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Abstract: This study utilizes provincial panel data from China spanning the period from 2011 to 2020
to assess the coupled and coordinated development of spatial functions related to production, life,
and ecology (PLE) in rural areas. The assessment is based on quantifying the spatial function indices
for PLE in China’s rural regions. Additionally, it examines the characteristics of their spatial and
temporal evolution, spatial correlation, and driving factors. The findings indicate a modest upward
trend in the spatial coupling and coordination levels of these functions across rural China, although a
significant proportion of provinces still exhibit a near-disordered decline. Exploratory spatial data
analysis reveals a geographical disparity, with higher levels of coupled and coordinated development
observed in the eastern regions, lower levels in the west, and noticeable spatial clustering. By employ-
ing the spatial Durbin model to investigate the determinants of coupling degrees, we discovered that
factors such as regional economic development, urbanization, the urban–rural income gap, financial
support for agriculture, science and technology investment level, and agricultural structural adjust-
ments significantly influence the spatial coupling of rural PLE functions. Furthermore, using the
geographic detector model, the analysis identifies science and technology investment level, economic
development, and financial support for agriculture as key drivers influencing the spatial coupling
and coordination of these functions. These findings provide valuable reference points for policies
and strategies related to rural management.

Keywords: rural management; production-life-ecology space; coupling coordination; spatial and
temporal evolution; spatial Durbin model; geographical detector model

1. Introduction

Rural spaces constitute the economic and ecological territories upon which rural
inhabitants rely, serving as the primary arena for fostering synergies between villages and
towns. The impetus of rapid urbanization has led to urban encroachment on extensive
rural areas, altering agricultural landscapes. This encroachment not only exacerbates rural
ecological degradation, but also hinders the progress of rural livelihoods and productive
capacities [1,2]. In reshaping rural socio-economic structures, rural spatial development
faces challenges such as diminished agricultural efficiency, countryside depopulation, and
ecological deterioration. These challenges necessitate an expedited transformation of rural
areas to reconfigure rural spaces. Drawing from China’s experience in rural development,
addressing the economic, social, and environmental issues stemming from these changes is
achievable through land consolidation and redefining rural spatial patterns.

Rural spatial reconstruction involves the optimization and adjustment of production–life–
ecology (PLE) spaces in rural areas [3]. The “sansheng” space concept (production–life–ecology
space, PLES) introduced by China delineates PLES as the three primary rural components,
categorized based on land’s functional attributes [4]. The evolution of PLES is influenced by
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factors such as ecological environment, natural disasters, and biodiversity [5,6]. As the concept
of sustainable development shifts from a global idea to local action, how to adjust the scientific
layout of PLES to adapt to complex ecological environment changes and meet the increasing
material needs of local residents has become a focus for global researchers [7–10].

Currently, China is in the midst of rapid urbanization, and the rural development
strategy has gone through four stages: rural reconstruction, rural construction, rural reform,
and rural revitalization [11–13]. Despite remarkable achievements, this process has also
brought about a series of problems [14]. These include, for example, shrinking space for
rural development, escalating conflicts among production, living, and ecological spaces,
rural environmental pollution and ecological degradation, and extensive utilization of
natural resources [15–19]. These issues pose significant challenges to the realization of the
rural revitalization strategy, demanding urgent solutions from the perspective of PLES.

However, the scientific connotation of PLES has been vague for a long time, especially
during the process of spatial planning transformation, leading to controversies in PLES
practices [20]. With the influx of interdisciplinary thinking, comprehensive research on
territorial spatial planning has been promoted, bringing new scientific perspectives and
practical approaches to PLES. The earliest involvement of the PLE concept was in spatial
planning research [21,22]. In spatial planning, the development scale of urban areas and
land expansion should not exceed certain limits and boundaries [8]. It is essential to
ensure that rural agricultural land meets the needs of local residents, as safeguarding
agricultural land is crucial for agricultural economic development [23,24]. Due to the
demand for rational urban spatial planning, the development and research of PLES have
been effectively promoted [25,26].

Traditional spatial planning has long been guided by socio-economic development and
population growth, proposing ideal planning blueprints for spatial layout, structure, and
form [27,28]. These spaces are interdependent, interactive, and mutually influential [25].
The intrinsic relationship of PLES manifests as an interlocking pattern of interaction among
production, living, and ecological spaces, with production and living spaces embedded in
ecological space through coverage, inclusion, and intersection [29,30]. Changes in ecological
and living spaces correspond to the development of productivity. Living space, as the
main venue for residents’ activities, is the space for residents to achieve their own goals,
with production and ecological spaces serving it [31]. Ecological space is the foundation of
production and living spaces, playing an important role in carrying and constraining. Only
with orderly development within certain resource and environmental carrying capacities
can PLES be sustainable [32,33].

Achieving sustainable PLES necessitates harmonizing the involved functions, as
a singular focus on one aspect neglects the inherent interconnectedness and reciprocal
dynamics within the system [34]. Thus, a holistic and systemic approach is crucial for
the coordinated and integrated development of these spaces, emphasizing the need for
regional spatial function alignment.

Contemporary scholarly discourse on the interplay between spatial functions and
their coordination encompasses a range of aspects, including the identification of spa-
tial functions, spatial classification and evaluation, as well as the analysis of spatial and
temporal evolution and spatial optimization and reconstruction [35–37]. These studies
predominantly adopt a macro-level perspective, focusing on entities such as entire coun-
tries [38], provinces [39], cities [40], urban agglomerations [41], and ecologically sensitive
areas [42]. With the growing recognition of the need to harmonize PLES, researchers from
diverse fields are increasingly applying multidisciplinary approaches. This has led to the
development of a spatial function evaluation index system, employing methods like the
entropy weight method and the analytic hierarchy process to assess PLES [43], and utilizing
the coupling coordination degree (CCD) model to investigate the interplay among these
spatial functions [44]. Furthermore, classification of functional spatial types is based on
their coupling coordination levels (CCL) [45]. To analyze spatial–temporal evolution in
PLES, techniques like land use transfer matrices [46], gravity center models [42], and land-
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scape indices [36] are employed. Spatial correlation analyses [47] and the Theil index [48]
help in understanding regional geospatial correlations and disparities. Additionally, the
geographical detector model [49], geographically weighted regression [50], and grey corre-
lation analysis [4] have been instrumental in identifying drivers of spatial differentiation
and developing optimization strategies.

In examining the impact of various quantitative methods on the sustainable and
harmonious development of rural areas, numerous studies have focused on factors such
as regional urbanization levels, the urban–rural income disparity, financial expenditure
intensity, and agricultural structural adjustments [51–54]. The interplay between urban
and rural dynamics significantly influences agricultural production scale and rural liv-
ing conditions. During urbanization, an escalating urban–rural income divide impedes
agricultural productivity improvements [55]. A pronounced income gap prompts rural
population migration to urban areas, offering greater development prospects and higher
wages. This migration results in an agricultural labor shortfall, adversely affecting rural
sustainability and diminishing development incentives [56]. Conversely, directing financial
resources towards rural areas facilitates the inflow of capital and technology, supporting
a balanced resource allocation between urban and rural zones. This enhances overall
agricultural productivity, boosts rural incomes, improves infrastructure, and fosters rural
social programs. Specifically, government financial aid for agriculture and rural regions,
along with local scientific and technological support, involves regional financial resource
distribution. Transferring these resources to rural areas incentivizes agri-environmental
regulation and bolsters the agricultural sector financially [57]. Moreover, regional financial
backing promotes a green agricultural development model, encouraging learning and
exchanges with neighboring areas, thereby offering policy and technical insights [58]. This
approach creates a spatial spillover effect. Beyond financial and technological aid, the
reconfiguration of regional agricultural industries significantly impacts rural sustainability.
Optimizing agricultural industry structures benefits regional agriculture by fully lever-
aging local resources and strengths, thereby overcoming regional limitations, to achieve
sustainable development [59].

This study elucidates the interplay between PLE spatial functions, offering insights for
the quantitative assessment of these functions in rural areas and identifying their driving
factors. Despite advances, existing research lacks comprehensive understanding of rural
spatial function correlations, their dynamic evolution, and geographical differentiation. To
address these gaps, our study employs CCD analysis, exploratory spatial data analysis,
spatial panel metrology, and geographical detection. These methods aim to deepen our
understanding of rural spatial function coordination and its role in sustainable rural de-
velopment. It is crucial to examine the interconnections and mutual constraints among
PLE spatial functions to fully grasp their relationships, coordination, spatial–temporal
variability, and geographical correlations. This research constructs an indicator system for
rural PLE spatial functions to measure and evaluate their CCD. It also analyzes their spatial
evolution, correlations, and driving factors. Focusing on regional spatial integrity, the
study encompasses 30 provinces in China, spanning from 2011 to 2020. The findings will
contribute to optimizing the spatial arrangement of PLE functions in rural areas, thereby
fostering sustainable agricultural and rural development.

2. Materials and Methods
2.1. Study Area

This research selected 30 provinces (excluding Tibet, Hong Kong, Macau, and Taiwan),
because they collectively reflect the main economic, social, cultural, and ecological charac-
teristics of China. The data from these provinces had good coherence and comparability.
These provinces feature diverse geographical environments, ranging from the plains along
the eastern coast to the plateaus and mountainous areas in the west. For example, the
North China Plain is a major grain-producing area in China, while the middle and lower
reaches of the Yangtze River region are the most economically active areas. This diversity
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in terrain directly influences land use patterns, which in turn shapes different production
spatial structures. Additionally, these provinces have a variety of climate types, from the
temperate monsoon climate in the north to the subtropical and tropical monsoon climates
in the south. This diversity fosters varied agricultural practices and ecosystems, making it
significant for studying production and ecological spaces.

Furthermore, as shown in Figure 1, the village density in eastern and central China is
high, especially in places like Hunan, Hubei, and Anhui, where the map shows deep yellow
and red colors, indicating high village density. In contrast, western areas like Xinjiang,
Qinghai, and Gansu have a lower density, depicted in light green. The level of village
density is often closely related to agricultural activities. High-density areas may reflect
concentrated agricultural production or diversified rural economic activities, which helps
us understand the layout of agricultural production spaces. Village density is also an
important indicator of residential patterns and the condition of social services facilities.
Areas with relatively lower density might possess more natural geographical features and
ecological value, which is crucial for comparing production, living, and ecological spaces,
assessing the condition of the ecological environment, and understanding the pressures an
area faces. Thus, studying these 30 provinces effectively reveals the regional relationships
and conflicts between resource utilization and ecological balance.
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2.2. Data Source

This paper focused on 30 provinces in mainland China, excluding Tibet, Hong Kong,
Macao, and Taiwan due to substantial data gaps in these regions. Covering the period
from 2011 to 2020, this research predominantly sourced its data from editions of the China
Statistical Yearbook, China Rural Statistical Yearbook, China Social Statistical Yearbook,
China Urban-Rural Construction Statistical Yearbook, and China Population and Em-
ployment Statistical Yearbook spanning from 2012 to 2021. Additionally, wetland area
information was obtained from the First and Second National Wetland Resource Surveys,
while forest coverage rates were derived from the Ninth National Forest Inventory. These
data were obtained from the official website of the National Bureau of Statistics of China
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“https://www.stats.gov.cn/english/ (accessed on 1 October 2023)”. To maintain consis-
tency and accuracy, revisions have been made to some data points, with historical data
aligned to the standards of the most recent yearbooks.

2.3. Relevant Theories
2.3.1. Urban–Rural Integration Theory

Urban–rural integration theory underscores the interconnectedness and interdepen-
dence between urban and rural areas [60]. Its goal is to harmonize their development,
bridging the urban–rural gap and fostering regional balance. This theory emphasizes the
synergy of resources, industries, and policies to achieve overall and sustainable develop-
ment. Amidst economic progress, urban–rural integration theory has emerged as a pivotal
framework for managing urban–rural relations and guiding integrated development [61].
Its objective is to overcome disparities between economically developed cities and underde-
veloped rural regions, fostering close integration and the harmonious development of their
economic and social fabric [62]. Integrated urban–rural development aims to reconfigure
production factors geographically to enhance farmers’ income and wealth, fostering a mu-
tually beneficial social structure. Rather than eradicating urban–rural disparities, it seeks
to rationalize the division of regional ecological communities [63]. Rooted in sustainable
development principles and spatial concepts, integrated urban–rural development strives
for economic progress, societal and cultural harmony, and functional integration through
rational geographical linkages [64].

2.3.2. Coupling Coordination Theory

The concept of “coupling” originates from physics, denoting the interaction degree
among elements within a system, while “coordination” emphasizes cooperative synergy
between independent systems [65]. Coupling coordination theory asserts that components
within a system are interdependent and mutually influential [66,67]. Amidst rural spatial
reconstruction, this theory stresses the need to harmonize production, living, and ecological
spaces, ensuring balanced development and the mitigation of conflicts. Synergetic develop-
ment, rooted in diversity and unity, aims for holistic and stable progress by balancing and
uniting systems or elements [68]. Amidst China’s economic and social transition, synergetic
development theory is invaluable for promoting social harmony and productivity [69]. It
leverages mutual influences and constraints among economic, population, and ecological
elements to achieve parallel, cooperative, and mutually beneficial development goals [70].

2.3.3. Sustainable Development Theory

Sustainable development theory advocates for meeting present needs without com-
promising future generations’ ability to meet their own needs [71]. Amidst rural spatial
reconstruction, it underscores the importance of balancing economic development, so-
cial equity, and environmental preservation. Emphasizing long-term sustainability and
resilience, it advocates for strategies that safeguard rural areas [72]. Globally, nations
and organizations, including the United Nations, prioritize ecological and environmental
concerns, highlighting the significance of sustainable development in urban planning [73].
Sustainable development theory is a cornerstone ideology pursued by China and many
nations worldwide. Amidst profound international and domestic changes, achieving
sustainable development is a key challenge [74]. It represents a holistic development per-
spective grounded in nature conservation and adaptation, showcasing China’s leadership
in global sustainable development concepts [75].

2.4. Research Methods

Figure 2 illustrates the key steps in assessing the coupling coordination degree and
understanding the impact mechanisms. Firstly, a system of indicators for the production,
living, and ecological spaces is established, and the data for these indicators are standardized.
Then, using the entropy weight method, weights are assigned to each indicator, and a

https://www.stats.gov.cn/english/
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weighted comprehensive calculation is conducted to determine the scores of each subsystem.
Secondly, the coupling coordination model is applied to calculate the level of coupling
coordination among the subsystems. From a temporal and spatial evolution perspective, this
model visually displays the differences in the coupling coordination levels across provinces
and utilizes a spatial autocorrelation model to assess the spatial clustering of the coupling
coordination levels within the study area. Thirdly, the spatial Durbin model, a Geodetector
model, and correlation models are employed to explore the influence and correlation strength
of dynamic factors on the coupling coordination levels of provinces in a spatial context.
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2.4.1. Construction of Evaluation Index System

This paper, drawing on existing research and the spatial theory of territorial spatial
planning, categorizes rural spatial functions into PLE functions [76,77]. It constructs a rural
PLE spatial function evaluation index system based on scientific principles, representativeness,
operability, continuity, and data availability. Building on prior work and the previous litera-
ture [43,47,78,79], the rural production space function is assessed through two dimensions,
agricultural and non-agricultural production, encompassing eight sub-indicators [44]. The
rural living space function is evaluated through two dimensions, livelihood and welfare secu-
rity, incorporating five sub-indicators. Lastly, the rural ecological space function is measured
in terms of ecological purification and conservation, comprising seven sub-indicators. The
detailed structure of this index system is presented in Table 1.

Table 1. Rural PLES function evaluation index system.

Criteria First Level Indicators Basic Level Indicator Calculation Method Weight Direction

Production function
Index(P)

Agricultural
production function

Per capita area sown with crops Crop sown area/total rural
population (hm2/person) 0.139 +

Per capita grain output Total grain production/total rural
population (tons/person) 0.220 +

Average land grain yield Total grain output/area sown
with crops (tons/hm2) 0.104 +

Per capita agricultural output Total agricultural output/total
rural population (yuan/person) 0.104 +

Per capita meat supply Meat production/rural
population (tons/person) 0.059 +

Level of agricultural modernization
Total power of agricultural

machinery/area sown with crops
(kW/hm2)

0.101 +

Land reclamation rate Crop sown area/total regional
land area (%) 0.136 +

Non-agricultural
production function

Per capita total output value of
agriculture, forestry, animal

husbandry, and fishing services

Gross output value of agriculture,
forestry, animal husbandry and

fishery services/total rural
population (yuan/person)

0.136 +
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Table 1. Cont.

Criteria First Level Indicators Basic Level Indicator Calculation Method Weight Direction

Living function
index(L)

Basic living security
function

Per capita rural disposable income (Yuan) 0.274 +

Rural Engel’s coefficient
Rural residents’ expenditure on

food consumption/total
household expenditure (%)

0.108 −

Per capita housing area of rural
residents

Total rural housing area/total
rural population (square

meters/person)
0.279 +

Social welfare
guarantee function

Proportion of rural school-age
population receiving education

Rural educated population
(number of students enrolled in

primary and middle
schools)/number of rural

population (%)

0.257 +

Proportion of rural population
covered by the minimum

subsistence allowance

Rural minimum subsistence
guarantee population/number of
rural population (10,000/million

people)

0.082 −

Ecological function
index I

Ecological
purification function

The use intensity of diesel fuel Diesel use/area sown under crops
(tons/hectare) 0.022 −

Fertilizer input intensity
Agricultural fertilizer

application/area sown with crops
(tons/hectare)

0.042 −

Intensity of pesticide application Total pesticide applications/area
sown to crops (tons/hectare) 0.018 −

Amount of agricultural plastic film
used per unit area

Agricultural plastic film use/area
sown with crops(tons/hectare) 0.021 −

Ecological protection
function

Forest coverage (%) 0.137 +

Area ratio of wetlands Wetland area/total area of the
region (%) 0.410 +

Water Resources per capita Cubic meters/person 0.350 +

2.4.2. Driving Factor Variable Setting

The literature review identified six variables as key drivers of the coupling and co-
ordinated development of rural PLE spatial functions in China: economic development,
urbanization degree, urban–rural income gap, financial support for agriculture, science
and technology investment level, and agricultural structural restructuring [80–83]. The
indicators representing these variables are detailed in Table 2. To mitigate heteroskedasticity,
these variables were logarithmically transformed during the empirical analysis of this study.

Table 2. CCD power factor variable setting.

Variable Name Variable Operation

Explained variable Coupling coordination degree (CCD) Calculated based on the coupled coordination model

Explanatory variables

Economic development (ED) GDP per capita (yuan)

Urbanization degree (UD) Share of urban population in total
regional population (%)

Urban-rural income gap (UIG) Comparison of urban and rural residents’ income
levels (rural = 1)

Financial support for agriculture (FSA) Investment in agriculture, forestry and water
affairs/total local fiscal expenditure (%)

Science and technology investment level
(STIL)

Science and technology expenditure/total
fiscal expenditure (%)

Agricultural structural restructuring (AR) Area sown with food crops/area sown with crops (%)
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2.4.3. Entropy Weight Method

Entropy weighting is a method of assigning weights based on the impact of each
indicator’s value changes on the overall system, calculated by the entropy value of the
indicators, thus determining their weights [84]. According to the previous literature [85],
this study calculates the index weights using the entropy method, which incorporates
time-year variables, to leverage the applicability of panel data.

(1) Standardizing the raw data

Due to the dimensional discrepancies among various indices, standardization of the
original data is essential prior to calculating the composite index. This paper employs the
extremum method for the standardization of the original data.

Positive indicators : Yijt =
xijt − min

(
xj
)

max(xj)− min(xj)
+ L (1)

Negative indicators : Yijt =
max

(
xj
)
− xijt

max(xj)− min(xj)
+ L (2)

In Equations (1) and (2), Yijt represents the standardized indicator data, while Xijt
denotes the unstandardized original data of the jth indicator for the ith province in the tth
year. Furthermore, min

(
xj
)

and max(xj), respectively, signify the minimum and maximum
values of the original data for the jth indicator across all provinces during the study period.

In order to prevent the existence of zero values in the standardized indicator data,
which cannot be processed by the subsequent logarithmic processing, the calculated matrix
is processed by translating L units, and to reduce the impact caused by the translation, this
paper takes the value of L as 10−5.

(2) Calculating the entropy value of the jth metric Ej.

Ej = −k
n

∑
i=1

r

∑
i=1

Pijt ln
(

Pijt
)

(3)

Pijt =
Yijt

n
∑

i=1

r
∑
t=i

Yijt

(4)

The constant k is associated with the sample size of the system, at this time k = 1
llnrn ,

when Pijt = 0, so that Pijt ln Pijt = 0, then 0 ≤ Ej≤ 1.

(3) Calculating the coefficient of variation in the jth indicator Dj.

Dj = −1 − Ej (5)

(4) Calculating the weights wj.

wj =
Dj

m
∑

j=1
Dj

(6)

(5) The comprehensive index is calculated by sequentially weighting and summing the
standardized data and the corresponding indicator weights to obtain the composite
index for the rural PLE spatial functions of each province, city, and autonomous region.

Qitk =
r

∑
i=1

(
YijtWj

)
(7)

where Qitk is the functional assessment value of subsystem k in the i province in year t.
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2.4.4. Coupling Coordination Model

Referring to the previous literature [86–91], this paper employs classical and widely
used coupled coordination models to calculate the CCD of rural PLE spatial functions
across various regions, thereby illustrating the status of their interrelationships. To ensure
that the coupling degree falls within the range of [0, 1], facilitating a scientific and effective
analysis of the coordinated development of rural PLE spatial functions among Chinese
provinces, a revised formula from [92] is utilized. The formula system for CCD is as follows:

C =

√√√√√
1 −

√
(Q3 − Q1)

2 +
√
(Q2 − Q1)

2 +
√
(Q3 − Q2)

2

3

×

√
Q1

Q3
× Q2

Q3
(8)

Q1 = min
{

Qp , Ql , Qe}, Q3= max
{

Qp , Ql , Qe
}

T = αQp + β Ql + γQe, α + β + γ = 1
(9)

D =
√

C × T (10)

In this framework, Qp, Ql , and Qe represent the comprehensive indices of regional
rural production function, rural life function, and rural ecological function, respectively.
C denotes the coupling degree, while T symbolizes the overall level of rural PLE spatial
function. The weights of these indices, represented by α, β, and γ, are presumed to be of
equal importance, with each assigned a value of 1/3, reflecting the balanced significance of
rural PLE aspects [43]. D represents the CCD, which is categorized into ten distinct types
based on its value (Table 3) [92,93].

Table 3. CCD classification criteria.

Interval of Coupling
Degree Interval of CCD Level of Coordination

[0, 0.1) [0, 0.1) Extreme disorder decline
[0.1, 0.2) [0.1, 0.2) Severe disorder decline
[0.2, 0.3) [0.2, 0.3) Moderate disorder decline
[0.3, 0.4) [0.3, 0.4) Mild disorder decline
[0.4, 0.5) [0.4, 0.5) Near disorder decline
[0.5, 0.6) [0.5, 0.6) Barely coordinated development
[0.6, 0.7) [0.6, 0.7) Primary coordinated development
[0.7, 0.8) [0.7, 0.8) Intermediate coordinated development
[0.8, 0.9) [0.8, 0.9) Good coordinated development
[0.9, 1] [0.9, 1] High-quality coordinated development

2.4.5. Exploratory Spatial Data Analysis

(1) Global spatial autocorrelation

Spatial autocorrelation analysis is a technique that investigates the clustering and
dispersion patterns of observations based on their spatial relationships [94]. This method
can be broadly categorized into two types: global spatial autocorrelation, which assesses
the spatial attributes of an entire study area, and local spatial autocorrelation, which focuses
on identifying spatial clustering within specific localized regions [95–97].

Prior to conducting spatial autocorrelation analysis, it is essential to establish a spatial
weight matrix. In this study, the matrix was constructed using Rook proximity, defined
as follows:

wij =

{
1, lij > 0
0, lij < 0

(11)

where i, j = 1, 2, . . . 30 is the space unit, lij is the boundary length, and wij is the positional
relationship between space unit i and space unit j in space. When the boundary length is
greater than 0, then it is considered that there is a common boundary between spatial unit i
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and spatial unit j; at this time wij, takes the value of 1. When the boundary length is equal
to 0, it is considered that there is no common boundary between spatial unit i and spatial
unit j; at this time wij, takes the value of 0.

The global Moran′s I can be calculated as:

Moran′s I =
n
S0

n
∑

i=1

n
∑

j=1
wijzizj

n
∑

i=1
zi

2
(12)

where zi represents the deviation of the observed value of variable Z in the spatial cell i
from its mean value, wij refers to an element within the spatial weight matrix, n denotes
the total number of spatial cells, and s0 is the sum of all spatial weights. The Moran′s I
statistic, which ranges between −1 and 1, serves as an indicator of spatial autocorrelation.
A positive Moran′s I statistic signifies the presence of positive spatial autocorrelation,
implying spatial aggregation, whereas a negative Moran′s I statistic indicates negative
spatial autocorrelation, suggesting spatial dispersion [98].

(2) Local spatial autocorrelation

Local Morans Ii can be calculated as:

Local Moran′s Ii =
(–xi − x)

Si
2

n

∑
j=1,i ̸=j

(
xj − x

)
(13)

where xi and xj are the observations of the variable, x is the mean of the observations of the
variable x, n denotes the total number of spatial cells, and s0 is the sum of all spatial weights.

2.4.6. Spatial Durbin Model

The Spatial Durbin model effectively incorporates both the spatial lag of the dependent
variable and the influence of the spatially lagged independent variables on the dependent
variable [99,100]. Consequently, among prevalent spatial panel models, the Spatial Durbin
model demonstrates enhanced stability and reliability [101]. The specific Spatial Durbin
model formulated in this study is as follows:

Dit = α + ρwijDit+β1lnEDit + β2lnUDit + β3lnUIGit + β4lnFSAit

+β5lnSTILit + β6lnARit+δ1wijlnEDit + δ2wijlnUDit

+δ3wijlnUIGit + δ4wijlnFSAit + δ5wijlnSTILit

+δ6wijlnARit + µi + Vt + εit

(14)

where Dit is the CCD of the spatial functions of rural PLE of the explained variables, ρ is
the spatial autocorrelation coefficient, β is the regression coefficient, δ is the coefficient of
the spatial lag term, µi denotes the spatial effect, Vt denotes the temporal effect, and εit is
the random perturbation term.

2.4.7. Geodetector Model

Spatial heterogeneity is ubiquitous across various geographical phenomena, and
Geodetector models are spatial analysis methods used extensively to detect spatial differen-
tiation and reveal the driving forces behind it. They are widely employed for conducting
driving force analysis and factor analysis [101–103]. Geodetector contains four detectors:
divergence and factor detection, interaction detection, ecological detection, and risk detec-
tion. Factor detection aims to detect the spatial variability of Y and how much a factor X
explains the spatial variability of attribute Y, measured by the q-value. Interaction detection
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can identify the strength of the effect on the dependent variable when different factors
interact with each other [93,104]. The model is as follows:

q = 1 − 1
Nσ2

L

∑
h−1

Nhσ2
h (15)

In this context, q symbolizes the effect that a particular factor has on the coupling and
coordination of rural spatial functions. The variable h denotes the level of stratification for
factor x, and Nh and N correspond to the count of units in stratum h and across the entire
region, respectively. Meanwhile, σ2

h and σ2 signify the variance in y-value for both stratum
h and the region as a whole. The value of q falls within the [0, 1] range, where a higher
q value suggests a stronger explanatory capacity of factor x regarding the y attribute, and a
lower value implies a weaker explanatory strength.

3. Results and Discussion
3.1. Evolutionary Characteristics of Rural PLE Spatial Functions

This study employed the entropy method to weight and calculate the spatial function
indices for rural PLE. We analyzed the composite index of these spatial functions in
rural China from 2011 to 2020, with the findings illustrated in Figure 3. Regarding rural
production, the average spatial functionality index across China increased from 0.214 in
2011 to 0.318 in 2020, marking a 48.60% rise. For rural living, the composite index for the
spatial function of rural living areas escalated from 0.329 in 2011 to 0.425 in 2020, a growth
of 29.18%. Overall, both the rural living and production spatial function indices exhibited a
consistent upward trend during this period. In contrast, the rural ecological spatial function
index showed more stable development, ranging from 0.214 to 0.245 over the decade, and
remained lower compared to the indices for rural production and living spatial functions.

Land 2024, 13, 604 11 of 30 
 

2.4.7. Geodetector Model 
Spatial heterogeneity is ubiquitous across various geographical phenomena, and Ge-

odetector models are spatial analysis methods used extensively to detect spatial differen-
tiation and reveal the driving forces behind it. They are widely employed for conducting 
driving force analysis and factor analysis [101–103]. Geodetector contains four detectors: 
divergence and factor detection, interaction detection, ecological detection, and risk de-
tection. Factor detection aims to detect the spatial variability of Y and how much a factor 
X explains the spatial variability of attribute Y, measured by the q-value. Interaction de-
tection can identify the strength of the effect on the dependent variable when different 
factors interact with each other [93,104]. The model is as follows: 𝑞 = 1 − ଵேఙమ ∑௅௛ିଵ𝑁௛𝜎௛ଶ  (15) 

In this context, 𝑞 symbolizes the effect that a particular factor has on the coupling 
and coordination of rural spatial functions. The variable ℎ denotes the level of stratifica-
tion for factor 𝑥, and 𝑁௛ and 𝑁 correspond to the count of units in stratum ℎ and across 
the entire region, respectively. Meanwhile, 𝜎௛ଶ and 𝜎ଶ signify the variance in y-value for 
both stratum ℎ and the region as a whole. The value of 𝑞 falls within the [0, 1] range, 
where a higher 𝑞 value suggests a stronger explanatory capacity of factor x regarding 
the 𝑦 attribute, and a lower value implies a weaker explanatory strength. 

3. Results and Discussion 
3.1. Evolutionary Characteristics of Rural PLE Spatial Functions 

This study employed the entropy method to weight and calculate the spatial function 
indices for rural PLE. We analyzed the composite index of these spatial functions in rural 
China from 2011 to 2020, with the findings illustrated in Figure 3. Regarding rural pro-
duction, the average spatial functionality index across China increased from 0.214 in 2011 
to 0.318 in 2020, marking a 48.60% rise. For rural living, the composite index for the spatial 
function of rural living areas escalated from 0.329 in 2011 to 0.425 in 2020, a growth of 
29.18%. Overall, both the rural living and production spatial function indices exhibited a 
consistent upward trend during this period. In contrast, the rural ecological spatial func-
tion index showed more stable development, ranging from 0.214 to 0.245 over the decade, 
and remained lower compared to the indices for rural production and living spatial func-
tions.  

 
Figure 3. Changes in China’s rural PLE spatial function index, 2011–2020. Figure 3. Changes in China’s rural PLE spatial function index, 2011–2020.

Figure 4 presents the indices for rural PLE spatial functions across 30 Chinese provinces
(including municipalities and autonomous regions) in 2011 and 2020. An analysis of these
indices for 2011 and 2020 reveals a general upward trend in rural PLE spatial functions
across the eastern, central, and western regions of China. Notably, the indices for rural living
in the eastern region and rural production in the central region exhibited more substantial
increases. This comparative evaluation of the rural PLE spatial function indices enables the
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categorization of the study area into three distinct types: production-priority, living-priority,
and ecological-priority areas. Based on the degree of the three spatial function indices for
each region, as seen in Figure 2, it is clear that the study area has the highest proportion of
regions that prioritize living functions. The production-prioritized regions are Liaoning,
Shandong, and Jilin in the eastern region, and Heilongjiang and the Inner Mongolia
Autonomous Region in the central region. Among the production-prioritized regions, Jilin
Province and Heilongjiang Province show significant rural production function advantages.
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3.2. Evolutionary Characteristics of the CCD

This paper employs a coupled coordination model to calculate the CCD of rural
PLE spatial functions in 30 Chinese provinces (including municipalities and autonomous
regions), with the results presented in Table 4 and Figure 5. We used the mean value of
each province’s CCD to analyze the temporal development trend in China from 2011 to
2020. During this period, the CCD of rural PLE in China exhibited an overall upward trend.
Regionally, the eastern and central regions consistently outperformed the western region
in terms of coupled coordination, with a noticeable lead. Specifically, in 2011, the average
values of coupled coordination in the eastern, central, and western regions were 0.438,
0.437, and 0.391, respectively, and in 2020, these values were 0.444, 0.493, and 0.450. Despite
this upward trajectory, the average CCD across China remained within the 0.40–0.50 range,
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indicating a state of near disorder decline. Spatially, provinces where the coupling of rural
PLE functions has achieved a level of minimal coordinated development are predominantly
in the eastern and central regions, while the western region is generally characterized by
disorderly decline. There are certain spatial clustering features in the regions that have
initially reached the coordination level, such as in the Shanghai and Jiangsu provinces in the
east, and the Anhui, Jiangxi, and Hunan and Hubei provinces in the central region, all with
spatial proximity features (Figure 6). This spatial agglomeration feature demonstrates the
spatial aggregation of high CCL and low CCL. On the time scale, the spatial CCD of rural
PLE functions in the eastern, central, and western regions of China has changed relatively
little. From 2011 to 2020, the CCL of Beijing, Tianjin, Hebei, Liaoning, Zhejiang, Fujian, and
Shandong in the eastern region, Henan, Heilongjiang, Jilin, and Shanxi in the central region,
and Chongqing, Guangxi, and Inner Mongolia in the western region did not change. Of
these areas, Beijing and Shanxi have always been at the level of mild disorder decline, and
the other regions have always been at a level of near disorder decline. After 2013, the eastern
regions of Shanghai, Jiangsu, and Guangdong and the central regions of Hubei, Hunan,
Jiangxi, and Anhui gradually developed into a barely coordinated development class, thus
reducing the proportion of provinces in the two regions in the dislocated recession category.
In 2020, all western provinces were in the near disorder decline class.

Table 4. Functional CCD of rural PLES in China’s provinces.

Place 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.378 0.373 0.368 0.364 0.367 0.355 0.350 0.347 0.363 0.343
Tianjin 0.430 0.432 0.467 0.471 0.473 0.473 0.472 0.470 0.477 0.487
Hebei 0.437 0.444 0.446 0.453 0.457 0.449 0.449 0.454 0.460 0.471

Liaoning 0.437 0.446 0.451 0.466 0.467 0.478 0.475 0.489 0.490 0.486
Shanghai 0.500 0.499 0.527 0.530 0.520 0.511 0.510 0.506 0.508 0.511
Jiangsu 0.484 0.486 0.528 0.536 0.548 0.552 0.555 0.557 0.561 0.575

Zhejiang 0.416 0.431 0.426 0.431 0.431 0.425 0.417 0.417 0.424 0.415
Fujian 0.417 0.440 0.445 0.454 0.460 0.478 0.455 0.456 0.474 0.469

Shandong 0.467 0.467 0.463 0.478 0.485 0.488 0.486 0.491 0.495 0.494
Guangdong 0.415 0.427 0.432 0.431 0.436 0.438 0.432 0.436 0.415 0.427

Hainan 0.412 0.431 0.442 0.454 0.470 0.489 0.512 0.523 0.507 0.514
Average value 0.438 0.444 0.455 0.461 0.464 0.465 0.460 0.462 0.438 0.444

Shanxi 0.371 0.378 0.379 0.388 0.387 0.373 0.370 0.374 0.377 0.389
Jilin 0.448 0.453 0.460 0.457 0.458 0.467 0.466 0.480 0.480 0.480

Heilongjiang 0.453 0.460 0.468 0.476 0.475 0.475 0.481 0.486 0.499 0.482
Anhui 0.438 0.450 0.462 0.479 0.489 0.498 0.488 0.494 0.493 0.517
Jiangxi 0.467 0.498 0.461 0.474 0.487 0.494 0.490 0.483 0.505 0.509
Henan 0.427 0.430 0.439 0.449 0.455 0.452 0.456 0.461 0.466 0.476
Hubei 0.430 0.443 0.461 0.476 0.488 0.502 0.513 0.510 0.510 0.550
Hunan 0.464 0.488 0.481 0.496 0.504 0.512 0.512 0.508 0.528 0.541

Average value 0.437 0.450 0.451 0.462 0.468 0.472 0.472 0.475 0.482 0.493
Inner Mongolia 0.424 0.424 0.450 0.430 0.438 0.436 0.436 0.445 0.447 0.447

Guangxi 0.429 0.452 0.458 0.468 0.480 0.475 0.483 0.476 0.486 0.496
Chongqing 0.408 0.409 0.419 0.435 0.435 0.449 0.451 0.452 0.454 0.471

Sichuan 0.399 0.415 0.420 0.430 0.432 0.437 0.446 0.457 0.457 0.471
Guizhou 0.362 0.390 0.388 0.422 0.432 0.434 0.443 0.441 0.452 0.461
Yunnan 0.389 0.403 0.414 0.424 0.431 0.439 0.446 0.443 0.433 0.452
Shaanxi 0.389 0.395 0.403 0.411 0.416 0.413 0.421 0.426 0.441 0.440
Gansu 0.350 0.362 0.376 0.383 0.389 0.370 0.379 0.391 0.395 0.410

Qinghai 0.393 0.393 0.405 0.398 0.412 0.406 0.416 0.433 0.452 0.453
Ningxia 0.372 0.378 0.383 0.390 0.397 0.388 0.393 0.405 0.404 0.412
Xinjiang 0.386 0.397 0.418 0.409 0.430 0.436 0.435 0.430 0.434 0.437

Average value 0.391 0.402 0.412 0.418 0.426 0.426 0.432 0.436 0.441 0.450
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3.3. Exploratory Spatial Data Analysis
3.3.1. Analysis of the Moran’s I of Coupled Coordination

In examining the spatial characteristics of the CCL across eastern, central, and western
China, we discovered a pronounced spatial aggregation of these levels. Utilizing the Moran
index, we delved into the spatial aggregation traits of the rural PLE CCL. The global
autocorrelation results, presented in Table 5, reveal significant spatial functional CCD
within rural PLE at the 1% level from 2011 to 2016, and at the 5% level from 2016 to 2020.
This suggests a marked positive spatial correlation in the coordination of rural PLE spatial
functions. Notably, the global Moran index and its significance level exhibited a downward
trend from 2011 to 2020. Despite the declining trend in spatial correlation significance,
the positive spatial relationship in the coordination of rural PLE coupling underscores the
necessity of employing spatial measurement analytical methods to investigate the factors
influencing its development.

Table 5. Moran’s I of the functional CCD of PLES in rural China, 2011–2020.

Year Moran’s I Z p-Value

2011 0.358 3.519 0.000
2012 0.382 3.722 0.000
2013 0.264 2.700 0.007
2014 0.320 3.200 0.001
2015 0.310 3.111 0.002
2016 0.314 3.139 0.002
2017 0.234 2.430 0.015
2018 0.185 1.997 0.046
2019 0.197 2.092 0.036
2020 0.181 1.968 0.049

3.3.2. Local Spatial Autocorrelation Analysis of CCD

We have analyzed the general spatial correlation characteristics of the study area
above, and in this section, we describe the spatial aggregation in localized areas. We drew
a local Moran’s I scatter plot to analyze the local spatial aggregation characteristics of the
spatial functional coupling and coordinated development of rural PLE. Figure 7 shows that
the coupled coordination of rural PLE in China has obvious spatial aggregation, and the
30 provinces (municipalities and autonomous regions) studied are mainly concentrated in
the first and third quadrants. This indicates that the coupled and coordinated development
of regional rural spatial functions in China shows obvious H–H aggregation and L–L
aggregation phenomena, and there is obvious heterogeneity among the provinces.
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To further explore local spatial clustering in the coordination levels of PLE in rural
China between 2011 and 2020, a z-value test at the LISA significance level was applied.
The findings, detailed in Table 6, reveal a notable geographical disparity: high–high (H–H)
clustering is predominantly found in the eastern and central regions, while low–low (L–L)
clustering is prevalent in the west. This indicates a marked imbalance in the coordination
of PLE spatial functions across rural China. In conclusion, the development of PLE in rural
China exhibits significant spatial correlations, with clear patterns of spatial aggregation.

Table 6. Results of LISA significance z-value test.

Year H–H L–H L–L H–L

2011 Shanghai ***, Jiangsu ***,
Shandong ** not present Sichuan **, Shaanxi **, Gansu ***,

Qinghai *, Ningxia **, Xinjiang ** not present

2012 Shanghai **, Jiangsu ***, Anhui *,
Jiangxi ***, Shandong * not present Shaanxi **, Gansu ***, Qinghai **,

Ningxia ***, Xinjiang ** not present

2013 Shanghai ***, Jiangsu *** not present Sichuan *, Shaanxi **, Gansu ***,
Qinghai *, Ningxia ** not present

2014 Shanghai ***, Jiangsu ***,
Anhui **, Shandong * not present Shaanxi **, Gansu ***, Qinghai **,

Ningxia ***, Xinjiang ** not present

2015 Shanghai ***, Jiangsu ***,
Anhui **, Shandong ** Zhejiang * Shaanxi **, Gansu ***, Qinghai **,

Ningxia ** not present

2016 Shanghai *, Jiangsu ***, Anhui **,
Jiangxi * Zhejiang ** Shanxi *, Shaanxi **, Gansu ***,

Qinghai **, Ningxia *** not present

2017 Shanghai *, Jiangsu **, Anhui * Zhejiang ** Shaanxi *, Gansu ***, Ningxia not present

2018 Jiangsu **, Anhui *, Shandong * Zhejiang ** Gansu ***, Ningxia ** not present

2019 Jiangsu **, Anhui * Zhejiang ** Gansu ***, Ningxia ** not present

2020 Jiangsu *, Anhui ***, Hubie **,
Hunan ** Zhejiang *** Gansu **, Ningxia ** not present

Note: ***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

3.4. Analysis of the Driving Mechanism of the CCD
3.4.1. Spatial Econometric Model Identification and Testing

Spatial correlation analysis indicated significant correlation in the integrated develop-
ment of PLE spatial functions in rural China, necessitating the selection of an appropriate
spatial panel model for further investigation. Initially, the Lagrange multiplier (LM) test
for spatial model selection was utilized to ascertain the suitability of either a spatial error
or lag model, with results presented in Table 7. Both the LM test and robustness checks for
the spatial error model and spatial lag model were significant at the 1% level, refuting the
null hypothesis of no spatial lag or error term.

Table 7. Results of spatial econometric model tests.

Test Item Statistical Value p-Value

Moran’s I 3.283 0.001
LM-spatial error 9.072 0.003

Robust LM-spatial error 9.067 0.003
LM-spatial lag 24.094 0.000

Robust LM-spatial lag 24.089 0.000
LR-Spatial-lag 49.41 0.000

LR-Spatial-error 43.98 0.000
Wald-spatial-lag 34.79 0.000

Wald-Spatial-error 34.26 0.000
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Subsequently, the LR likelihood ratio test and Wald test were employed to evaluate if
the spatial Durbin model (SDM) could be simplified to a spatial error model (SEM) or spatial
lag model (SLM). The LR tests for spatial lag and error in the rural PLE function coordination
registered values of 49.41 and 43.98, respectively, significant at the 1% level. Similarly,
Wald test results yielded spatial lag and error values of 34.79 and 34.26, respectively, also
significant at this level. These outcomes collectively dismiss the initial assumption that the
SDM can be reduced to either SLM or SEM, underscoring the need for employing the SDM
in analyzing influencing factors.

Lastly, the choice between random effects and fixed effects models was guided by
the Hausman test results, which favored the fixed effects model with a confidence level
of 1% (23.24, p = 0.0007). Subsequent analysis entailed comparing empirical results from
spatial fixed effect, time fixed effect, and dual fixed effect models to ascertain the most
representative model for the actual situation.

Table 8 shows the results of model estimation for spatial fixed, time fixed, and double
fixed models based on the adjacency matrix, respectively. We compared the R2 values
and log-likelihood estimating function values of the estimation results of each model, and
found that the spatial fixed-effects model had the highest goodness-of-fit, while the LR
test results for judging which fixed-effects model to use also showed that choosing the
spatial fixed-effects Durbin model would be appropriate. Since the use of spatial lag terms
to describe the spatial interaction effects may lead to erroneous conclusions, we further
decomposed the direct, spillover, and total effects of each variable on the CCD of rural PLE
in order to analyze the interaction information contained in the model.

Table 8. Analysis of spatial econometric models.

Variable Spatial Fixed Effects Time Fixed Effects Double Fixed Effects

lnED
0.077 *** −0.016 0.072 ***
(0.016) (0.013) (0.017)

lnUD
0.100 *** 0.020 0.121 ***
(0.025) (0.029) (0.025)

lnUIG
−0.012 −0.168 *** 0.003
(0.018) (0.017) (0.019)

lnFSA
−0.010 0.009 −0.016 **
(0.007) (0.010) (0.008)

lnAR
0.055 *** 0.043 *** 0.047 ***
(0.016) (0.013) (0.016)

lnSTIL
−0.008 ** −0.007 −0.008 **

(0.004) (0.005) (0.004)

lnED*W
−0.020 −0.071 ** −0.030
(0.020) (0.029) (0.035)

lnUD*W
−0.198 *** −0.007 −0.155 ***

(0.047) (0.050) (0.051)

lnUIG*W
−0.082 *** −0.007 −0.034

(0.029) (0.039) (0.040)

lnFSA*W
0.044 *** 0.090 *** 0.023 *
(0.012) (0.018) (0.014)

lnAR*W
−0.126 *** −0.080 *** −0.154 ***

(0.031) (0.023) (0.035)

lnSTIL*W
0.019 *** 0.087 *** 0.015 **
(0.006) (0.012) (0.007)

rho
0.144 * 0.188 ** 0.093
(0.080) (0.082) (0.087)

Sigma2 0.000 *** 0.001 *** 0.000 ***
(0.000) (0.000) (0.000)

R2 0.722 0.101 0.699
Log-L 960.468 651.884 967.703

Note: ***, ** and * indicate 1%, 5% and 10% significance levels, respectively.
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3.4.2. Analysis of Impact Effects

Table 9 displays the estimation outcomes of the spatial Durbin decomposition model,
elucidating the driving factors behind the coordinated development of rural PLE spatial
function coupling. The direct and total effects of regional ED on PLE spatial function
coupling were significantly positive, whereas the indirect effects were not significant.
This implies that an increase in per capita GDP positively influences PLE coupling and
coordination. The direct, indirect, and total effects of UD on PLE spatial function coupling
all showed statistical significance. Specifically, the direct effect was positively significant,
whereas both the indirect and total effects were negatively significant. This suggests that
UD positively influences the development of rural PLE spatial function coupling, yet it
has a negative impact on neighboring regions. The indirect and total effects of the UIG on
PLE spatial function coupling were significantly negative, indicating that an increasing gap
hinders the coordinated and sustainable development of rural areas, with discernible spatial
spillover effects. Finally, while the direct effect of FSA on PLE spatial function coupling was
not significant, the indirect and total effects were positively significant, suggesting that local
FSA fosters the coordinated and sustainable development of rural areas in neighboring
regions, rather than locally.

Table 9. Utility decomposition of the Spatial Durbin Model (SDM).

Variable Direct Effect Indirect Effect Total Effect

Economic Development (lnED) 0.077 *** −0.010 0.067 ***
(0.016) (0.024) (0.017)

Urbanization degree (lnUD) 0.091 *** −0.213 *** −0.121 **
(0.020) (0.056) (0.055)

Urban-rural income gap (lnUIG) −0.014 −0.099 *** −0.113 ***
(0.019) (0.031) (0.027)

Financial support for agriculture (lnFSA) −0.007 0.050 *** 0.043 **
(0.008) (0.015) (0.018)

Agricultural structural restructuring (lnAR) 0.049 *** −0.134 *** −0.085 **
(0.017) (0.039) (0.038)

Science and technology investment level (lnSTIL) −0.007 ** 0.020 *** 0.013 *
(0.003) (0.007) (0.008)

Note: ***, ** and * indicate 1%, 5% and 10% significance levels, respectively.

The direct, indirect, and total effects of AR on the coordination and coupling of rural
PLE spatial functions were all statistically significant. Specifically, the direct effect was
positively significant, whereas the indirect and total effects were negatively significant. This
implies that AR in the region positively influences the development of rural PLE spatial
function coupling and coordination.

The direct effect of the STIL on the coupling and coordinated development of rural PLE
spatial functions within the region was significantly negative at the 5% level. In contrast,
its indirect effect was significantly positive at the 1% level, and the total effect was also
significantly positive at the 10% level. This suggests that STIL exerts a mixed influence on
the region’s rural PLE function coordination.

3.4.3. Factorial and Interaction Detection of Perturbing Factors

The factor detection analysis, utilizing a geographical detector (as illustrated in
Figure 8a,b), revealed that six perturbation factors, ED, UD, UIG, FSA, STIL, and AR,
significantly influenced the spatial coupling coordination of PLE in China’s rural areas.
The impact magnitude of these factors varied across different years of the study. Notably,
STIL emerged as the most influential, underscoring the critical role of science and tech-
nology inputs in rural development. Modern scientific and technological advancements
enhance agricultural efficiency, minimize resource waste, and improve product quality,
thereby elevating the living standards of rural residents. This has been corroborated by the
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literature, such as in Ma et al. (2022a) [105], which highlighted the Chinese government’s
efforts to foster scientific and technological innovation in rural areas, enhancing rural
economy sustainability. Consequently, the level of STIL is vital for the coordinated develop-
ment of rural PLE functions. ED and FSA followed in importance, indicating the ongoing
significance of economic development and agricultural financial support. ED enhances
rural economic opportunities and resident income levels, affecting the coordination of PLE
functions. Agricultural financial support policies contribute to infrastructure development
and improved social security systems in rural areas, offering increased support and security
for residents, as evidenced by research [106,107]. In contrast, UD exhibited the lowest
disturbance capacity, potentially due to urbanization-related issues like resource loss and
labor outflow in rural areas. Urbanization alters the socio-economic structure of rural areas,
potentially negatively impacting the coordination of rural PLE functions. Some studies, like
Jiang et al. (2022) and Zhang et al. (2019), have suggested that the impact of urbanization’s
on rural areas is not universally positive, accounting for its relatively low impact [108,109].
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In addition, the six perturbation factors were subjected to interaction detection, and
the results are shown in Figure 9. Overall, most of the interactions between the factors
showed nonlinear enhancement, and some of the interactions between the factors showed
bifactorial enhancement, such as the highest influence of the interactions between FSA and
STIL, and between AR and UIG, which were both 0.5; second were UD and UIG, FSA and
UIG, and STIL and FSA, all with an influence of 0.333; third were UD and FSA, UD and
STIL, and ED and AR, all with an influence of 0.25; and lastly, the interaction between UD
and FSA had the lowest influence, at 0.2.

3.4.4. Relevance Analysis

Correlation analysis was conducted to assess the relationship between various impact
factors and the CCD for the years 2011, 2014, 2017, and 2020, utilizing Origin 2021, as
depicted in Figure 10. The findings revealed that the CCD had a significant negative
correlation with UIG and FSA, and a significant positive correlation with UD and STIL.
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Among them, UIG had significant correlation with the CCD in all four study years,
and the correlation was the highest, with absolute values of correlation coefficients of 0.64,
0.60, 0.53, and 0.53, respectively. This may be due to the unequal distribution of resources
caused by the large income gap, and the relatively low level of infrastructure construction
and social security in rural areas, which may have a negative impact on the coordination of
the spatial functions of PLE in rural areas. This is similar to existing studies that have shown
that income inequality may lead to poverty in rural areas, limiting economic development
and resource flows [110,111].

The level of science and technology inputs had a significant positive correlation with
coupling coordination only in 2014, with an absolute correlation coefficient of 0.42. The
reason for this may be that science and technology inputs can improve the efficiency of
agricultural production and the vitality of the rural economy, which in turn improves the
spatial functioning of rural PLE. Some studies have shown that science and technology
innovation and inputs can improve agricultural production in rural areas and promote
economic development and sustainable rural development [112–114].

FSA had a significant negative correlation with coupling coordination only in 2014,
with an absolute correlation coefficient of 0.41. This may be due to the fact that certain rural
support policies are not sufficiently refined, leading to wasteful or irrational allocation of
resources, which is not conducive to the coordination of rural PLE spatial functions. Some
studies have pointed out that irrational rural policy implementation may lead to resource
waste and inefficiency [111].

In 2011, UD exhibited a significant positive correlation with the spatial coordination of
PLE functions in rural China, reflected by an absolute value of 0.37. This correlation can
be attributed to the potential improvements in infrastructure and social services in rural
areas brought about by UD, which in turn may enhance the coordination of PLE spatial
functions. Supporting this notion, research (e.g., Liu et al. (2010)) has indicated that the
urbanization process may lead to enhanced infrastructure and social services in rural areas,
thereby improving the quality of life for rural residents [115].

4. Discussion
4.1. Discussion of the Findings

This study first demonstrates the situation of the coordinated development of rural
spatial functions in China, based on objective data. Overall, the degree of coordination of
PLE spatial function coupling in China is generally on an upward trend. However, the
PLE spatial function coupling coordination degree shows a spatial differentiation in which
coordination is higher in the East than in the West. This regional difference may be related
to the fact that the eastern region has excellent agricultural resource endowment, while the
western region has poor agricultural resource endowment, insufficient natural conditions,
and a fragile ecological environment [57]. However, in addition to natural and ecological
conditions, it is still worth exploring which factors influence the coordinated development
of rural spatial functions, which is the key to identifying factors that promote coordinated
and sustainable rural development.

The coupled coordination of production–life–ecological spatial functional relationships
in rural China has an aggregation effect. Therefore, spatial effects need to be considered
when analyzing the influencing factors affecting the coordinated development of rural
spatial functions. This study used a spatial fixed-effects Durbin model and a Geodetector
model to explore the direct and spatial spillover effects of the influencing factors on the
coupled coordination of rural production-life-ecology spatial functions. It was found that
the degree of spatial coordination of rural production–life–ecology functions in China is
influenced by regional economic development, urban–rural income disparity, the level of
scientific and technological inputs, and agricultural structural adjustment, among other fac-
tors. Regional expenditure on financial support for agriculture and science and technology
inputs has a positive spillover effect on the development of the coupled spatial coordination
of rural production–life–ecology functions. Financial support for agriculture and scientific
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and technological inputs involves the distribution of regional financial resources, and the
transfer of financial resources to rural areas provides financial support for the agricultural
sector, and at the same time, regulates the agro-environment in an incentive manner [57].
The flow of financial resources to rural areas can guide the flow of capital and technological
factors to rural areas, which provides factor support for the achievement of a balanced
allocation of resources between urban and rural areas, the enhancement of comprehensive
agricultural productivity, an increase in the incomes of rural inhabitants, improvements
in rural infrastructure, and the development of social services in rural areas. The spatial
spillover effect of financial support for agriculture lies in the fact that financial support
in the region is conducive to the creation of a regional green agricultural development
model, attracting learning and exchanges from neighboring regions, which provides pol-
icy references as well as technical guidance for neighboring regions [58]. Agricultural
structural adjustment has promoted the coordinated development of the spatial coupling
of production, living, and ecological functions in rural areas in the region. Optimizing
the structure of the agricultural industry is conducive to the development of the region’s
agriculture, making full use of the region’s resources and advantages, and thus breaking
through regional constraints to achieve sustainable development [59]. Regional economic
development and agricultural restructuring have a negative spatial spillover effect on the
coupled and coordinated development of rural production–life–ecological spatial functions.
This phenomenon may be explained by the fact that local development attracts population
inflows from neighboring regions, and human capital is a key factor in the socio-economic
development of rural areas and the development of agricultural functions [116,117]. As a
result, possible population movements reduce the ability of neighboring areas to develop
in a coordinated manner. The urban–rural income gap has a negative impact on the cou-
pled coordination of regional rural production–living–ecological spatial functions. The
urban–rural income gap inhibits agricultural productivity gains. The wider income gap
between urban and rural areas results in rural populations moving to urban areas, where
development opportunities and labor remuneration are higher, and the resulting shortage
of agricultural labor factors is detrimental to the sustainable development of rural areas,
leading to a lack of incentives for rural development [105].

Globally, rural areas often face socio-economic vulnerabilities [118], regional poverty [119],
inadequate infrastructure [120], land degradation [121], destruction of rural landscapes [122],
and food insecurity resulting from the conversion of agricultural land [123]. Uneven rural
development has become a global problem [124], and how to promote rural sustainability has
become a hot topic of multidisciplinary concern. In China, rural production–living–ecological
space is the carrier of rural land resource planning and management [125], and the coordi-
nated development of rural space and rural spatial reconstruction constitute an important
means through which to promote China’s rural revitalization strategy [126]. China is currently
adopting a series of policy measures to promote rural spatial structuring and sustainable
development, such as the pilot project of “linking the increase of urban construction land
to the decrease of rural construction land”, which is aimed at restructuring the economic,
spatial, and social structures of the pilot areas, thereby accelerating the restructuring of the
countryside [127], and improving the economic development of rural areas by means of a
policy for precise poverty alleviation [128]. As the largest developing country in the world,
China has the largest rural population. Therefore, China’s experience in promoting sustainable
rural development based on a rural spatial perspective is of great relevance to countries with
similar rural development characteristics and problems.

4.2. Study Contribution

This study, while focused on China’s rural PLE spatial functions, provides insights
that are valuable on a global scale. The entropy method applied here, coupled with
spatial Durbin and geographic detector models, can serve as a methodological framework
for other nations with similar rural challenges. Such tools are crucial for assessing the
spatial coordination of environmental, production, and living functions in rural areas
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globally. The identification of high–high and low–low clusters in rural functional coupling
and coordination offers a template for regional planning in diverse geopolitical contexts.
These findings resonate with international efforts to enhance rural sustainability and echo
priorities set by global entities such as the United Nations Sustainable Development Goals,
particularly those related to sustainable cities and communities (Goal 11) and life on
land (Goal 15).

The results of this study are of immense benefit to multiple stakeholders, includ-
ing policymakers, regional planners, and environmental agencies. By understanding the
drivers of rural PLE function coordination, these stakeholders can tailor their strategies to
maximize ecological protection and sustainable rural development. The insights can also
aid international development organizations in formulating aid strategies that prioritize
ecological balance and sustainable rural infrastructure. In addition, this research facilitates
informed decision-making by providing a clear picture of the spatial distribution of rural
functions and their interdependencies. For instance, understanding the negative impacts
of uncoordinated urbanization (UD) and unequal intergovernmental arrangements (UIG)
on rural development can help policymakers formulate corrective measures. Similarly,
the positive spillover effects of farm size adjustments (FSA) and technological innova-
tion in local industries (STIL) highlight leverage points for enhancing rural productivity
and sustainability.

4.3. Limitations and Future Research

The study offers significant insights into the spatial coordination of rural PLE functions
in China. However, its singular focus on one nation restricts the direct global applicability
of its findings. Future research should aim to broaden the scope by applying this frame-
work to diverse national contexts to assess its universal relevance. Moreover, exploring
the nonlinear interactions among the factors influencing rural development is crucial to
achieve a comprehensive understanding of their intricate dynamics. Comparative analyses
spanning various countries could then elucidate fundamental principles of rural develop-
ment and functional coordination, building upon the findings of this study. Additionally,
deeper exploration into the roles of technological innovation and policy frameworks in
bolstering rural sustainability is warranted. Future studies can also enhance the assessment
by expanding the scope of indicators to encompass a broader range of factors, such as
natural reserves, rural settlements, and rural infrastructure.

5. Conclusions

The findings of this study indicate that: (1) China’s rural areas have experienced
modest growth in spatial production and living functions, alongside a slightly fluctuating
increase in ecological functions, with noticeable disparities in their development; (2) The
overall trend in the coupled coordination of PLE spatial functions between 2011 and 2020
has been upward, reflecting gradual improvements. However, the proportion of provinces
achieving balanced development in PLE functions remains low, and a spatial divide exists,
with higher coordination in the East compared to the West; (3) There are pronounced high–
high and low–low clusters in the regional rural spatial functional coupling and coordination,
along with significant inter-provincial heterogeneity; (4) Factors such as ED, UD, UIG, FSA,
STIL, and AR influence the coordination of rural PLE spatial function coupling. UD, UIG,
and AR negatively impact this coordination, whereas FSA and STIL have positive spillover
effects; (5) The influence of these factors on the coordination of rural PLE functions varies
significantly, with STIL having the strongest impact and UD the lowest. Furthermore, most
factors exhibit nonlinear interactions, enhancing their collective effects.
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24. Kupková, L.; Bičík, I.; Jeleček, L. At the crossroads of European landscape changes: Major processes of landscape change in
Czechia since the middle of the 19th century and their driving forces. Land 2021, 10, 34. [CrossRef]

25. Lin, G.; Jiang, D.; Fu, J.; Zhao, Y. A review on the overall optimization of production–living–ecological space: Theoretical basis
and conceptual framework. Land 2022, 11, 345. [CrossRef]

26. Fu, J.; Bu, Z.; Jiang, D.; Lin, G.; Li, X. Sustainable land use diagnosis based on the perspective of production–living–ecological
spaces in China. Land Use Policy 2022, 122, 106386. [CrossRef]

27. Fuseini, I.; Kemp, J. A review of spatial planning in Ghana’s socio-economic development trajectory: A sustainable development
perspective. Land Use Policy 2015, 47, 309–320. [CrossRef]

28. Crabbé, A.; Bergmans, A.; Craps, M. Participation in spatial planning for sustainable cities: The importance of a learning-by-doing
approach. In Lifelong Learning and Education in Healthy and Sustainable Cities; Springer: Cham, Switzerland, 2018; pp. 69–85.

29. Cao, Y.; Huang, X.; Liu, X.; Cao, B. Spatio-temporal evolution characteristics, development patterns, and ecological effects of
“production-living-ecological space” at the city level in China. Sustainability 2023, 15, 1672. [CrossRef]

30. Zeduo, Z.; Mou, Y.; Wei, Z.; Canfang, F.; Wenwen, Z.; Zhixiao, H. Changes in the “Production-Living-Ecological Space” Pattern in
the Interlocking Mountain and River Zones of the Yellow River Basin—Taking Xinxiang City as an Example. J. Resour. Ecol. 2023,
14, 479–492. [CrossRef]

31. Wan, J.; Su, Y.; Zan, H.; Zhao, Y.; Zhang, L.; Zhang, S.; Dong, X.; Deng, W. Land functions, rural space governance, and farmers’
environmental perceptions: A case study from the Huanjiang Karst Mountain Area, China. Land 2020, 9, 134. [CrossRef]

32. Tian, F.; Li, M.; Han, X.; Liu, H.; Mo, B. A production–living–ecological space model for land-use optimisation: A case study of
the core Tumen River region in China. Ecol. Model. 2020, 437, 109310. [CrossRef]

33. Wei, Y.; Zhang, Y.; Chen, L.; Chen, H.; Zhang, X.; Liu, P. Production–living–ecological space transition and its eco-environmental
effects based on an improved area-weighted method: A case study of Gangcheng District, a typical industrial base in China.
Front. Environ. Sci. 2022, 10, 972786. [CrossRef]

34. Zvoleff, A.; An, L. The effect of reciprocal connections between demographic decision making and land use on decadal dynamics
of population and land-use change. Ecol. Soc. 2014, 19, 31. [CrossRef]

35. Yang, X.J.; Wang, J.; Qiao, N.; Bai, Z.K. Spatiotemporal variation pattern of production-living-ecological space and land use
ecological risk and their relationship analysis: A case study of Changzhi City, China. Environ. Sci. Pollut. Res. 2023, 30,
66978–66993. [CrossRef] [PubMed]

36. Wang, Q.; Wang, H.J. Dynamic simulation and conflict identification analysis of production-living-ecological space in Wuhan,
Central China. Integr. Environ. Assess. Manag. 2022, 18, 1578–1596. [CrossRef] [PubMed]

37. Yu, H.; Du, S.S.; Zhang, J.Q.; Chen, J.L. Spatial Evolution and Multi-Scenario Simulation of Rural “Production-Ecological-Living”
Space: A Case Study for Beijing, China. Sustainability 2023, 15, 1844. [CrossRef]

38. Cui, X.H.; Xu, N.; Chen, W.X.; Wang, G.Z.; Liang, J.L.; Pan, S.P.; Duan, B.Q. Spatio-Temporal Variation and Influencing Factors
of the Coupling Coordination Degree of Production-Living-Ecological Space in China. Int. J. Environ. Res. Public Health 2022,
19, 10370. [CrossRef] [PubMed]

39. Wang, L.L.; Zhou, S.J.; Ouyang, S.Y. The spatial prediction and optimization of production-living-ecological space based on
Markov-PLUS model: A case study of Yunnan Province. Open Geosci. 2022, 14, 481–493. [CrossRef]

40. Tao, Y.Y.; Wang, Q.X. Quantitative Recognition and Characteristic Analysis of Production-Living-Ecological Space Evolution for
Five Resource-Based Cities: Zululand, Xuzhou, Lota, Surf Coast and Ruhr. Remote Sens. 2021, 13, 1563. [CrossRef]

41. Yang, X.D.; Chen, X.P.; Qiao, F.W.; Che, L.; Pu, L.L. Layout optimization and multi-scenarios for land use: An empirical study of
production-living-ecological space in the Lanzhou-Xining City Cluster, China. Ecol. Indic. 2022, 145, 109577. [CrossRef]

42. Hu, Z.Q.; Wu, Z.L.; Yuan, X.M.; Zhao, Z.L.; Liu, F.G. Spatial-temporal evolution of production-living-ecological space and layout
optimization strategy in eco-sensitive areas: A case study of typical area on the Qinghai-Tibetan Plateau, China. Environ. Sci.
Pollut. Res. 2023, 30, 79807–79820. [CrossRef]

43. Yang, Y.Y.; Bao, W.K.; Liu, Y.S. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-
Hebei region. Ecol. Indic. 2020, 117, 106512. [CrossRef]

44. Chen, H.J.; Yang, Q.Y.; Su, K.C.; Zhang, H.Z.; Lu, D.; Xiang, H.; Zhou, L.L. Identification and Optimization of Production-Living-
Ecological Space in an Ecological Foundation Area in the Upper Reaches of the Yangtze River: A Case Study of Jiangjin District of
Chongqing, China. Land 2021, 10, 863. [CrossRef]

45. Wang, S.; Tian, J.; Namaiti, A.; Lu, J.M.; Song, Y.Z. Spatial pattern optimization of rural production-living-ecological function
based on coupling coordination degree in shallow mountainous areas of Quyang County, Hebei Province, China. Front. Ecol.
Evol. 2023, 11, 1169007. [CrossRef]

46. Gan, S.; Xiao, Y.; Qin, K.Y.; Liu, J.Y.; Xu, J.; Wang, Y.Y.; Niu, Y.N.; Huang, M.D.; Xie, G.D. Analyzing the Interrelationships among
Various Ecosystem Services from the Perspective of Ecosystem Service Bundles in Shenyang, China. Land 2022, 11, 515. [CrossRef]

47. Xie, X.T.; Li, X.S.; Fan, H.P.; He, W.K. Spatial analysis of production-living-ecological functions and zoning method under
symbiosis theory of Henan, China. Environ. Sci. Pollut. Res. 2021, 28, 69093–69110. [CrossRef]

https://doi.org/10.1016/j.habitatint.2014.10.011
https://doi.org/10.1016/j.landusepol.2023.106977
https://doi.org/10.3390/land10010034
https://doi.org/10.3390/land11030345
https://doi.org/10.1016/j.landusepol.2022.106386
https://doi.org/10.1016/j.landusepol.2015.04.020
https://doi.org/10.3390/su15021672
https://doi.org/10.5814/j.issn.1674-764x.2023.03.005
https://doi.org/10.3390/land9050134
https://doi.org/10.1016/j.ecolmodel.2020.109310
https://doi.org/10.3389/fenvs.2022.972786
https://doi.org/10.5751/ES-06243-190231
https://doi.org/10.1007/s11356-023-27169-w
https://www.ncbi.nlm.nih.gov/pubmed/37099111
https://doi.org/10.1002/ieam.4574
https://www.ncbi.nlm.nih.gov/pubmed/34984807
https://doi.org/10.3390/su15031844
https://doi.org/10.3390/ijerph191610370
https://www.ncbi.nlm.nih.gov/pubmed/36012005
https://doi.org/10.1515/geo-2022-0373
https://doi.org/10.3390/rs13081563
https://doi.org/10.1016/j.ecolind.2022.109577
https://doi.org/10.1007/s11356-023-27611-z
https://doi.org/10.1016/j.ecolind.2020.106512
https://doi.org/10.3390/land10080863
https://doi.org/10.3389/fevo.2023.1169007
https://doi.org/10.3390/land11040515
https://doi.org/10.1007/s11356-021-15165-x


Land 2024, 13, 604 26 of 28

48. Zhao, Y.Q.; Cheng, J.H.; Zhu, Y.G.; Zhao, Y.P. Spatiotemporal Evolution and Regional Differences in the Production-Living-
Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River. Int. J. Environ. Res. Public Health 2021,
18, 12497. [CrossRef] [PubMed]

49. Wang, Y.; Wang, Y.; Xia, T.T.; Li, Y.; Li, Z. Land-use function evolution and eco-environmental effects in the tarim river basin from
the perspective of production-living-ecological space. Front. Environ. Sci. 2022, 10, 1004274. [CrossRef]

50. Zhao, J.; Zhao, Y.L. Synergy/trade-offs and differential optimization of production, living, and ecological functions in the Yangtze
River economic Belt, China. Ecol. Indic. 2023, 147, 109925. [CrossRef]

51. Wang, X.; Shao, S.; Li, L. Agricultural inputs, urbanization, and urban-rural income disparity: Evidence from China. China Econ.
Rev. 2019, 55, 67–84. [CrossRef]

52. Zheng, L.; Shepherd, D.; Batuo, M.E. Variations in the determinants of regional development disparities in rural China. J. Rural
Stud. 2021, 82, 29–36. [CrossRef]

53. Huan, Y.; Yu, Y.; Liang, T.; Burgman, M. A method for assessing the impacts of an international agreement on regional progress
towards Sustainable Development Goals. Sci. Total Environ. 2021, 785, 147336. [CrossRef]

54. Chen, L.; Shen, W. Spatiotemporal differentiation of urban-rural income disparity and its driving force in the Yangtze River
Economic Belt during 2000–2017. PLoS ONE 2021, 16, e0245961. [CrossRef] [PubMed]

55. Li, Q.; Wu, X.; Zhang, Y.; Wang, Y. The Effect of Agricultural Environmental Total Factor Productivity on Urban-Rural Income
Gap: Integrated View from China. Sustainability 2020, 12, 3327. [CrossRef]

56. Geng, Y.Q.; Maimaituerxun, M.; Zhang, H. Coordinated interactions between economy and atmospheric environment: Temporal-
spatial comparisons from China. Environ. Dev. Sustain. 2022, 24, 13887–13916. [CrossRef]

57. Xu, L.Y.; Jiang, J.; Du, J.G. The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural
Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity. Appl. Sci. 2022, 12, 11609. [CrossRef]

58. Fang, F.; Zhao, J.; Di, J.; Zhang, L.J. Spatial correlations and driving mechanisms of low-carbon agricultural development in china.
Front. Environ. Sci. 2022, 10, 1014652. [CrossRef]

59. Wang, L. Global optimization model of regional industrial structure based on conjugate matching cooperative game. Int. J. Electr.
Eng. Education. 2021. [CrossRef]

60. Caffyn, A.; Dahlström, M. Urban–rural interdependencies: Joining up policy in practice. Reg. Stud. 2005, 39, 283–296. [CrossRef]
61. Castle, E.N.; Wu, J.; Weber, B.A. Place orientation and rural–urban interdependence. Appl. Econ. Perspect. Policy 2011, 33, 179–204.

[CrossRef]
62. Gebre, T.; Gebremedhin, B. The mutual benefits of promoting rural-urban interdependence through linked ecosystem services.

Glob. Ecol. Conserv. 2019, 20, e00707. [CrossRef]
63. Yang, Z.; Shen, N.; Qu, Y.; Zhang, B. Association between Rural Land Use Transition and Urban–Rural Integration Development:

From 2009 to 2018 Based on County-Level Data in Shandong Province, China. Land 2021, 10, 1228. [CrossRef]
64. Keser, I. Interdependence and Complementarity of a Multi-Dimensional Concept of Sustainable Development and the Integrated

Approach to Urban Governance—Case Study City of Zagreb. Sustainability 2023, 15, 9213. [CrossRef]
65. Bian, D.; Yang, X.; Xiang, W.; Sun, B.; Chen, Y.; Babuna, P.; Li, M.; Yuan, Z. A new model to evaluate water resource spatial

equilibrium based on the game theory coupling weight method and the coupling coordination degree. J. Clean. Prod. 2022, 366,
132907. [CrossRef]

66. Chen, P.; Shi, X. Dynamic evaluation of China’s ecological civilization construction based on target correlation degree and
coupling coordination degree. Environ. Impact Assess. Rev. 2022, 93, 106734. [CrossRef]

67. Tang, C.; Zeng, R.; Han, Y. Coupling coordination evaluation of economic development, ecological environment, and the tourism
industry in ski resorts. J. Clean. Prod. 2023, 426, 139076. [CrossRef]

68. Du, M.; Huang, Y.; Dong, H.; Zhou, X.; Wang, Y. The measurement, sources of variation, and factors influencing the coupled
and coordinated development of rural revitalization and digital economy in China. PLoS ONE 2022, 17, e0277910. [CrossRef]
[PubMed]

69. Wang, Y.; Chen, X.; Sun, P.; Liu, H.; He, J. Spatial-temporal Evolution of the Urban-rural Coordination Relationship in Northeast
China in 1990–2018. Chin. Geogr. Sci. 2021, 31, 429–443. [CrossRef]

70. Hou, X.; Zhang, D.; Fu, L.; Zeng, F.; Wang, Q. Spatio-temporal evolution and influencing factors of coupling coordination degree
between urban–rural integration and digital economy. Sustainability 2023, 15, 9718. [CrossRef]

71. Zhou, L.; Zhou, C.; Che, L.; Wang, B. Spatio-temporal evolution and influencing factors of urban green development efficiency in
China. J. Geogr. Sci. 2020, 30, 724–742. [CrossRef]

72. Hong, W.; Li, F.; Li, M.; Zhang, F.; Tong, L.; Huang, Q. Toward a sustainable utilization of land resources in China: Problems,
policies, and practices. Ambio 2014, 43, 825–835. [CrossRef] [PubMed]

73. Yurui, L.; Xuanchang, Z.; Zhi, C.; Zhengjia, L.; Zhi, L.; Yansui, L. Towards the progress of ecological restoration and economic
development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676.
[CrossRef] [PubMed]

74. Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D. China’s response to a
national land-system sustainability emergency. Nature 2018, 559, 193–204. [CrossRef]

75. Wang, Y.; Sun, M.; Wang, R.; Lou, F. Promoting regional sustainability by eco-province construction in China: A critical assessment.
Ecol. Indic. 2015, 51, 127–138. [CrossRef]

https://doi.org/10.3390/ijerph182312497
https://www.ncbi.nlm.nih.gov/pubmed/34886223
https://doi.org/10.3389/fenvs.2022.1004274
https://doi.org/10.1016/j.ecolind.2023.109925
https://doi.org/10.1016/j.chieco.2019.03.009
https://doi.org/10.1016/j.jrurstud.2020.08.011
https://doi.org/10.1016/j.scitotenv.2021.147336
https://doi.org/10.1371/journal.pone.0245961
https://www.ncbi.nlm.nih.gov/pubmed/33539430
https://doi.org/10.3390/su12083327
https://doi.org/10.1007/s10668-021-02016-5
https://doi.org/10.3390/app122211609
https://doi.org/10.3389/fenvs.2022.1014652
https://doi.org/10.1177/0020720920984670
https://doi.org/10.1080/0034340050086580
https://doi.org/10.1093/aepp/ppr009
https://doi.org/10.1016/j.gecco.2019.e00707
https://doi.org/10.3390/land10111228
https://doi.org/10.3390/su15129213
https://doi.org/10.1016/j.jclepro.2022.132907
https://doi.org/10.1016/j.eiar.2021.106734
https://doi.org/10.1016/j.jclepro.2023.139076
https://doi.org/10.1371/journal.pone.0277910
https://www.ncbi.nlm.nih.gov/pubmed/36441787
https://doi.org/10.1007/s11769-021-1202-z
https://doi.org/10.3390/su15129718
https://doi.org/10.1007/s11442-020-1752-5
https://doi.org/10.1007/s13280-013-0464-9
https://www.ncbi.nlm.nih.gov/pubmed/24165870
https://doi.org/10.1016/j.scitotenv.2020.143676
https://www.ncbi.nlm.nih.gov/pubmed/33310225
https://doi.org/10.1038/s41586-018-0280-2
https://doi.org/10.1016/j.ecolind.2014.07.003


Land 2024, 13, 604 27 of 28

76. Jia, K.; Qiao, W.; Chai, Y.; Feng, T.; Wang, Y.; Ge, D. Spatial distribution characteristics of rural settlements under diversified rural
production functions: A case of Taizhou, China. Habitat Int. 2020, 102, 102201. [CrossRef]

77. Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Hu, X. Quantitative identification and spatial analysis of land use ecological-
production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [CrossRef]

78. Dai, R.L.; Wang, C.; Wu, X.Y. Path of Rural Sustainable Development Based on the Evolution and Interaction of Rural Functions:
A Case Study of Chongqing Municipality, China. Chin. Geogr. Sci. 2022, 32, 1035–1051. [CrossRef]

79. Li, C.X.; Wu, J.Y. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy:
Evidence from Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 41492–41504. [CrossRef] [PubMed]

80. Yuan, Y.; Wang, M.; Zhu, Y.; Huang, X.; Xiong, X. Urbanization’s effects on the urban-rural income gap in China: A meta-regression
analysis. Land Use Policy 2020, 99, 104995. [CrossRef]

81. Su, C.-W.; Liu, T.-Y.; Chang, H.-L.; Jiang, X.-Z. Is urbanization narrowing the urban-rural income gap? A cross-regional study of
China. Habitat Int. 2015, 48, 79–86. [CrossRef]

82. Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land
Use Policy 2018, 75, 375–387. [CrossRef]

83. Long, H.; Ma, L.; Zhang, Y.; Qu, L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int.
2022, 121, 102530. [CrossRef]

84. Cunha-Zeri, G.; Guidolini, J.F.; Branco, E.A.; Ometto, J.P. How sustainable is the nitrogen management in Brazil? A sustainability
assessment using the Entropy Weight Method. J. Environ. Manag. 2022, 316, 115330. [CrossRef]

85. Liu, X.; Liu, Z.; Zhong, H.; Jian, Y.; Shi, L. Multi-dimension evaluation of rural development degree and its uncertainties: A
comparison analysis based on three different weighting assignment methods. Ecol. Indic. 2021, 130, 108096. [CrossRef]

86. Hu, Z.; Yang, X.; Yang, J.; Yuan, J.; Zhang, Z. Linking landscape pattern, ecosystem service value, and human well-being in
Xishuangbanna, southwest China: Insights from a coupling coordination model. Glob. Ecol. Conserv. 2021, 27, e01583. [CrossRef]

87. Li, C. China’s multi-dimensional ecological well-being performance evaluation: A new method based on coupling coordination
model. Ecol. Indic. 2022, 143, 109321. [CrossRef]

88. Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment.
J. Environ. Manag. 2012, 98, 127–133. [CrossRef]

89. Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment
and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [CrossRef]

90. Zhu, K.; Zhou, Q.; Cheng, Y.; Zhang, Y.; Li, T.; Yan, X.; Alimov, A.; Farmanov, E.; Dávid, L.D. Regional sustainability: Pressures
and responses of tourism economy and ecological environment in the Yangtze River basin, China. Front. Ecol. Evol. 2023,
11, 1148868. [CrossRef]

91. Zuo, Z.; Guo, H.; Cheng, J.; Li, Y. How to achieve new progress in ecological civilization construction?–Based on cloud model and
coupling coordination degree model. Ecol. Indic. 2021, 127, 107789. [CrossRef]

92. Wang, S.; Kong, W.; Ren, L.; Zhi, D.; Dai, B. Research on misuses and modification of coupling coordination degree model in
China. J. Nat. Resour. 2021, 36, 18. [CrossRef]

93. Zhao, R.; Zhan, L.P.; Yao, M.X.; Yang, L.C. A geographically weighted regression model augmented by Geodetector analysis and
principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [CrossRef]

94. Wilson, B.; Greenlee, A.J. The geography of opportunity: An exploratory spatial data analysis of US counties. GeoJournal 2016, 81,
625–640. [CrossRef]

95. Dong, Y.-H.; Peng, F.-L.; Li, H.; Men, Y.-Q. Spatial autocorrelation and spatial heterogeneity of underground parking space
development in Chinese megacities based on multisource open data. Appl. Geogr. 2023, 153, 102897. [CrossRef]

96. Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain
Forest National Park. Ecol. Indic. 2022, 137, 108727. [CrossRef]

97. Liu, X.; Kounadi, O.; Zurita-Milla, R. Incorporating spatial autocorrelation in machine learning models using spatial lag and
eigenvector spatial filtering features. ISPRS Int. J. Geo-Inf. 2022, 11, 242. [CrossRef]

98. Tiefelsdorf, M. The saddlepoint approximation of Moran’s I’s and local Moran’s Ii’s reference distributions and their numerical
evaluation. Geogr. Anal. 2002, 34, 187–206. [CrossRef]

99. Mur, J.; Angulo, A. The spatial Durbin model and the common factor tests. Spat. Econ. Anal. 2006, 1, 207–226. [CrossRef]
100. Zhao, C.; Wang, B. How does new-type urbanization affect air pollution? Empirical evidence based on spatial spillover effect and

spatial Durbin model. Environ. Int. 2022, 165, 107304. [CrossRef]
101. Cao, J.; Law, S.H.; Samad, A.R.B.A.; Mohamad, W.N.B.W.; Wang, J.; Yang, X. Effect of financial development and technological

innovation on green growth—Analysis based on spatial Durbin model. J. Clean. Prod. 2022, 365, 132865. [CrossRef]
102. Liu, J.; Xu, Q.; Yi, J.; Huang, X. Analysis of the heterogeneity of urban expansion landscape patterns and driving factors based on

a combined Multi-Order Adjacency Index and Geodetector model. Ecol. Indic. 2022, 136, 108655. [CrossRef]
103. Ren, D.; Cao, A. Analysis of the heterogeneity of landscape risk evolution and driving factors based on a combined GeoDa and

Geodetector model. Ecol. Indic. 2022, 144, 109568. [CrossRef]
104. Wang, H.Y.; Qin, F.; Xu, C.D.; Li, B.; Guo, L.P.; Wang, Z. Evaluating the suitability of urban development land with a Geodetector.

Ecol. Indic. 2021, 123, 107339. [CrossRef]

https://doi.org/10.1016/j.habitatint.2020.102201
https://doi.org/10.1016/j.habitatint.2020.102182
https://doi.org/10.1007/s11769-022-1312-2
https://doi.org/10.1007/s11356-022-18777-z
https://www.ncbi.nlm.nih.gov/pubmed/35089519
https://doi.org/10.1016/j.landusepol.2020.104995
https://doi.org/10.1016/j.habitatint.2015.03.002
https://doi.org/10.1016/j.landusepol.2018.04.011
https://doi.org/10.1016/j.habitatint.2022.102530
https://doi.org/10.1016/j.jenvman.2022.115330
https://doi.org/10.1016/j.ecolind.2021.108096
https://doi.org/10.1016/j.gecco.2021.e01583
https://doi.org/10.1016/j.ecolind.2022.109321
https://doi.org/10.1016/j.jenvman.2011.12.025
https://doi.org/10.1016/j.scs.2020.102271
https://doi.org/10.3389/fevo.2023.1148868
https://doi.org/10.1016/j.ecolind.2021.107789
https://doi.org/10.31497/zrzyxb.20210319
https://doi.org/10.1016/j.scs.2020.102106
https://doi.org/10.1007/s10708-015-9642-6
https://doi.org/10.1016/j.apgeog.2023.102897
https://doi.org/10.1016/j.ecolind.2022.108727
https://doi.org/10.3390/ijgi11040242
https://doi.org/10.1111/j.1538-4632.2002.tb01084.x
https://doi.org/10.1080/17421770601009841
https://doi.org/10.1016/j.envint.2022.107304
https://doi.org/10.1016/j.jclepro.2022.132865
https://doi.org/10.1016/j.ecolind.2022.108655
https://doi.org/10.1016/j.ecolind.2022.109568
https://doi.org/10.1016/j.ecolind.2021.107339


Land 2024, 13, 604 28 of 28

105. Ma, G.Q.; Lv, D.Y.; Luo, Y.X.; Jiang, T.B. Environmental Regulation, Urban-Rural Income Gap and Agricultural Green Total Factor
Productivity. Sustainability 2022, 14, 8995. [CrossRef]

106. Tang, L.; Sun, S.Y. Fiscal incentives, financial support for agriculture, and urban-rural inequality. Int. Rev. Financ. Anal. 2022,
80, 102057. [CrossRef]

107. Guo, S.L.; Wang, B.B.; Zhou, K.; Wang, H.; Zeng, Q.P.; Xu, D.D. Impact of Fiscal Expenditure on Farmers’ Livelihood Capital in
the Ethnic Minority Mountainous Region of Sichuan, China. Agriculture 2022, 12, 881. [CrossRef]

108. Jiang, C.J.; Li, J.T.; Liu, J.L. Does urbanization affect the gap between urban and rural areas? Evidence from China. Socio-Econ.
Plan. Sci. 2022, 82, 101271. [CrossRef]

109. Zhang, R.J.; Jiang, G.H.; Zhang, Q. Does urbanization always lead to rural hollowing? Assessing the spatio-temporal variations
in this relationship at the county level in China 2000–2015. J. Clean. Prod. 2019, 220, 9–22. [CrossRef]

110. Chanieabate, M.; He, H.; Guo, C.Y.; Abrahamgeremew, B.; Huang, Y.J. Examining the Relationship between Transportation
Infrastructure, Urbanization Level and Rural-Urban Income Gap in China. Sustainability 2023, 15, 8410. [CrossRef]

111. Lu, H.Y.; Zhao, P.J.; Hu, H.Y.; Zeng, L.G.; Wu, K.S.; Lv, D. Transport infrastructure and urban-rural income disparity: A
municipal-level analysis in China. J. Transp. Geogr. 2022, 99, 103292. [CrossRef]

112. Hamade, K.; Malorgio, G.; Midmore, P. Contrasting Quantitative and Qualitative Approaches to Rural Development Analysis:
The Case of Agricultural Intensification in Lebanon. J. Agric. Econ. 2015, 66, 492–518. [CrossRef]

113. Tang, Y.; Chen, M.H. The Impact of Agricultural Digitization on the High-Quality Development of Agriculture: An Empirical Test
Based on Provincial Panel Data. Land 2022, 11, 2152. [CrossRef]

114. Ying, L.X.; Dong, Z.J.; Wang, J.; Mei, Y.C.; Shen, Z.H.; Zhang, Y. Rural economic benefits of land consolidation in mountainous
and hilly areas of southeast China: Implications for rural development. J. Rural Stud. 2020, 74, 142–159. [CrossRef]

115. Liu, Y.S.; Liu, Y.; Chen, Y.F.; Long, H.L. The process and driving forces of rural hollowing in China under rapid urbanization. J.
Geogr. Sci. 2010, 20, 876–888. [CrossRef]

116. Klonowska-Matynia, M. Do Local Socio-Economic Structures Determine the Spatial Distribution of Human Capital? Analysis of
Connections for Rural Areas in Poland. Sustainability 2023, 15, 15194. [CrossRef]

117. Klonowska-Matynia, M. Human Capital as a Source of Energy for Rural Areas’ Socio-Economic Development—Empirical
Evidence for Rural Areas in Poland. Energies 2022, 15, 8281. [CrossRef]

118. Labianca, M. Proposal of a Method for Identifying Socio-Economic Spatial Concentrations for the Development of Rural Areas:
An Application to the Apulia Region (Southern Italy). Sustainability 2023, 15, 3180. [CrossRef]

119. Farooq, S.; Ahmad, U. Economic growth and rural poverty in Pakistan: A panel dataset analysis. Eur. J. Dev. Res. 2020, 32,
1128–1150. [CrossRef]

120. Eichelberger, L.; Dev, S.; Howe, T.; Barnes, D.L.; Bortz, E.; Briggs, B.R.; Cochran, P.; Dotson, A.D.; Drown, D.M.; Hahn,
M.B. Implications of inadequate water and sanitation infrastructure for community spread of COVID-19 in remote Alaskan
communities. Sci. Total Environ. 2021, 776, 145842. [CrossRef]

121. Barbier, E.B.; Di Falco, S. Rural populations, land degradation, and living standards in developing countries. Rev. Environ. Econ.
Policy 2021, 15, 115–133. [CrossRef]

122. Wilkosz-Mamcarczyk, M.; Olczak, B.; Prus, B. Urban features in rural landscape: A case study of the municipality of Skawina.
Sustainability 2020, 12, 4638. [CrossRef]

123. Kurnia, A.A.; Rustiadi, E.; Pravitasari, A.E. Characterizing industrial-dominated suburban formation using quantitative zoning
method: The case of bekasi regency, Indonesia. Sustainability 2020, 12, 8094. [CrossRef]

124. Li, H.; Jin, X.; Liu, J.; Feng, D.; Xu, W.; Zhou, Y. Analytical framework for integrating resources, morphology, and function of rural
system resilience—An empirical study of 386 villages. J. Clean. Prod. 2022, 365, 132738. [CrossRef]

125. Liao, G.; He, P.; Gao, X.; Lin, Z.; Huang, C.; Zhou, W.; Deng, O.; Xu, C.; Deng, L. Land use optimization of rural production–
living–ecological space at different scales based on the BP–ANN and CLUE–S models. Ecol. Indic. 2022, 137, 108710. [CrossRef]

126. Zhao, T.; Cheng, Y.; Fan, Y.; Fan, X. Functional tradeoffs and feature recognition of rural production–living–ecological spaces.
Land 2022, 11, 1103. [CrossRef]

127. Cheng, L. China’s rural transformation under the Link Policy: A case study from Ezhou. In China’s Poverty Alleviation Resettlement
and Rural Transformation; Springer: Berlin/Heidelberg, Germany, 2023; pp. 59–91.

128. Cui, Z.; Li, E.; Li, Y.; Deng, Q.; Shahtahmassebi, A. The impact of poverty alleviation policies on rural economic resilience in
impoverished areas: A case study of Lankao County, China. J. Rural Stud. 2023, 99, 92–106. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/su14158995
https://doi.org/10.1016/j.irfa.2022.102057
https://doi.org/10.3390/agriculture12060881
https://doi.org/10.1016/j.seps.2022.101271
https://doi.org/10.1016/j.jclepro.2019.02.148
https://doi.org/10.3390/su15108410
https://doi.org/10.1016/j.jtrangeo.2022.103292
https://doi.org/10.1111/1477-9552.12095
https://doi.org/10.3390/land11122152
https://doi.org/10.1016/j.jrurstud.2020.01.007
https://doi.org/10.1007/s11442-010-0817-2
https://doi.org/10.3390/su152115194
https://doi.org/10.3390/en15218281
https://doi.org/10.3390/su15043180
https://doi.org/10.1057/s41287-020-00259-y
https://doi.org/10.1016/j.scitotenv.2021.145842
https://doi.org/10.1086/713152
https://doi.org/10.3390/su12114638
https://doi.org/10.3390/su12198094
https://doi.org/10.1016/j.jclepro.2022.132738
https://doi.org/10.1016/j.ecolind.2022.108710
https://doi.org/10.3390/land11071103
https://doi.org/10.1016/j.jrurstud.2023.03.007

	Introduction 
	Materials and Methods 
	Study Area 
	Data Source 
	Relevant Theories 
	Urban–Rural Integration Theory 
	Coupling Coordination Theory 
	Sustainable Development Theory 

	Research Methods 
	Construction of Evaluation Index System 
	Driving Factor Variable Setting 
	Entropy Weight Method 
	Coupling Coordination Model 
	Exploratory Spatial Data Analysis 
	Spatial Durbin Model 
	Geodetector Model 


	Results and Discussion 
	Evolutionary Characteristics of Rural PLE Spatial Functions 
	Evolutionary Characteristics of the CCD 
	Exploratory Spatial Data Analysis 
	Analysis of the Moran’s I of Coupled Coordination 
	Local Spatial Autocorrelation Analysis of CCD 

	Analysis of the Driving Mechanism of the CCD 
	Spatial Econometric Model Identification and Testing 
	Analysis of Impact Effects 
	Factorial and Interaction Detection of Perturbing Factors 
	Relevance Analysis 


	Discussion 
	Discussion of the Findings 
	Study Contribution 
	Limitations and Future Research 

	Conclusions 
	References

