environmental conservation. Several applications include the prediction
of crop yields [8,9], spatial variability of soil properties at the farm scale [10,11], and preci-
sion agriculture prescriptions [12,13] in agricultural systems. Sample size plays a critical
role in predictive modeling of aboveground biomass and species distribution in forest
systems [14,15] and in the calibration of models to predict soil properties from spectroscopy
data [16,17] in soil science. Therefore, robust estimates of the optimal sample size are
needed to support the sustainability and management of resources across many sectors
and disciplines.

Wadoux et al. [4] reported an average sampling size and intensity of 1000 samples and
0.24 samples/km2, respectively, in their review of the DSM literature, and Chen et al. [18]
reported a range from 1 to 0.0001 samples/km2 from an analysis of 244 DSM studies
published between 2003 and 2021 that were >10,000 km2. Comparing the average intensity
to a conventional survey, the average DSM project today correlates to a conventional
Canadian soil survey of SIL3. Digital soil mapping studies that are specifically concerned
with selecting an optimal sample size for machine learning are sparse, and few techniques
exist to determine a recommended sample size for any of the commonly used sampling
algorithms. Malone et al. [19] applied the Kullback-Leibler Divergence (DKL) to a 1 km2

field-scale study area and estimated an optimal sampling size of 110 using covariates at
10-m spatial resolution. In a study of soil carbon, Saurette et al. [3] found optimal sample
sizes of 124 and 133 using the DKL and Jensen–Shannon Divergence (DJS), respectively,
for a 0.26 km2 field in southwestern Ontario using predictors at 5-m resolution. More
recently, Khan et al. [20] introduced the Bhattacharyya distance to DSM and applied it to
determine an optimal sample size of 50 (1.1 inspections/km2) for a 44.8 km2 study area
with environmental covariates at 5-m resolution and reported that this distance metric
overcomes limitations with data binning observed with the DKL and DJS. Stumpf et al. [21]
determined an optimal sample size of 30 (7.1/km2) for their 4.2 km2 study area, where
they predicted three different sand separates, and Brungard and Boettinger [22] used visual
inspection of boxplots to determine an optimal sample size ranging from 200 to 300 (0.67
to 1 inspection/km2) for a 300 km2 study area with 30-m environmental covariates. In all
these studies, the relationship between the optimal sample size and the size of the study
area, or the resolution of the environmental covariates, shows no clear trend. Another
concern is that most studies only assess the optimal sample size with respect to a single soil
property; however, most DSM studies focus on multiple soil properties, and the relationship
between optimal sample size and model performance for multiple soil properties needs



Land 2024, 13, 365 3 of 21

to be determined. In addition, the study areas are all relatively small, with the largest
being only 300 km2. Finally, to validate an optimal sample size determined from an
evaluation of the environmental covariates, the dependent variable(s) should be modeled,
and the performance of those models assessed over an increasing sample size to confirm
the suitability of the sample size [3], which is not the case in the majority of studies. It is
not enough to simply optimize feature space coverage and conclude that this is the optimal
sample size.

To reiterate, there remains a critical research gap in DSM with regards to tools and
techniques for the determination of an optimal sample size, as most existing research
focuses on the optimal sampling locations without providing insight with regards to sample
size. The objective of this study is to examine the feasibility of using divergence metrics
for sample size optimization for a regional DSM project. Divergence metrics originate
from information theory and are used to compare two probability distribution functions.
The DKL, or relative entropy, is an indication of the quantity of information between
two probability distribution functions that is identical, with a value of zero indicating
equality [23]. In DSM, to develop the best predictive model from the environmental
covariates, the goal is to minimize the divergence between the covariates of the sample
plan and the study area, ensuring all information contained in the covariates is available
for model calibration. Saurette et al. [3] highlighted the limitations of the DKL, first that
the measure is non-symmetrical and second that it is unbound, and proposed the DJS,
which overcomes these limitations. Therefore, in this study, we test the DJS for the Ottawa
Soil Survey project (2790 km2) study area using an empirical (synthetic) dataset consisting
of four different soil properties: cation exchange capacity (CEC), clay content, pH, and
soil organic carbon (SOC), for the 0–15 cm depth interval. Predictive models are then
trained to validate the sample sizes determined by the divergence metrics. This work
directly addresses limitations identified by Saurette et al. [3], including the applicability of
divergence metrics for projects larger than field-scale, for a larger number of environmental
predictors, and for more than one soil property. Our research addresses a critical gap in
the DSM literature by applying divergence metrics to optimize sample sizes for regional
DSM projects and evaluating the relationship between sample size and model performance
for multiple soil properties in larger study areas. This approach seeks to establish a more
systematic and reliable method for DSM, moving beyond feature space coverage to validate
sample sizes that truly improve soil mapping accuracy and efficiency.

2. Materials and Methods
2.1. Conceptual Workflow

In a typical DSM workflow, environmental covariates are selected to represent factors
of the scorpan model [24] based on a priori information, i.e., the environmental covariates
are known to influence the spatial distribution of target soil properties or classes. To better
evaluate a sampling algorithm and techniques to determine an optimal sample size for
the sampling algorithm, it is beneficial to work on an empirical (synthetic) dataset where
every raster cell in the study area has values for the environmental covariates and the
response variables. The following steps are outlined in detail below and in Figure 1. First,
we generate surfaces for four soil properties with geostatistical modeling using soil sample
data. We then draw samples from the environmental covariate rasters and compare the
distribution of each covariate in the sample plan to that of the full covariate (population) of
the study area using the DJS across an increasing sample size. For each sample plan, we
then extract the target soil property values and train a random forest (RF) model. The DJS
of the sample plans are then compared to the model performance across the increasing
sample sizes to determine an optimal sample size. If the sample plan metrics and the model
performance metrics converge at a given sample size, this would indicate that these tools
could then be applied to real study areas for determining sample size based solely on the
environmental covariates.
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geology. Bedrock is mainly of the Paleozoic era, dominated by dolomite and limestone 
[25]. The southwest portion of the study area is dominated by limestone plains and thin 
till veneers over bedrock [25]. The central and eastern areas were mostly inundated by the 
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Figure 1. Flowchart of the workflow utilized in this study showing the sampling of the environmental
covariates, the repeated (five times) sample plans of increasing size selected with conditioned Latin
hypercube (cLHS), feature space coverage sampling (FSCS), and simple random sampling (SRS),
the calibration and external validation of the random forest models for cation exchange capacity
(CEC), clay content, pH, and soil organic carbon (SOC), and the minimization of the Jensen–Shannon
divergence. Detailed steps are explained in Sections 2.3–2.7.

2.2. Study Area, Sample Locations, and Soil Properties

The study area is the City of Ottawa, Canada, which was formed by the amalgamation
of Carleton County and the City of Ottawa and is approximately 2790 km2 (Figure 2). The
study area is complex both in terms of bedrock geology and surficial (quaternary) geology.
Bedrock is mainly of the Paleozoic era, dominated by dolomite and limestone [25]. The
southwest portion of the study area is dominated by limestone plains and thin till veneers
over bedrock [25]. The central and eastern areas were mostly inundated by the Champlain
Sea after continental deglaciation and exhibit various landforms and deposits, such as
clay plains, beach ridges, sand deposits, and organic deposits in depressional areas. For a
detailed description of the soils, quaternary, and bedrock geology in the study area, see
Schut and Wilson [25], Bélanger et al. [26], and MacDonald and Harrison [27].

In total, 1791 soil profiles were described and sampled during the years 2015–2019.
Sample locations were identified using a combination of sample points selected using the
cLHS algorithm, expert opinion sampling (dense sampling) in two pilot areas evaluated
during the early stages of the project (2015), and opportunistic sampling when cLHS
locations were inaccessible.

Four soil properties were selected for this study: CEC, clay content, soil pH, and
SOC. Clay content was determined using the pipette method with hydrogen peroxide pre-
treatment for the removal of organic matter [28]. Cation exchange capacity was determined
using the barium chloride extraction method with a buffered 0.5 M solution [29]. Soil
pH was determined using the saturated paste method using a 1:1 ratio of soil to 0.01 M
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calcium chloride solution [30]. Soil organic carbon was determined using the LECO CN828
Elemental analyzer. Total carbon was determined by combusting a soil sample, while
inorganic carbon was determined by first ashing a sample at 475 ◦C for three hours to
remove organic carbon and then combusting in the LECO analyzer. Soil organic carbon
was calculated as the difference [31].

The equal area quadratic spline [32] approach was used to harmonize each soil profile
from the field-described horizon thicknesses to standard depth intervals (0–15 cm, 15–30 cm,
30–60 cm, and 60–100 cm) using the ‘easpline’ function from the ithir package [33]. Only
the 0–15 cm depth interval was used for this study.
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Figure 2. Map of the Ottawa study area in eastern Ontario, Canada, with elevation from the digital
terrain model (DTM) and small dots representing the 1791 soil sampling locations. The DTM is
draped over a hillshade with 10× exaggeration to highlight the topography and landforms. Inset
map shows the location of the study site in relation to southern Ontario, Canada.

2.3. Environmental Covariates

A total of 71 continuous covariates and 3 categorical covariates were considered for
inclusion in the predictive models (Table 1). Most of the covariates (55) were LiDAR-
derived using WhiteboxTools via the whitebox package [34,35] and SAGA-GIS implemented
in the rsaga package [36,37] from a digital terrain model at 10-m spatial resolution. Six
continuous covariates were gamma-radiometric data [38], while three others were the mean,
standard deviation, and maximum of a Google Earth Engine time-series of normalized
difference vegetation index (NDVI) images generated from Sentinel-2 imagery representing
the growing season (June to September) for a four-year period (2017–2020). The final seven
continuous covariates were Euclidean distance fields, which were used to provide spatial
context to the predictive model computed in the onsoilsurvey package [39]. Specifically,
distance fields were calculated from each raster cell to the northeast, southeast, southwest,
and northwest corners of the raster grid, to the maximum X and maximum Y coordinates,
and to the middle of the raster grid [40]. The three categorical covariates were quaternary
geology (6 classes) [41], bedrock geology (4 classes) [42], and soil order (5 classes) [25,43].
One-hot encoding was used for the categorical covariates [44,45]. Details for each of the
covariates are outlined in Table 1.
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Table 1. Names of the environmental covariates, abbreviations for the environmental covariates, and
citations for the algorithms used for the study site at Ottawa, Ontario, Canada.

Covariate Type Covariate Name Abbreviation Reference

Topography

Elevation dem n/a

Catchment area 1 catch Freeman [46]

Convergence Index conv Koethe and Lehmeier [47]

Deviation from Mean Elevation (4 neighborhood
sizes: 3, 150, 2000 and 6000)

deme3

Lindsay [34]deme150
deme2000
deme6000

Difference from Mean Elevation (4 neighborhood
sizes: 3, 150, 2000 and 6000)

dime3

Lindsay [34]dime150
dime2000
dime6000

Eastness (sin[aspect]) eastness n/a

Elevation Percentile (4 neighborhood sizes: 3, 150,
2000 and 6000)

ep3

Lindsay [34]ep150
ep2000
ep6000

General Curvature gcurv Zevenbergen and Thorne [48]

Analytical Hillshading hill Zevenbergen and Thorne [48]

Impoundment Size Index isi Lindsay [34]

ISI Dam Height isi_dam_height Lindsay [34]

Topographic (LS) Factor ls Desmet and Govers [49]

Max Difference from Mean Elevation (3 ranges for
search neighborhoods: 3–150, 150–2000, 2000–6000)

mdm150
Lindsay [34]mdm2000

mdm6000

Max Difference from Mean Elevation (3 ranges for
search neighborhoods: 3–150, 150–2000, 2000–6000)

mdms150
Lindsay [34]mdms2000

mdms6000

Max Elevation Deviation (3 ranges for search
neighborhoods: 3–150, 150–2000, 2000–6000)

med150
Lindsay [34]med2000

med6000

Max Elevation Deviation Scale (3 ranges for search
neighborhoods: 3–150, 150–2000, 2000–6000)

meds150
Lindsay [34]meds2000

meds6000

Multi Resolution Ridge Top Flatness mrrtf Gallant and Dowling [50]

Multi Resolution Valley Bottom Flatness mrvbf Gallant and Dowling [50]

Mid Slope Position msp Böhner and Selige [51]

Multiscale Topographic Position Index mstpi Weiss [52]

Normalized Height normh Böhner and Selige [51]

Northness (cos[aspect]) northness n/a

Plan Curvature plan Zevenbergen and Thorne [48]

Profile Curvature pro Zevenbergen and Thorne [48]

Relative Slope Position rsp Weiss [52]

Slope Length slen McKenzie et al. [53]

Slope Height slopeh Böhner and Selige [51]

Slope Gradient sloper Zevenbergen and Thorne [48]
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Table 1. Cont.

Covariate Type Covariate Name Abbreviation Reference

Stream Power Index spi Moore et al. [54]

Standardized Height stanh Böhner and Selige [51]

Skyview Factor svf Böhner and Antonic [55]

SAGA Wetness Index swi Böhner et al. [56]

Total Curvature tcurv Zevenbergen and Thorne [48]

Topographic Position Index tpi Guisan et al. [57]

Terrain Ruggedness Index tri Riley et al. [58]

Topographic Wetness Index twi Beven and Kirby [59]; Moore
et al. [54]

Valley Depth vdepth Rodriguez et al. [60]

Visible Sky vis Böhner and Antonic [55]

Geology

Radiometric thorium radTh

Natural Resources Canada
[38]

Radiometric uranium:potassium radUK

Radiometric uranium radU

Radiometric potassium radK

Radiometric thorium:potassium radThK

Radiometric uranium:thorium radUTh

Quaternary Geology Surficial_geo (6) Ontario Geological Survey
[41]

Bedrock Geology Bedrock_geo (4) Ontario Geological Survey
[42]

Vegetation

Maximum of Normalized Difference Vegetation Index ott_NDVI_max
Sentinel 2 Multi Spectral
Instrument, Level-2A, via

Google Earth Engine

Median of Normalized Difference Vegetation Index ott_NDVI_median

Standard Deviation of Normalized Difference
Vegetation Index ott_NDVI_sd

Soil Soil Order Soil Order (5)
Ontario Ministry of

Agriculture, Food and Rural
Affairs [43]

Distance Metrics
Euclidean Distance Fields (distance to middle, NE, SE,
SW, NW, max X, max Y)

distmid

Behrens et al. [40]

distne
distse
distsw
distnw
distx
disty

1 Bolded records are those retained after the variance inflation factor analysis.

Covariate reduction is recommended to simplify predictive models and mitigate
overfitting caused by the collinearity of the predictors [4,61]. Therefore, the variance
inflation factor (VIF) technique was applied to the continuous covariates [62]. The VIF
(Equation (1)) calculates how much of the variability from an environmental covariate can
be explained by the remaining covariates in the regression model [63]:

VIFj =
1

1 − r2
j

, (1)
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where rj
2 is the coefficient of determination from fitting a linear regression between the jth

independent variable and all other independent variables. The process is run sequentially
using the ‘oss.seqVIF’ function in the onsoilsurvey package [39] until only covariates above a
selected threshold remain. Thresholds for VIF analysis commonly reported in the literature
are five and ten [64,65]. The lower cutoff of five was selected for this analysis to be more
conservative and retain fewer covariates, given the large number of covariates at the onset
of the analysis. As a result, 44 of the 71 continuous covariates were retained as predictors
for modeling, and to these were added the 15 one-hot encoded rasters generated from the
categorical predictors. All covariates retained for modeling are in bolded font in Table 1.

2.4. Kriging

Soil property maps (synthetic data) were generated using geostatistical interpolation.
Inverse-distance weighted interpolation and universal and ordinary kriging using spherical
and exponential models were tested using the gstat package [66]. Ordinary kriging with
an exponential model performed the best across all soil properties. As a first step, the
point data were thinned in ESRI’s ArcMap software (version 10.8) using the Identical Tool
with a minimum spacing set to 500 m. This was conducted to reduce the clustering of
sample locations in areas where more intensive field work was conducted and to match the
grid resolution at which the kriging model was applied. The remaining points were then
evaluated for normal distribution using the ‘transformTukey’ function from the rcompanion
package [67], which showed SOC, CEC, and clay as requiring transformation. All three were
transformed using a power function: SOC was raised to the power of 0.175, and CEC and
clay were each raised to the power of 0.350, based on the output from the ‘transformTukey’
function. The ordinary kriging with exponential models were then fitted to the variograms.
Models were then applied to the raster grid of the study area at 500 m spatial resolution.
The three transformed soil properties (SOC, CEC, and clay) were then backtransformed
to natural values (the inverse of their respective power functions). All four soil property
rasters were then resampled to the same 10-m grid of the environmental covariates with a
bilinear interpolation.

2.5. Sample Plans and Divergence Metrics

Three sampling algorithms were used to create sample plans: the cLHS [5,68], the
FSCS [6], and simple random sampling (SRS). Given the computing constraints of running
the cLHS and the FSCS algorithms on the entire study area (~28 million raster cells), an
initial test was conducted using SRS to determine an adequate subset of the covariate
raster cells that would be representative of the study area. For this test, we computed
the DJS [3,69] between sample plans of increasing size and the full covariates (population)
until the divergence was minimized and leveled off based on visual inspection (Figure S1).
Simple random sampling was then used to draw a random sample (n = 200,000) from the
covariates to be used for subsequent analysis.

From the subset created by SRS, an external validation dataset (n = 1000) was selected
using the cLHS algorithm and used exclusively for validation of the predictive models.
We selected this validation sample size because it represents 25% of the largest calibration
sample size, which falls between 20% and 30%, which is a typical range for validation in
DSM. From the remaining data (n = 199,000), five independent sample plans were created
at each of 25 different sample sizes, ranging from 50 to 4000 samples for each of the three
sampling algorithms. Finally, the DJS was computed between each sample plan created and
the full data used for creating the sample plans (n = 199,000) using the ‘oss.jsd’ function of
the onsoilsurvey package [39]. The overall DJS for a sample plan is computed by calculating
the DJS between the sample plan and the population for each environmental covariate
individually. Then, the mean DJS of all the covariates is calculated to represent the DJS for
the sample plan.
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2.6. Predictive Modeling

For each sample plan, the sample locations were used to extract the values of the
four target soil properties from the kriging outputs. The sample plans were then used
to calibrate a RF model [70], and each model was validated with the external validation
dataset. The RF models were trained using the caret package [71], with tuning parameters
set to their defaults (ntree = 500 and mtry = # predictors0.5). For each sample size and
sampling algorithm, the mean of Lin’s concordance correlation coefficient (CCC) [72] and
root mean square error (RMSE) of the five repeated plans were calculated to evaluate
model performance.

2.7. Optimal Calibration Sample Size

The goal is to determine an optimal sample size using only the environmental covari-
ates; hence, we first determined the optimal sample size based on the DJS using a rule
of diminishing returns [3,19]. The DJS was plotted as a function of sample size, and a
cumulative distribution function was calculated from the data. To ensure adequate feature
space coverage of the covariates, the location where the cumulative distribution function
reaches 95% was used to select the optimal sample size [3,19].

To determine the optimal sample size based on the model performance metrics, the
unit-invariant knee technique [73] was selected. This technique identifies the knee point,
or elbow point, in the curve fitted through a plot of the performance metrics (CCC and
RMSE) as a function of sample size [11]. This is in contrast with the approach described
in Saurette et al. [3], where the cumulative distribution function was used to assess sam-
ple size based on model performance metrics. However, while Saurette et al. [3] were
trying to optimize model performance (i.e., 95% of the cumulative distribution function
of CCC or RMSE), in this study we seek to identify the best trade-off between sample
size and model performance, or where the return on investment of collecting more sam-
ples peaks and additional sampling is no longer justified by the improvements in model
performance metrics.

Finally, RF models were trained for each of the four soil properties, with the optimal
sample sizes determined from the DJS for each of the three sampling algorithms. Quantile
regression forest was applied using the quantregForest package [74,75] to generate 90%
prediction interval maps by generating predictions for the 95th and 5th quantiles and
subtracting the rasters. While RF estimates the conditional mean of the response variable,
quantile regression forest retains the full conditional distribution [74,76] and allows the
prediction of any desired quantile around the mean.

3. Results and Discussion
3.1. Soil Properties and Kriged Surfaces

Clay content ranged from 0 to 83% throughout the study area (Table 2). This wide
range of values is expected based on the complex quaternary geology of the site, which
contains marine clay plains and beach ridges from the intrusion of the Champlain Sea
during deglaciation, sandy and gravelly glaciofluvial outwash deposits, and morainal
deposits. The predicted surfaces of the four target soil properties are provided in Figure 3.
Cation exchange capacity (0.25 to 103.70 cmol+/kg) and soil pH (3.3 to 7.6) generally follow
the same spatial patterns as the clay content, where coarser soils are associated with more
acidic pH and lower cation exchange capacity, while fine-textured soils tend to have both
higher pH and cation exchange capacity (Figure 3).
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Table 2. Descriptive statistics (minimum, mean, median, maximum, standard deviation (SD), skew-
ness (skew), and kurtosis) for the four soil properties in the 0–15 cm depth interval after applying the
equal area spline.

Property Min Mean Median Max SD Skew Kurtosis

Cation exchange capacity (cmol+/kg) 0.25 20.43 19.17 103.70 12.38 1.29 3.64
Clay content (%) 0.00 26.14 22.77 83.10 16.18 0.73 −0.15
pH 3.33 5.81 5.79 7.60 0.87 −0.06 −0.72
Soil organic carbon (%) 0.02 3.23 2.56 23.10 2.44 3.13 13.66
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Figure 3. Kriged surfaces of (A) cation exchange capacity (CEC), clay content (B), soil pH (C), and (D)
soil organic carbon (SOC) with thinned sample locations (black dots) for the Ottawa study area.

All four properties were modeled with universal kriging and exponential models.
The variograms are shown in Figure S2, and the model parameters are in Table 3. Cation
exchange capacity and SOC had similar ranges (5553 m and 5215 m, respectively). Soil pH
had the largest range, 11,331 m, highlighting the major bedrock and surficial deposits in the
study area. The southern half of the study area exhibits high pH values, and these areas are
aligned with limestone bedrock with thin drift (till) in the southwest and morainal deposit
in the southeast [26,27]. The area of lower pH in the northwest is aligned with an acidic
Precambrian bedrock outcrop, while the northeast corner is associated with sandy outwash
materials [25,27].
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Table 3. Kriging model parameters used to create the synthetic data for the four target soil properties.
Note that the kriging was performed on transformed values for cation exchange capacity, clay, and
soil organic carbon; therefore, the nugget and partial sill are presented here in transformed units.

Property Model Type Nugget Partial Sill Range (m)

Cation exchange capacity Exponential 0.22 0.20 5553
Clay content Exponential 0.13 0.32 1706
pH Exponential 0.41 0.44 11,331
Soil organic carbon Exponential 0.013 0.004 5215

3.2. Optimal Sample Size—Divergence Metrics

The DJS for all three sampling algorithms (cLHS, SRS, and FSCS) showed a very similar
exponential decay as a function of increasing sample size (Figure 4). The exponential
decrease is expected since, as sample size increases, more data is selected to approximate
the probability distribution of the population (covariates) with the sample plan. The
maximum DJS for all three sampling algorithms was 0.33 at the smallest sample size tested,
which was 50 samples. The DJS is bound between 0 and 1, which indicates that with
as few as 50 samples, the sampling algorithms were able to approximate the covariates
successfully. The exponential decay functions fitted with non-linear least squares regression
tend to level off at approximately 2000 sample points for all three algorithms, and all three
fitted curves are slightly above the true values of the DJS (Figure 4). Something interesting
about this result is that the cLHS and the FSCS algorithms did not have an advantage over
SRS at the smaller sample sizes (i.e., smaller values of DJS), given that these algorithms
are designed to sample in feature space and are regarded as superior to SRS in many
studies [14,77–79]. Finally, when using a cumulative distribution function of the DJS to
determine the optimal sample size, all three algorithms determined a similar optimal size
(865, 869, and 874 samples for the cLHS, SRS, and FSCS, respectively). The final sample sizes
from the three algorithms being quite similar is not unexpected. As sample size increases,
the likelihood of approximating the cumulative distribution function increases, and at a
given point (e.g., optimal size), additional samples no longer improve the sample plan.
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Figure 4. Exponential decay of the Jensen–Shannon divergence (DJS) and cumulative distribution
function for determining optimal sample size as a function of sample size for the conditioned Latin
hypercube sampling algorithm (A,D), simple random sampling (B,E), and feature space coverage
sampling algorithm (C,F). Solid lines in plots (A–C) show the curve fitted uses non-linear least to
square the DJS to the points that represent the DJS at the various sample sizes. Vertical solid lines in
plots (D–F) highlight the optimal sample size determined where the cumulative distribution function
reached 95%.
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3.3. Optimal Sample Size—Learning Curves

The model performance metrics as a function of sample size (learning curves) from
the external validation of the RF models are provided in Figure 5 for CEC. Plots for clay,
pH, and SOC are provided in Supplementary Materials (Figures S3–S5). Concordance
increased quickly, while RMSE decreased quickly, as a function of sample size. This aligns
with similar studies that show model performance metrics improve quickly at smaller
sample sizes and then gradually level off [12,20]. In general, the sample plans selected with
cLHS and FSCS outperformed those created with SRS in terms of both performance metrics
at smaller sample sizes. As the sample size increased, the difference in the performance
metrics decreased and became less significant. The diminishing height of the boxplots and
whiskers with increasing sample size demonstrated the higher variability of the sample
plans at smaller sample sizes (Figure 5), a trend that was observed in similar studies [11,80].
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Figure 5. Change in the concordance and root mean square error (RMSE) with increasing sample
size from the external validation of the random forest models trained with sample plans developed
using conditioned Latin hypercube sampling (cLHS), feature space coverage sampling (FSCS), and
simple random sampling (SRS) for cation exchange capacity. The solid (orange) vertical line, dashed
(blue) vertical line, and dotted (green) vertical line identify the optimal sample size based on the unit
invariant knee for the cLHS, FSCS, and SRS sampling algorithms, respectively.

The optimal sample size, as identified using the unit invariant knee, varied by soil
property and by sampling algorithm (Table 4). For CEC, the FSCS sampling reached the
optimum at 800 samples (0.29 samples/km2, CCC = 0.74, RMSE = 3.03), while the cLHS
optimized sample size was 900 samples (0.32 samples/km2, CCC = 0.76, RMSE = 2.93)
and the SRS optimized at 1000 samples (0.36 samples/km2, CCC = 0.76, RMSE = 2.95).
CEC was the only soil property where the optimal sample size was identical using both
CCC and RMSE. Despite the CCC and RMSE being slightly better using the cLHS and SRS
plans, the difference would hardly justify collecting an additional 100–200 samples. For clay
content, the FSCS resulted in the largest optimal sample sizes based on CCC (900 samples,
CCC = 0.66) and RMSE (1400 samples, 0.50 samples/km2, RMSE = 4.37%), while the cLHS
and SRS plans resulted in much smaller optimal sample sizes (600–700 samples, or 0.22 to
0.25 samples/km2) but with similar performance metrics (CCC = 0.65 and RMSE = 4.76
for cLHS and CCC = 0.62 and RMSE = 4.89 for SRS). For pH, the optimal sample sizes
ranged from 500 to 900 samples (0.18 to 0.32 samples/km2) based on the CCC (0.89) and
RMSE (0.18) using the cLHS, and from 500 samples based on the CCC (0.88) to 800 samples
based on the RMSE (0.19) for the SRS (0.18 to 0.29 samples/km2). For the FSCS, the optimal
sample sizes based on the CCC (0.90) and RMSE (0.20) were both 700 (or 0.25 samples/km2).
Finally, the optimal sample sizes based on both the CCC and RMSE for the SOC predic-
tions were 1000 when using the cLHS (0.36 samples/km2, CCC = 0.66, RMSE = 0.32) and
1400 (0.50 samples/km2, CCC = 0.71, RMSE = 0.30) when using the FSCS. The optimal
sample size for SOC when using SRS ranged between 1200 samples (0.43 samples/km2,
CCC = 0.68) and 1600 (0.57 samples/km2, RMSE = 0.28). The sampling density for optimiz-
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ing the predictions of SOC is significantly higher than that reported by Shao et al. [81], who
found rapid and moderate improvement in model performance up to a sampling density of
0.09 samples/km2 and 0.24 samples/km2, respectively, yet significantly lower than the
sampling densities reported by Safaee et al. [82], who reported improved model perfor-
mance up to a sample density of 12 samples/km2. The optimal calibration sample sizes
required to predict the four different soil properties are quite variable, especially in the case
of SOC, and likely a result of a combination of factors, including the spatial variability of the
response variable and the relationship between the dependent variable and the explanatory
covariates. Safaee et al. [82] attributed poorer model performance in predicting SOM to the
intensity and complexity of land use management and the masking effect this had on the
relationship of SOM with landscape properties.

Table 4. Summary of optimal sample size and the corresponding value of the performance metrics
for the four soil properties (cation exchange capacity—CEC; clay; pH; soil organic carbon—SOC) and
three sampling algorithms (conditioned Latin Hypercube Sampling—cLHS; feature space coverage
sampling—FSCS; simple random sampling—SRS).

Soil Property Sampling Algorithm
Optimal Sample Size and Corresponding Performance Metric

Sample Size Concordance Sample Size Root Mean Square Error

CEC
cLHS 900 0.76 900 2.93
FSCS 800 0.74 800 3.03
SRS 1000 0.76 1000 2.95

Clay
cLHS 700 0.65 700 4.76
FSCS 900 0.66 1400 4.37
SRS 600 0.62 700 4.89

pH
cLHS 500 0.89 900 0.18
FSCS 700 0.90 700 0.20
SRS 500 0.88 800 0.19

SOC
cLHS 1000 0.66 1000 0.32
FSCS 1400 0.71 1400 0.30
SRS 1200 0.68 1600 0.28

Since DSM projects are often designed with the goal of predicting several soil proper-
ties, it is useful to summarize the size of the optimal sample plans by soil property and by
sampling algorithm to better understand the implications of these factors when designing
a project. Summarizing (median) by soil property, the optimal sample size increased in the
order of soil pH (700) = clay (700) < CEC (900) < SOC (1300). As stated above, this is likely
linked to the relationship of the soil properties to the explanatory covariates. Summarizing
by sampling algorithm across all soil properties, the optimal sample size increased in
the order FSCS (850) < cLHS (900) = SRS (900), highlighting how little difference there is
in the optimal sample size when using these three techniques. In fact, the median CCC
associated with these optimal sample sizes across all soil properties was 0.73 for FSCS,
0.72 for SRS, and 0.71 for cLHS, again showing there is little difference between the per-
formance of the models trained using sampling plans developed from the three sampling
algorithms. Numerous studies have observed this same trend, where model performance
is more dependent on the size of the calibration dataset, and less sensitive to the sampling
algorithm used to create the sample plan. For example, Bouasria et al. [14] showed minimal
difference in RF model performance when comparing sample plans developed from cLHS
and SRS to predict aboveground biomass, and Loiseau et al. [83] noted no substantial
difference in quantile RF predictions of sand, silt, and clay between SRS and cLHS sample
plans. Schmidinger et al. [12] noted higher RMSE and lower CCC with SRS compared to
cLHS and FSCS at smaller sample sizes, whereas the differences decreased as sample sizes
increased until all three sampling designs showed the same performance. To the contrary,
Ma et al. [82] showed that the overall accuracy of soil class prediction with RF was better



Land 2024, 13, 365 14 of 21

with FSCS than it was with cLHS and SRS. In this study, whether CCC or RMSE was used
to calculate the optimal sample size with the unit invariant knee, the range was the same as
for the sampling algorithms (CCC = 850, RMSE = 900).

3.4. Optimal Sample Size—Overall

The optimal sample sizes for each algorithm based on the DJS computed from the
covariates (865, 874, and 869 samples for the cLHS, FSCS, and SRS, respectively) are
remarkably close to the optimal sample sizes based on model performance (900, 900, and
850 samples for the cLHS, SRS, and FSCS, respectively). This agrees with the findings of
Saurette et al. [3], who confirmed this using a field-scale example of total organic carbon
modeling for a 26-ha field in Ontario. This finding suggests two further outcomes: first,
that divergence metrics are stable and reliable for estimating the optimal sample size for
DSM, and second, that the use of divergence metrics for determining the optimal sample
size is not affected by the size of the study area. The reason for this is that the DJS relies
only on the probability distribution functions of the covariates; therefore, it is not sensitive
to the overall size of the total pool of potential sample locations (i.e., total raster cells in
the study area). The optimal sample sizes are equivalent to 0.31–0.32 inspections/km2,
which is slightly higher than the average sampling intensity reported in Wadoux et al. [4] of
0.24 inspections/km2, and which is closer to the low end of the range for sampling intensity
in the conventional Canadian SIL3 soil survey (0.1–1 inspections/km2).

3.5. Final Random Forest Predictions and Uncertainty

The optimal sample sizes for each sampling algorithm (based on the DJS) were then
used to create a final calibration dataset to train RF models. The predictions for the four
target soil properties using the cLHS sampling algorithm are shown in Figure 6, while
those for FSCS and SRS are shown in Figures S6 and S7. When compared to the surfaces
created by kriging (Figure 3), which were the synthetic data used for the sampling plan
development, the RF predictions (Figure 6) exhibit the same spatial patterns across the
study area. This demonstrates that the RF models calibrated with the optimal sample sizes
determined using the DJS were successful in predicting the spatial variability of each of
the target soil properties. In all cases, the maps generated from the RF models using the
covariates generally have sharper boundaries that are tied to the underlying covariates. For
example, in the northeast corner of the study area, a large outwash area is more discernible
in the RF outputs than in the kriging outputs. These observations are consistent with the
outputs of the RF models, for which FSCS and SRS were used to draw the sample plan.

In general, the uncertainty maps show similar spatial patterns, regardless of the
sampling algorithm used to select the optimal sample plan (Figure 7). The prediction
interval maps for CEC are provided in Figure 7, while the maps for clay, pH, and SOC are
provided in the Supplementary Materials (Figures S8–S10). The 90% prediction interval
for CEC ranged from 5.8 to 23.7 cmol+/kg. Uncertainty was highest in the southeast
corner of the map for all three sampling algorithms. This portion of the map has fine to
moderately fine sediments of varying thickness overlying loamy, calcareous glacial till; the
complex materials may contribute to the uncertainty. The prediction interval maps for the
cLHS (Figure 7A) and the SRS (Figure 7C) sampling algorithms show higher uncertainty
than the FSCS (Figure 7B) in the northern border of the map, which follows the Ottawa
River. The median prediction interval widths were 13.5, 14.6, and 13.3 cmol+/kg for the
cLHS, FCS, and SRS sampling algorithms, respectively. Based on the visual review and
the median prediction intervals, there were no important differences. These trends are
also apparent in the prediction interval maps for the other three soil properties (Figures
S8–S10). It should be noted, however, that several studies have demonstrated that the use
of ensemble modeling approaches can be leveraged to balance the outcomes of different
machine learning algorithms [84–86]. Given some localized differences in the uncertainty
of the predictions, an ensemble approach may be beneficial for this study area; however,
this was out of the scope of the current research.
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Overall, the investigation has yielded pivotal insights into the pedological nuances
of determining optimal sample sizes through the lens of divergence metrics, notably
the DJS. We found that even minimal sample sizes could effectively approximate the
distributions of environmental covariates, challenging the traditional emphasis on specific
feature space sampling methods. This insight led us to understand that the choice of
sampling algorithm—whether cLHS, FSCS, or SRS—had minimal impact on the model’s
performance at smaller sample sizes. Instead, we recognized that the optimal sample size is
intricately linked to the spatial variability of soil properties and their interaction with DSM
model performance. Thus, this study significantly advanced the field of DSM, particularly
the strategic determination of sample sizes. We observed that integrating pedological
expertise with advanced statistical methods can be crucial for accurately capturing the
complexity of soil landscapes. Our work underscores the need for a nuanced approach to
DSM, where pedologists can use divergence metrics to refine sampling strategies, thereby
enhancing the accuracy of soil property predictions. This methodology not only propels
pedological science forward but also has implications for land management practices.
It provides a scientifically robust basis for decisions impacting soil health, agricultural
productivity, and environmental sustainability. By marrying conventional pedology with
modern computational techniques, we pave the way for future soil science endeavors to
tackle the challenges of sustainable land use and conservation more effectively.

In this study, we examined the optimal sample size for a single depth interval, whereas
in many DSM projects, soil properties are predicted for several standardized depth inter-
vals [87–89]. The impact of considering additional depths is not clear. Studies have shown
that model performance deteriorates with depth and have attributed this to a weakened
relationship between the environmental covariates and the soil properties at depth [89].
This is certainly valid given the predominance of terrain derivatives and remotely sensed
data used to generate environmental covariates in DSM, which reflect the surface prop-
erties of the study area. Soils generally become more homogeneous with depth as the
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parent material is approached, and the effect of the interaction of soil with the surface
environment decreases (e.g., less organic matter incorporation, less water infiltration, etc.).
These two factors—poorer model performance at depth and loss of a relationship between
covariates and soil properties—suggest that additional sampling may not enhance DSM
models for depth intervals below the surface. Despite this, the sampling requirements for
several depth intervals may influence the optimal calibration sample size, and this should
be explored.
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4. Conclusions

In our research, we explored the effectiveness of the DJS in identifying the optimal
calibration sample size for mapping four soil properties across a 2790 km2 area. We applied
this method alongside three prevalent sampling strategies—cLHS, FSCS, and SRS—to
validate the robustness of the DJS-derived sample size estimates. Through the calibration of
RF models and the assessment of model performance against sample size using CCC and
RMSE metrics, we pinpointed the optimal balance as indicated by the unit invariant knee.
Our findings reveal a remarkable consistency in optimal calibration sample sizes across
the sampling strategies (865 for cLHS, 874 for FSCS, and 869 for SRS), closely aligning
with the sample sizes derived from model performance metrics (850–900 samples) for the
soil properties studied. This consistency extends the work of Saurette et al. [3], scaling
the application from a field-scale study to a significantly larger area, thereby confirming
the utility of DJS in broader DSM contexts. Our conclusion is clear: the DJS emerges as a
dependable metric for determining optimal calibration sample sizes in DSM, warranting
its inclusion among the essential tools for DSM sampling design, thereby enhancing the
precision and reliability of soil property mapping at scale.



Land 2024, 13, 365 17 of 21

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/land13030365/s1, Figure S1. Jensen–Shannon Divergence (DJS) as a function
of sample size for the 44 continuous covariates retained after the variance inflation factor covariate
reduction. Sample plans were generated from the full covariate rasters using simple random sampling.
Subplot A shows the DJS across all sample sizes, while subplot B highlights the DJS for sample sizes
≥6400. Codes for the covariates are provided for completeness despite the overlap, which prevents
identifying them individually. Figure S2. Experimental semivariograms with fitted exponential
model (solid line) for the four target soil properties: cation exchange capacity (A), clay content (B), soil
pH (C), and soil organic carbon (D). Note that the kriging was performed on transformed values for
cation exchange capacity, clay, and soil organic carbon; therefore, the semivariances presented along
the ordinate are transformed units. Figure S3. Change in the concordance and root mean square error
(RMSE) with increasing sample size from the external validation of the random forest models trained
with sample plans developed using conditioned Latin hypercube sampling (cLHS), feature space
coverage sampling (FSCS), and simple random sampling (SRS) for clay content. The solid (orange)
vertical line, dashed (blue) vertical line, and dotted (green) vertical line identify the optimal sample
size based on the unit invariant knee for the cLHS, FSCS, and SRS sampling algorithms, respectively.
Figure S4. Change in the concordance and root mean square error (RMSE) with increasing sample
size from the external validation of the random forest models trained with sample plans developed
using conditioned Latin hypercube sampling (cLHS), feature space coverage sampling (FSCS), and
simple random sampling (SRS) for soil pH. The solid (orange) vertical line, dashed (blue) vertical
line, and dotted (green) vertical line identify the optimal sample size based on the unit invariant knee
for the cLHS, FSCS and SRS sampling algorithms, respectively. Figure S5. Change in the concordance
and root mean square error (RMSE) with increasing sample size from the external validation of the
random forest models trained with sample plans developed using conditioned Latin hypercube
sampling (cLHS), feature space coverage sampling (FSCS), and simple random sampling (SRS) for
soil organic carbon. The solid (orange) vertical line, dashed (blue) vertical line, and dotted (green)
vertical line identify the optimal sample size based on the unit invariant knee for the cLHS, FSCS, and
SRS sampling algorithms, respectively. Figure S6. Random forest predictions of (A) cation exchange
capacity (CEC), (B) clay content, (C) soil pH, and (D) soil organic carbon (SOC) for the Ottawa Study
area using a sample plan created with feature space coverage sampling and the overall optimal
sample size of 874 sample locations. Figure S7. Random forest predictions of (A) cation exchange
capacity (CEC), (B) clay content, (C) soil pH, and (D) soil organic carbon (SOC) for the Ottawa Study
area using a sample plan created with simple random sampling and the overall optimal sample size
of 869 sample locations. Figure S8. Prediction interval maps (90%) for clay content generated using
quantile regression forest for the optimal sample sizes based on the Jenson-Shannon Divergence for
conditioned Latin hypercube sampling (A), feature space coverage sampling (B), and simple random
sampling (C) algorithms. Figure S9. Prediction interval maps (90%) for soil pH generated using
quantile regression forest for the optimal sample sizes based on the Jenson-Shannon Divergence for
conditioned Latin hypercube sampling (A), feature space coverage sampling (B), and simple random
sampling (C) algorithms. Figure S10. Prediction interval maps (90%) for soil organic carbon (SOC)
generated using quantile regression forest for the optimal sample sizes based on the Jenson-Shannon
Divergence for conditioned Latin hypercube sampling (A), feature space coverage sampling (B), and
simple random sampling (C) algorithms.
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M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.
PLoS ONE 2017, 12, e0169748. [CrossRef] [PubMed]

89. Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil
Information for the Globe with Quantified Spatial Uncertainty. SOIL 2021, 7, 217–240. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.geoderma.2021.115153
https://doi.org/10.1371/journal.pone.0169748
https://www.ncbi.nlm.nih.gov/pubmed/28207752
https://doi.org/10.5194/soil-7-217-2021

	Introduction 
	Materials and Methods 
	Conceptual Workflow 
	Study Area, Sample Locations, and Soil Properties 
	Environmental Covariates 
	Kriging 
	Sample Plans and Divergence Metrics 
	Predictive Modeling 
	Optimal Calibration Sample Size 

	Results and Discussion 
	Soil Properties and Kriged Surfaces 
	Optimal Sample Size—Divergence Metrics 
	Optimal Sample Size—Learning Curves 
	Optimal Sample Size—Overall 
	Final Random Forest Predictions and Uncertainty 

	Conclusions 
	References

