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Abstract: Logistics land is the spatial carrier for the development of logistics enterprises. Its evolution
mode and driving mechanism determine the level of high-quality development of the logistics
industry, and serve as an important basis for urban planning and territorial spatial planning. This
study introduced a Boston consulting group (BCG) matrix and geographically weighted regression
(GWR) spatial econometric models to carry out empirical research on the Yangtze River Delta (YRD),
in an effort to provide scientific information for evidence-based decision-making by governments and
enterprises. The scale and ratio of logistics land (LLS and LLR) in the YRD showed significant spatial
heterogeneity and autocorrelation, cities with large logistics land use converging from clusters to belts
from 2000 to 2020, and agglomerations with high logistics land ratio (LLR) migrating from inland to
coastal areas. Diversified models of logistics land evolution also emerged, such as high scale–high
speed cities, low scale–low speed cities, high scale–low speed cities, and low scale–high speed cities.
In addition, the driving mechanism of LLS and LLR was very complex, with a great difference in
the intensity, nature and spatial effects of the influence of different factors. The inspiration from
empirical case studies is urgent to revise the planning norms and clarify the LLS and LLR control
standards for logistics land use. Meanwhile, the synergistic development target of the logistics
industry in the new era is changing from the manufacturing industry to the commerce and trade
industry; the establishment of planning zoning and the designing of differentiated management
policies significantly improve the planning applicability.

Keywords: logistics land; urban logistics; evolution model; impact factors; spatial planning; China

1. Introduction

In the introduction, we will briefly introduce the background of this study, review and
comment on the literature, and highlight research gaps and propose questions.

1.1. Background

Modern logistics is connected to production at one end and consumption at the other,
and is highly integrated and combined with transportation, warehousing, distribution,
delivery, information and other service functions. As an important support for extending
the industrial chain, upgrading the value chain and building the supply chain, it plays a
pioneering, fundamental and strategic role in the process of building a modern circulation
system and constructing a modernized economic system. With the development of global
international trade and e-commerce, the logistics industry has occupied an increasingly
prominent strategic position in economic development, and its development degree has
grown into one of the important symbols to measure a country’s modernization level
and comprehensive national strength [1]. Logistics land serves as a spatial carrier for the
development of the logistics industry, and it typically manifests as logistics parks, express
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centers, transit hubs, warehousing bases, cross docks, mini hubs, last mile deliveries, etc.
The spatial distribution, expansion and evolution of logistics land reflect the development
of the urban and regional logistics industry, and will also affect the layout of urban and
regional transportation facilities, the function and structure of land use, ecological space
and the quality of the human habitat [2,3]. In urban and spatial planning, logistics land
research focuses on the analysis of area scale and proportion values. Therefore, analyzing
the spatio-temporal evolution patterns of logistics land use in cities and regions and its
driving mechanism to provide a basis for the design of territorial spatial planning and
development policies for the logistics industry has become an urgent task in the new
era [4,5]. It should be noted that logistics has been of great interest to many disciplines such
as geography, planning, economics, and management. However, the extreme complexity
of the logistics industry and logistics land leads to the teaching vacancy of logistics land
in land use planning education, making it urgent not only for the academic but the entire
industry to master the development rules and spatial design methods of urban logistics
land [6,7].

The Chinese government attaches a great importance to the development of the logis-
tics industry and the management of logistics land, as evidenced by the fact that in recent
years it has successively issued national policies such as the Adjustment and Revitalization
Plan for the Logistics Industry, “Opinions on Policies and Measures for Promoting the
Healthy Development of the Logistics Industry”, an Announcement on the Continuing
Preferential Policies on Urban Land-Use Tax for Land Use for Warehousing Facilities for
Logistics Enterprises for Bulky Commodities, the Medium- and Long-Term Plan for the
Development of the Logistics Industry, Opinions on the Promotion of the Synergistic Devel-
opment of E-commerce and Express Logistics, a Notice on the Implementation Opinions on
Further Reducing the Costs of Logistics, and the “14th Five-Year Plan” for the Development
of Modern Logistics. Logistics has become an emerging service sector of China’s national
economy, and also a fundamental industry that integrates transportation, warehousing,
freight forwarding, information and other business forms [8].

Cities, as the key nodes and important carriers of logistics development, are the
concentrated embodiment of the development level and the comprehensive strength of a
country’s logistics industry. Therefore, the central government of China has started the
pilot work of modern logistics innovation and development in cities, so as to improve
the influence and driving force of the urban economy and to better lead the coordinated
development of regional logistics. Urban logistics is mostly concentrated in logistics parks.
According to the Sixth National Logistics Park (Base) Survey Report (2022), about 43.1% of
logistics parks in China believe that land resources have become a key factor restricting the
high-quality development of logistics parks in the new era [9,10]. Therefore, the empirical
study on the evolution model of urban logistics land and its driving mechanism will
provide decision-making reference for cities and logistics parks to break land resource
constraints, and it is of great significance for the optimization of the built environment of
China’s cities and the sustainable development of the region.

1.2. Literature Review

Logistics land belongs to an emerging research field, which is more manifested as
logistics facilities and logistics parks (clusters of logistics facilities and enterprises) in the
actual production and life processes. Meanwhile, logistics planning is one of the important
contents of urban spatial planning, so the literature reviews focus on “Logistics Land and
Logistics Park” and “Logistics Facility and Spatial Planning”.

1.2.1. Logistics Land and Logistics Park

Due to the close relationship between logistics and transportation facilities, most
scholars focused on the discussion of the interaction between the transportation system and
logistics land use in the early studies. For example, Woudsma [11] empirically investigated
the impact of the transportation system on urban logistics land patterns using a spatial
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autoregressive model, and Wagner [12] evaluated the impact of different logistics land
designs on the reduction in traffic and the planning of the transportation system. Scholars
then discussed the impact of urban and regional land use-related factors and policies on the
location and business planning of logistics firms. For example, Jakubicek [13] analyzed the
impact of urban land use costs, land use tax rates, and the land area expansion potential of
business sites on the location of logistics firms, and Van [14] analyzed the coupling between
land allocation policies and logistics agglomerations.

With the soundness of logistics land statistics and census data, more and more scholars
have begun to use a variety of econometric models to study the characteristics of logistics
land use in recent years. On the one hand, some scholars have analyzed the spatial growth
pattern of logistics space and activities in the metropolitan area and its driving mechanism,
such as the empirical study on the Wuhan metropolitan area by Zhao [15] in 2010–2018
using a polynomial and metacellular automata model. On the other hand, more and more
scholars are organizing empirical and case studies on the efficiency and intensification of
logistics land use. For example, Song [16] analyzed the urban logistics land use efficiency
and its determinants in the Yangtze River Economic Belt from 2000 to 2017 using the
Tobit model, and believed that the tertiary industry and informatization had no significant
positive driving relationship to logistics land use efficiency.

In addition, since most of the urban logistics land is concentrated in logistics parks,
logistics parks have gradually become the focus of scholars’ research. Spatial siting, func-
tional area arrangement, distribution route planning, park scale and investment timing are
the important factors affecting the high-quality development of logistics parks and they
have become the focus of scholars’ attention. For example, Xu [17] proposed a heuristic
algorithm-based logistics park site selection model, Luo [18] created a two-stage layout
method for the functional area of the logistics parks, Liang [19] proposed an optimization
approach for the distribution path of the logistics park based on the improved artificial bee
colony algorithm, and Zhang [20] analyzed the optimal investment time and scale of the
construction of the logistics park from the perspective of real options.

Notably, in the context of the information age, especially the construction of smart
cities, some scholars have analyzed the impact of new cloud industries such as e-commerce
on the utilization methods and spatial distribution of urban logistics land. For example,
Xiao [21] argued that e-commerce has become a determining force for logistics land design,
location change, place redevelopment and reuse, and has become a catalyst for the remod-
eling of the urban logistics space. The development of e-commerce has brought about a
multifaceted impact on logistics and its management. Firstly, e-commerce has pushed the
informatization and modernization of logistics services, and boosted the efficiency and
accuracy of logistics. Secondly, the logistics system has been more intelligent and automatic
with a reduction in the labor costs and errors because of it. Finally, it has also promoted the
transformation and upgrading of the logistics enterprises, and sped up the innovation and
development of the logistics industry.

1.2.2. Logistics Facility and Spatial Planning

The high-quality development of the logistics industry inevitably requires the support
of logistics facilities and space, and most scholars have begun to try revealing the devel-
opment law of logistics land by analyzing different types of logistics facilities and spatial
characteristics when no logistics land statistics or census data are available. The analysis
and modeling of the logistics facility siting is the most popular research area. For example,
Sakai [22] developed a logistics facility siting model that allows the distinction of categories
of economic activities, Tang [23] proposed a logistics facility location model based on multi-
objective sustainable development, and Xu [24] further proposed a bi-objective modeling
approach for emergency logistics facility siting in response to uncertainty environments.
The location characteristics of logistics facilities constitute the second most significant
research area. For example, Sakai [25] quantitatively portrayed the locational dynamic
characteristics of dynamic logistics facilities based on large-scale freight transport survey
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data, and Yang [26], based on the case study of Shanghai, quantitatively analyzed the spatial
agglomeration characteristics of logistics facilities and the accompanying environmental
consequences in the context of economic globalization and the e-commerce boom.

With the urban spatial expansion and the regional integration development, the
geographic distribution pattern of logistics facilities and their spatial expansion or relocation
patterns have attracted the attention of more scholars. For the former, most scholars focus
on the study of geographical distribution, spatial pattern and network structure of specific
logistics spaces such as airports [27], ports [28], logistics parks [29], and logistics centers or
bases [30], and the gradual agglomeration of logistics spaces to the suburbs has become a
consensus in the academic community. For the latter, Kang [31], Dablanc [32] and Rivera-
Blasco [33] analyzed the stage characteristics and driving factors of logistics expansion in the
Seoul metropolitan area of South Korea, in Los Angeles, California, in Seattle, Washington
and in Madrid, Spain. Opasanon [34] conducted an exploratory study on the urban and
spatial impacts of logistics facility relocation by hierarchical analysis.

Logistics plays an important role in the increasingly fierce urban competition. How-
ever, without systematic planning, logistics activities will have serious negative impacts
on urban life and production and even ecology, thus scholars turned their attention to
logistics planning [35,36]. Kin [37] proposed an approach to integrate logistics space into
urban planning based on case studies of Paris and Rotterdam, and Kovac [38] further
proposed a method for the conceptual planning of urban logistics. Sharma [39] put forward
suggestions on the optimization of urban logistics spatial planning by evaluating and
sorting relevant stakeholders of urban logistics. Guo [40] and Fahimnia [41] proposed
methods for planning underground logistics and industrial logistics systems, respectively.
With technological innovation, more innovative methods and models are applied to urban
logistics spatial planning [42], such as the spatial design of a logistics network system and
distribution paths based on hybrid heuristic algorithms [43] and genetic algorithms [44],
and the planning and control model of intelligent logistics facilities, spaces, and parks
based on the logistics 4.0 framework [45].

1.3. Research Gap and Question

In summary, the continuous improvement of the logistics land use research system
provides valuable enlightenment for the development of this study in the terms of empir-
ical route design, methodology and indicator selection. However, there is still room for
improvement in the studies available, as follows.

From the perspective of research objects, except for a small number of scholars, most
use logistics enterprises or facilities as alternative variables in their analysis of logistics
land, rather than directly focusing on the land itself. The study on logistics land is a
new field, and there are still relatively few results obtained directly at present. Most
studies focus on logistics facilities, logistics space, logistics planning and other related
fields, and logistics enterprises, facilities, spaces, parks, centers or bases have become the
most common substitute variables. For example, it is the logistics firm that is used as a
substitute variable in the empirical study [46] of logistics land use patterns in Canadian
metropolitan areas.

In terms of research methodology, more and more econometric models, especially
concerning emerging technological methods, have been applied to the research process,
significantly improving the level of quantification and scientification. However, most of the
papers are based on traditional statistics econometric models with less attention to spatial
econometric models. It should be noted that logistics land shows significant externalities,
and less attention to spatial effects will affect the accuracy of the analysis results or even
produce erroneous research conclusions [47].

In conclusion, the scientific analysis of the distribution and change law of logistics
land to analyze the evolution models of logistics land and its influencing factor is of
great significance in guiding the rational layout and intensive use of logistics land and
promoting the high-quality development of the regional logistics industry and urban
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economy. Therefore, this study integrates spatial econometric models such as the Boston
consulting group (BCG) matrix, the global Moran’s index and cold-hotspot analysis, and
geographically weighted regression (GWR), with an attempt to quantitatively analyze the
spatial and temporal evolution patterns of logistics land use in the YRD and its driving
mechanisms so as to provide important information and evidence for evidence-based
decision-making by governments and enterprises, and to provide a reference for urban
planning and territorial spatial planning. In addition to applying the BCG model to
integrate the spatio-temporal dimensions to analyze the evolutionary pattern of logistics
land use in the YRD, this paper leverages the global Moran’s index, cold-hotspot analysis
and GWR to detect the spatial effects of logistics land use in the YRD, and to measure the
strength, nature and mechanism of the impact of each factor.

2. Materials and Methods

In this section, a brief introduction is given to the location and basic situation of the
case region, a detailed analysis is conducted on the research technology route and methods,
and the reasons for constructing the indicator system and variable selection, as well as their
data sources, are specifically introduced.

2.1. Study Area

The YRD is the spatial scope of this empirical case study, geographically covering four
provincial-level administrative regions, namely, Shanghai, Zhejiang, Jiangsu, and Anhui,
including 41 prefecture-level cities. It should be noted that since this study is based on data
for a period of up to 20 years, when there have been changes in the administrative divisions
of the cities in the YRD, the most recent administrative division maps are used to visualize
them in map analysis. In order to circumvent the interference of repeated names of cities
in different provincial administrative regions, Suzhou and Taizhou in Jiangsu Province
were written as Suzhou–Jiangsu and Taizhou–Jiangsu, respectively, Taizhou in Zhejiang
Province was written as Taizhou–ZheJiang, and Suzhou in Anhui Province was written as
Suzhou–Anhui in data processing (Figure 1).
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There are two main reasons for choosing the YRD as the study area: firstly, it is the most
developed region in China’s logistics industry. As the economic zone with the strongest
integrated development in China, YRD is the most developed and competitive logistics
region, and it is also the largest area in China that provides a 24-h free delivery service.
Secondly, both the central and city governments in the YRD attach great importance to
the development of the logistics industry. The Plan for Higher Quality and Integrated
Development of Transportation in the Yangtze River Delta Region calls for comprehensively
upgrading the functions of integrated and efficient logistics services, improving logistics
efficiency, reducing logistics costs, and promoting a rational division of labor and deeper
integration of the industrial chain in the YRD. From the perspective of current development
strength, future development potential, and national policy support and guidance, YRD
is significantly representative in China and the world [48]. Therefore, the analysis of the
spatio-temporal evolution patterns of logistics land use and its driving mechanisms based
on the case study of YRD will provide useful references for similar regions and countries in
China and the world.

2.2. Research Method

Based on the research background and literature review analysis, we chose the Yangtze
River Delta as the study area and established a quantitative index system for data collection
and processing. First, we introduced quantile spatial clustering, the global Moran’s index
and the cold-hotspot analysis tool to quantitatively analyze the geographical distribution
pattern of logistics land. Second, we applied the BCG matrix to quantitatively analyze the
spatio-temporal evolution pattern of logistics land. Third, we employed the GWR model
to quantitatively analyze the driving mechanism of the spatial differentiation of logistics
land. Finally, we discussed the results of the analysis and proposed the logistics land use
planning implications (Figure 2).
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2.2.1. Boston Consulting Group (BCG) Matrix

In the quantitative analysis of the evolutionary pattern of urban logistics land use in
the YRD it is important to consider the growth capacity in the time dimension and also
emphasize the regional status in the spatial dimension. Therefore, the Boston matrix is a
suitable econometric model, which is mostly used in analyzing the development strategy
of enterprises. By analyzing the interaction of product market share and growth rate,
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it classifies the products into star, gazelle, cow, and dog types [49]. In this study, the
average growth rate (GRi) of logistics land in each city of YRD from 2000 to 2020 is used
to represent the change in the time dimension, and ULLi−end and ULLi−star are used to
represent the scale or density parameters of logistics land in the i-th city at the end of the
period and in the base period, respectively. And the regional status in the spatial dimension
is represented using the relative share (RSi) of logistics land for each city in the YRD in
2020, with ULLmax−end representing the maximum value of logistics land in the study area
at the end of the period. GRi and RSi are calculated as follows [50]:

RSi=
CEDILi−end

CEDILmax−end
× 100% (1)

GRi=

(
CEDILi−end − CEDILi−star

CEDILi−star
− 1

)
× 100% (2)

To exclude human interference, the mean value of GRi and RSi is used as the threshold
in this study. In the evolution model classification, the 41 cities in the YRD are divided into
multiple types of high scale–high speed cities (HSHS cities), low scale–low speed (LSLS
cities), high scale–low speed cities (HSLS cities), and low scale–high speed cities (LSHS
cities). HSHS cities represent that both GRi and RSi of logistics land in City i are higher
than the mean value of YRD, and are in a state of high scale and high speed incremental
development. LSLS cities represent that both the GRi and RSi of logistics land in City
i are lower than the mean value of YRD, and are in a state of low scale and low speed
growth stock with reduced development. HSLS cities represent that the GRi of logistics
land in City i is lower than the mean value of YRD, but RSi is higher than the mean value,
showing a trend of transformation from growth to inventory and even reduction. LSHS
cities represent that the GRi of logistics land in City i is higher than the mean value of YRD,
but RSi is lower than the mean value, showing a trend of transformation from stock to
incremental development.

2.2.2. Global Moran’s Index and Cold-Hotspot Analysis

Relevant studies have demonstrated the spatial effect and externality of the develop-
ment and evolution of the logistics industry, so it is necessary to carry out spatial effect
detection in empirical research on logistics land use to provide evidence and information
for the selection of econometric models for mechanism measurement [51,52]. The coefficient
of variation (CV) is a key parameter for quantitatively measuring geographic differences
and spatial heterogeneity, with 0.36 being the threshold for strong and weak [53,54]. In
this paper, Moran’s Index is used to quantify the global spatial autocorrelation of LLS
and LLR in the YRD. It ranges from −1 to 1, with a larger absolute value representing a
stronger correlation between a city and its neighbors. A value greater than zero indicates
that the attributes of a city are isotropic with those of neighboring cities. On the contrary,
it represents anisotropy. By using the cold-hotspot analysis tool of GIS and introducing
the Getis − Ord G∗

i index, the local autocorrelation map can be made. Wij represents the
spatial weight matrix between cities in the YRD, where 1 indicates adjacent spaces and 0
indicates non-adjacent spaces; ULLi represents the logistics land of City i in the YRD, ULL
is the mean value of urban logistics land in the YRD, and n = 41. Moran’sI and G∗

i (d) are
calculated as follows [55,56]:

CV = S/ULL, S =

√√√√∑n
i=1

(
ULLi − ∑n

i=1 ULLi
n

)2

n
, ULL ∑n

i=1 ULLi

n
(3)

Moran’s I =
n
S0

×
∑n

i=1 ∑n
j=1 Wij

(
ULLi − ULL

)(
ULLj − ULL

)
∑n

i=1
(
ULLi − ULL

)2 , S0 = ∑n
i=1 ∑n

j=1 = Wij (4)
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G∗
i (d) =

∑n
i=1 Wij(d)ULLi

∑n
i=1 ULLi

(5)

2.2.3. Geographically Weighted Regression

When the dependent variable has a spatial effect, it is necessary to choose a spatial
econometric model to accurately measure the driving mechanism of factors. In this paper,
the geographical weighted regression model is selected for the influence analysis of factors,
and its advantage is that it can reveal the variation in each influence factor in the local space,
as described below. First, the least squares linear regression model (OLS) is used to measure
the degree of collinearity between different factors. A VIF (variance inflation factor) smaller
than 10 indicates very weak covariance [57]. Second, the all variables are imported into the
geographically weighted regression software to calculate the factor impact coefficients and
support relevant parameters. Third, the comparative analysis of the parameters related
to the results of GWR and OLS calculations allows for the determination of the extent to
which the results of the spatial econometric modeling analysis improve the traditional
statistics models. If the R2 of GWR is greater than that of OLS, especially if the difference
between the two in AICc (Akaike Information Criterion, corrected) is more than 3, then
this indicates the need to consider the influence of spatial effects in the regression analysis
process [58]. The AICc is a standard based on the concept of entropy, used to measure
the goodness of fit of statistics models, and it was founded and developed by Japanese
statistician Hiroshi Akike.

Yi represents the dependent variable, including LLS and LLR; Y and S represent the
mean and standard deviation of the dependent variable of YRD, respectively. Xik represents
the dependent variable, and it is a factor in the YRD that may have an impact on urban
logistics land use. β0 is a constant term, (µi, vi) is the spatial coordinates of City i in the
YRD (using the coordinate of the center of gravity point of the city polygon); βk(µi ,vi)

is the
regression coefficient of the independent variable of City i in the YRD, and ϵi is the error in
the regression equation. The geographical weighted regression coefficient is calculated as
follows [59,60]:

Yi = β0(µi , vi)
+ ∑

k
βk(µi , vi)

Xik + ϵi (6)

2.3. Indicator System and Data Sources

The “Pressure-State-Response” (PSR) model was proposed by Canadian scholars in
1979, and was later improved by the United Nations Environment Programme (UNEP)
and the Organization for Economic Cooperation and Development (OECD) in 1994 to be a
worldwide model for evaluating the state of the environment [61]. The PSR model can be
used to reasonably analyze the relevance relationship between urban logistics land use and
related factors. It is used in this paper as the analysis framework for indicator selection and
system construction. The indicators that measure state are dependent variables, and those
that measure stress and response are independent variables (Table 1).

Table 1. Indicator system of empirical research on logistics land in the YRD.

Framework Indicator Abbreviation Variable

State
Scale of Urban Logistics Land SULL Dependent

Proportion of Urban Logistics Land PULL

Pressure

Gross Domestic Product GDP

Independent

Economic Density ED
GDP Per Capita GDPPC

Population Density PD

Response

Highway Length HL
Road Network Density RND
Industrial Land Ratio ILR

Commercial Land Ratio CLR
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2.3.1. Dependent Variable

The dependent variable is logistics land in the YRD cities, including the two indicators
of scale and ratio, represented by YSULL and YPULL, respectively. The scale represents
the area of logistics land, measured in square kilometers. The proportion is calculated
by dividing the area of logistics land by the area of urban construction land, and the
unit is %. Logistics land is the land used for material storage, transit, distribution and
other purposes in the city, including land for ancillary roads, parking lots, and stations
for freight company fleets. The definition comes from the code for classification of urban
land use and planning standards of development land (GB 50137-2011) [62]. Logistics land
is a type of urban construction land, and it is juxtaposed with residential land, land for
public administration and public services, land for commercial service facilities, industrial
land, land for roads and transportation facilities, land for public utilities, and land for
green areas and squares. In China, logistics land is categorized into three types according
to the degree of disturbance, pollution and safety hazards to the residential and public
environments. Class I logistics sites are in general free of disturbance, pollution or safety
hazards, Class II logistics sites are subjected to some disturbance, pollution and safety
hazards, and Class III logistics sites are dedicated to the storage of hazardous materials
such as flammable, explosive and highly toxic materials. Notably, the management of land
use in urban planning and territorial spatial planning is mainly controlled based on state
parameters such as use, scale and ratio. LLS and LLR are equally important key parameters,
so this study simultaneously conducts an empirical analysis of the scale and ratio of urban
logistics land.

2.3.2. Independent Variable

The status of logistics land is the result of a combination of urban development
pressures and logistics-related stakeholder responses, so both pressures and responses
should be taken into account when selecting influencing factors. From the point of view
of pressure, the supply and evolution of logistics land must be commensurate with the
needs of economic development, especially industrialization. The Gross Domestic Product
(GDP), economic density and per capita GDP are common indicators representing the size
and quality of the economy and the industrialization process; they are used in this study
to measure the pressure brought by economic development on logistics land [63,64]. The
boom in e-commerce has brought logistics land closer to the convenience and livability
of residents’ lives [65]. Therefore, population density is used in this paper to measure the
pressure brought by population, especially residents’ living demand [66,67]. From the
perspective of response, since transportation facilities are directly related to the layout and
utilization of logistics land, this paper uses highway length and road network density to
measure the impact of the response to the supply of transportation facilities on logistics
land [68]. And given the fact that logistics mainly serves the manufacturing and service
industries, this makes the proportion, size and distribution of industrial and commercial
land in the city negligible, so this paper also borrows the proportion of industrial land and
the proportion of commercial land to express their impact on logistics land [69].

2.3.3. Data Sources

All the dependent variable data came from China Urban Construction Statistics Year-
book [70], independent variable data came from China Urban Statistics Yearbook [71],
Shanghai Municipal Statistics Yearbook [72], Jiangsu Provincial Statistics Yearbook [73],
Zhejiang Provincial Statistics Yearbook [74] and Anhui Provincial Statistics Yearbook [75],
and a small amount of missing data came from the city statistics bulletin or government
work report. The data were standardized using the Max–Min method for a period starting
from 2000 to 2020.
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3. Results
3.1. Distribution Pattern

This section comprehensively applies quantile spatial clustering, global Moran’s index
and cold hotspot analysis methods to quantitatively and visually analyze the geographical
distribution characteristics of urban logistics land scale and proportion.

3.1.1. Scale of Urban Logistics Land

The total area of logistics land in the YRD from 2000 to 2020 increased from 141.67
to 235.81 km2, and the average value of 41 cities increased from 3.46 to 5.75 km2, which
was an annual growth of 2.58%, indicating a large land area of logistics land and its fast
expansion. Shanghai remained at the top of YRD, with its logistics land area declining from
54.42 to 52.31 km2 from 2000 to 2020; Lishui was at the bottom of the list, but its change in
land area was the opposite of that of Shanghai, with an increase from 0.06 to 0.35 km2.

The coefficient of variation in the LLS in the YRD from 2000 to 2020 decreased from
2.40 to 1.55, which was much higher than 0.36, indicating that the inter-city differences
were gradually reduced, but still at a high level. In 2000, cities with high value of logistics
land use in the YRD gathered in clusters, mostly in Shanghai, Nanjing, Hefei and Xuzhou
metropolitan areas, including Shanghai, Zhenjiang, Ningbo, Nanjing, Hefei, Lianyun-
gang, Nantong, Huzhou, Suzhou–Anhui, Wuhu, Xuzhou, Lu’an, Changzhou, Suzhou–
Jiangsu, and Huainan. Low-value cities were gathered in southern Anhui province, western
Zhejiang province, and central Jiangsu province, including Anqing, Huaibei, Yancheng,
Taizhou–Jiangsu, Chizhou, Xuancheng, Fuyang, Quzhou, Bozhou, Huangshan, Zhoushan,
Suqian, Huai’an and Lishui. In 2020, high-value cities were clustered in a finger pattern
along the traffic corridor with Shanghai as the core, Shanghai–Suzhou–Jiangsu–Nanjing–
Huanan–Lianyungang as the main axis, and Shanghai–Jiaxing–Hangzhou as the sub-
axis. During the same period, most of the low-value cities in the YRD were clustered
in Anhui, and a few in central Zhejiang, including Lu’an, Tongling, Chizhou, Huzhou,
Chuzhou, Huainan, Xuancheng, Jinhua, Taizhou–ZheJiang, Huangshan, Zhoushan and
Lishui (Figure 3).

Moran’s index of the LLS in the YRD from 2000 to 2020 increased from 0.01 (P = 0.08,
Z = 1.44) to 0.04 (P = 0.09, Z = 1.41), which was greater than zero and passed the significance
test, indicating strong and increasing inter-city correlation. The members of the hotspot
cities were the same in 2000 and 2020, including Shanghai, Nantong, Suzhou–Jiangsu,
and Jiaxing. There are few cold spot cities in 2000, mostly clustered in the western region
where Zhejiang and Anhui meet, including Lishui, Quzhou, Jinhua, Huangshan and
Chizhou. While in 2020, the number of coldspot cities grew rapidly, largely covering the
western region of YRD. The sub-hotspot cities in 2000 were gathered in the Nanjing–Hefei
metropolitan areas in a continuous belt. But in 2020, they contracted to only the Nanjing
metropolitan area, with a slight expansion in the Ningbo metropolitan area. Most of the
sub-coldspot cities in 2000 were gathered in the Xuzhou metropolitan area and the Zhejiang–
Anhui junction area, while in 2020 there were few sub-cold spot cities with a small cluster
area emerging in the northern part of Anhui Province.

3.1.2. Proportion of Urban Logistics Land

The average LLR in the YRD from 2000 to 2020 rose from 1.43 to 2.40%, an increase of
1%, indicating a steady increase in the position of logistics land in the urban construction
land structure. The city with the largest ratio of urban logistics land in 2000 is Lu’an at
4.47%; in 2020 it shifted to Bengbu at 10.46%. The city with the smallest ratio in 2000 was
Huai’an at 0.14%; in 2020 it shifted to Taizhou–ZheJiang, at 0.68%.
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The CV of the LLR in the YRD from 2000 to 2020 increased from 0.71 to 0.80, which
was much larger than 0.36, indicating a large and gradually increasing inter-city difference.
Most of the cities with high values of the ratio in the YRD were clustered in a band in Anhui
in 2000, including Lu’an, Huainan, Zhenjiang, Anqing, Huzhou, Shanghai, Suzhou–Anhui,
and Tongling. And most of the cities with low values were clustered in Jiangsu, including
Yancheng, Taizhou–Jiangsu, Wuxi, Nanjing, Shaoxing, Huaibei, Suzhou–Jiangsu, Bozhou,
Suqian, Hangzhou, Lishui, and Huai’an. In 2020, a large number of high-value cities were
concentrated in Hangzhou Bay and Anhui, including Lu’an, Huainan, Zhenjiang, Anqing,
Huzhou, Shanghai, Suzhou–Anhui, Tongling, Wuhu, Bengbu, and Maanshan. Most of
the cities with low values in the YRD were clustered in central and southern Zhejiang
and Anhui provinces, including Yangzhou, Hangzhou, Huzhou, Xuancheng, Huangshan,
Lishui, Zhoushan, Jinhua, Chuzhou, Hefei, and Taizhou–ZheJiang (Figure 4).
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The Moran’s index of the LLR in the YRD increased from 0.06 (P = 0.12, Z = 1.22) to
−0.12 (P = 0.04, Z = −1.50) from 2000 to 2020, suggesting that the intercity correlation shifted
from a non-significant positive autocorrelation to a significant negative autocorrelation.
Hotspot cities in 2000 were clustered in western Anhui, including Hefei, Lu’an, Anqing,
Huainan, and Tongling. In 2020, the agglomeration moved to northern Anhui and changed
from clusters to banded beads, including Suzhou–Anhui, Huaibei, Bozhou, Huainan, and
Chuzhou. Coldspot cities formed two agglomerations in southern Zhejiang and central
Jiangsu in 2000, and shrank to one agglomeration in 2020 in the junction area of Zhejiang
and Anhui provinces.

3.2. Spatiotemporal Evolution Model

When analyzing the spatiotemporal evolution pattern of urban logistics land, the BCG
matrix is applied to quantitatively analyze the relative share and growth rate corresponding
to scale and proportion, and their mean is used as the threshold. The minimum and
average values of relative shares in the YRD are 0.67% and 10.99%, respectively; and the
maximum, minimum, and average of growth rates are 1486.21%, −62.87%, and 151.71%,
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respectively. The practice of using the Boston matrix for high and low value clustering is
essentially a translation of abstract data into an easy-to-understand and visual Cartesian
two-dimensional coordinate system.

3.2.1. Scale of Urban Logistics Land

HSHS cities included Nanjing, Wuxi, Changzhou, Suzhou–Jiangsu, Lianyungang,
Hangzhou, Ningbo, Wenzhou, and Bengbu, mostly clustered in the Nanjing metropolitan
area. There were very few HSLS cities, only Shanghai and Nantong. LSHS cities included
Huai’an, Yancheng, Fuyang, Suqian, Jiaxing, Shaoxing, Quzhou, Lishui, Bozhou, Fuyang,
Taizhou–Jiangsu, and Anqing, mostly clustered in central Jiangsu and Zhejiang, and a few
in northern Anhui. LSLS cities included Xuzhou, Yangzhou, Zhenjiang, Huzhou, Jinhua,
Zhoushan, Taizhou–ZheJiang, Hefei, Huaibei, Suzhou–Anhui, Huainan, Chuzhou, Lu’an,
Maanshan, Wuhu, Xuancheng, Tongling, Chizhou, and Huangshan, mostly clustered in
Anhui and penetrating into northern and central Jiangsu (Figure 5).
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The Moran’s index of the evolutionary pattern of LLS in the YRD was 0.10 (P = 0.04,
Z = 2.0144), indicating a significant positive spatial autocorrelation. Most of the hotspot
cities were clustered in the Shanghai and Southern Jiangsu regions, including Shanghai,
Suzhou–Jiangsu, Nantong, Changzhou, Wuxi, Zhenjiang, and Nanjing. Sub-hotspot cities
were mostly distributed in Zhejiang, including Jiaxing, Lishui, and Jinhua. Most of the cold
spot cities were clustered in Anhui region, including Hefei, Anqing, Tongling, Chizhou,
Xuancheng, and Wuhu. Most of the sub-cold spot cities were clustered in northern Anhui
and central Jiangsu, including Bozhou, Suzhou–Anhui, Huaibei, Yangzhou, Yancheng,
Huaian, Hangzhou, Quzhou, and Ningbo.

3.2.2. Proportion of Urban Logistics Land

HSHS cities included Nanjing, Lianyungang, Taizhou–Jiangsu, Ningbo, Wenzhou,
Jiaxing, Quzhou, Bengbu, and Anqing, with a very decentralized spatial distribution in the
YRD. HSLS cities were also few in number and scattered in distribution, including Shang-
hai, Nantong, Zhenjiang, Suzhou–Anhui, Lu’an, and Wuhu. LSHS cities included Wuxi,
Changzhou, Hangzhou, Huai’an, Yancheng, Suqian, Shaoxing, Lishui, Bozhou, Suzhou–
Jiangsu, and Fuyang, mostly clustered in Anhui. LSLS cities included Xuzhou, Yangzhou,
Huzhou, Jinhua, Zhoushan, Taizhou–ZheJiang, Hefei, Huaibei, Huainan, Chuzhou, Maan-
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shan, Xuancheng, Tongling, Chizhou, and Huangshan, mostly clustered in central and
southern Jiangsu, the capital metropolitan area of Zhejiang, and northern Anhui (Figure 6).
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The Moran’s index of the evolutionary pattern of the LLR in the YRD was −0.10
(P = 0.10, Z = −1.21), indicating a significant negative spatial autocorrelation. The hotspot
cities were clustered in a band from the Shanghai urban agglomeration area to central
Jiangsu and the southwest corner of Zhejiang, including Shanghai, Nantong, Taizhou–
Jiangsu, Yangzhou, Wenzhou, Lishui, and Quzhou. Most of the sub-hotspot cities were
distributed in the periphery of the hotspot cities and expanded to the inland areas of Anhui,
including Chuzhou, Huainan, Bozhou, Huaibei, and Suzhou. Most of the cold spot cities
were clustered in the junction area of Anhui and Zhejiang provinces, including Hangzhou,
Xuancheng, Huangshan, and Hefei. Most of the sub-coldspot cities were clustered in Anhui
province, including Lu’an, Maanshan, Wuhu, Tongling, Chizhou, Anqing, and Jinhua.

3.3. Driving Mechanism Analysis

Spatial effects and collinearity detection are important prerequisites for selecting
regression analysis models. Through statistics analysis of regression coefficients, it is
helpful to understand the heterogeneity of factor effects and further use the geographically
weighted regression analysis graphs to display the spatial pattern of factor influencing.

3.3.1. Descriptive Statistics Analysis of Regression Coefficients

The maximum value of VIF for all factors was 2.78, much less than 10, indicating no
collinearity between the factors. In terms of goodness of fit, the OLS parameter of LLS
in the YRD increased from 0.826 to 0.998, and the OLS parameter of LLR increased from
0.228 to 0.991, indicating that the spatial econometric model outperforms the traditional
statistics model. And the AICc parameter of GWR was much higher than that of OLS,
further corroborating the previous findings.

The statistics characteristics of the GWR regression coefficients of LLS in the YRD
showed a complicated driving mechanism of all factors on LLS. The comparison of the
minimum, upper quartile, median, lower quartile, and maximum values showed that the
coefficient values all shifted from negative to positive, indicating the complex nature of
the effect of the influencing factors. Of note is that the shift from resistance to impetus
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was not synchronized, with GDP having achieved the shift in the upper quartile, while
ED and RND delayed to the median, and the other factors further delayed to the lower
quartile. Furthermore, the large differences in the mean values of the coefficients indicate a
high degree of heterogeneity and a hierarchical nature of the forces influencing the factors.
According to the mean value overall, GDP and ED had a leading influence on the LLS in
the YRD as key impetus factors, while PCGDP and PD were key resistance factors, HL was
an important impetus factor, RND was an auxiliary impetus factor, and ILR was auxiliary
resistance factor (Table 2).

Table 2. Geographically weighted regression coefficients for SULL in the YRD.

Indicator Mean Min Upper-Quarter Median Lower-Quarter Max

GDP 2.89 −12.89 1.21 4.01 5.72 12.36
ED 1.99 −3.28 −0.01 1.09 2.86 16.66

PCGDP −1.39 −10.42 −4.98 −1.42 1.29 9.08
PD −1.13 −20.61 −1.78 −0.97 0.39 4.31
HL 0.58 −4.68 −1.33 −0.40 1.71 8.55

RND 0.06 −6.49 −1.63 0.22 1.39 5.40
ILR −0.07 −4.26 −1.93 −0.41 1.21 6.12
CLR −0.85 −9.42 −1.76 −0.26 1.19 3.88

All factors had a complex driving mechanism for the LLR, which was similar to the
LLS, but different in details. In terms of the nature of the influencing factors, there were
no changes in the nature in the upper quartile, with the shift from resistance to impetus
delayed to the median for ED, PCGDP, PD, RND and ILR, and further delayed to the lower
quartile for GDP, HL, and CLR. In terms of the intensity of the influencing factors, ED was
a key impetus factor and GDP was a key resistance factor; RND, PCGDP, and PD were
important impetus factors and CLR was an important resistance factor; PD, HL, and ILR
were auxiliary impetus factors, and no auxiliary resistance factor was found (Table 3).

Table 3. Geographically weighted regression coefficients for PULL in the YRD.

Indicator Mean Min Upper-Quarter Median Lower-Quarter Max

GDP −1.04 −14.89 −0.99 −0.13 0.32 3.09
ED 1.22 −0.74 −0.24 0.54 1.59 10.87

PCGDP 0.48 −5.82 −0.50 0.38 1.96 6.06
PD 0.39 −5.41 −0.09 0.20 0.66 4.22
HL 0.03 −1.72 −0.69 −0.42 0.07 4.47

RND 0.55 −1.73 −0.26 0.20 0.74 4.98
ILR 0.34 −2.85 −0.42 0.16 0.74 4.71
CLR −0.49 −3.09 −1.19 −0.20 0.33 1.38

3.3.2. Spatial Pattern of Factor Effects

From the spatial pattern of the effect of pressure factors on the LLS, the influence
of GDP gradually changed from positive to negative from coastal to inland, with the
characteristics of high at both ends and low in the middle. The high values of impetus were
clustered in the north of Suzhou, with Suqian, Huaian, and Wenzhou as pole cities; the
high values of resistance were clustered in the north of Anhui, with Bozhou and Fuyang
as pole cities. The influence of ED gradually changed from negative to positive from
coastal to inland areas. Northern Anhui, southern Anhui and southwest Zhejiang were
high-value cluster areas of impetus, with Bozhou, Fuyang, Ningbo and Taizhou–ZheJiang
as pole cities. The Shanghai metropolitan area was a high-value cluster area of resistance,
with Nantong and Jiaxing as pole cities. High-value clusters of per capita GDP impetus
appeared in southeastern Zhejiang and northwestern Anhui, with Bozhou, Ningbo, and
Taizhou–ZheJiang as pole cities, and high-value clusters of resistance appeared in Jiangsu,
with Xuzhou, Suqian, and Wenzhou as pole cities. High-value clusters of PD impetus
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appeared in northern Anhui, with Huaibei, Bozhou and Fuyang as pole cities, while other
regions generally played a resistance role, with Wenzhou as a pole city. The belt area from
southern Anhui to Shanghai also showed a high resistance (Figure 7).
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According to the spatial pattern of the role of the response factor on the size of logistics
land, HL showed a north–south gradient distribution characteristic, with the high values
of impetus being clustered in southern Zhejiang, and with Wenzhou, Lishui, Taizhou–
ZheJiang, and Quanzhou as pole cities; the high values of resistance were clustered in
the junction area of Anhui and central Jiangsu, with Chuzhou, Hefei, and Jiaxing as pole
cities. RND mainly showed a resistance in coastal regions, with Lianyungang and Jiaxing
as pole cities. In the inland area, it mainly showed impetus, with the members in the
region from Xuzhou metropolitan area to Hefei metropolitan area as pole cities. Two
high-value clusters with ILR impetus appeared in Xuzhou metropolitan area and Zhejiang,
with Xuzhou, Suqian, Chuzhou, Lishui, and Shaoxing as pole cities; high-value clusters
with resistance appeared in South Anhui, south Jiangsu and 0north Anhui, with Wuhu,
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Xuancheng, Yangzhou, Taizhou–Jiangsu, Bozhou, and Ningbo as pole cities. The high-
value clusters of CLR impetus and resistance were similar to those of ILR, except that the
positive pole cities shifted to Xuzhou, Suqian, Huaian, Nantong, Taizhou–ZheJiang, and
the negative pole cities changed to Bozhou, Lianyungang, Shanghai, Jiaxing, and Ningbo
(Figure 8).
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From the spatial pattern of the effect of pressure factors on the LLR, we see that the
high value distribution of positive and negative influences of the GDP showed spatial
correlation characteristics, and northern Jiangsu was the high value cluster area of impetus,
with Xuzhou, Suqian, Huaian, Chuzhou, and Wenzhou as pole cities; northern Anhui
was the high value cluster area of resistance, with Bozhou, Huaibei, Fuyang, Bengbu, and
Huainan as pole cities. The influence of ED was manifested as the impetus in northern
Anhui and the junction areas of Anhui, Zhejiang and Jiangsu, with Bozhou and Fuyang
as polar cities. The T-shaped belt area of Jiangsu–Yancheng–Anqing and the southwest
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of Zhejiang were high-value cluster areas of resistance, with Lishui and Shanghai as pole
cities. GDP per capita showed resistance at the north and south ends of YRD, with Xuzhou,
Suqian, and Lianyungang as pole cities and the impetus was in the center, with Bozhou,
Huainan, Hefei, Ningbo, and Taizhou–ZheJiang as the pole cities. PD formed a high-value
cluster area of impetus in northern Anhui, with Huaibei as a pole city; the southwest of
Anhui, the northeast of Jiangsu and the southern tip of Zhejiang were high-value cluster
areas of resistance, with Wenzhou as a pole city. It is important to note that impetus high-
value clusters are developing in southern Anhui and central Zhejiang, and Hangzhou may
grow into a pole city for the emerging cluster areas in the future (Figure 9).
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According to the spatial pattern of response factors on logistics land use, HL showed
the impetus in the south of YRD and clustered in Zhejiang, with Wenzhou, Lishui,
Taizhou–ZheJiang, Quzhou and Fuyang as pole cities; resistance was in the middle of
YRD, with Bengbu, Huainan, Maanshan, Jiaxing, Taizhou–Jiangsu, and Lianyungang as
pole cities. RND mainly showed resistance in coastal regions, with Shanghai, Jiaxing, and
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Lianyungang as pole cities. In the inland area, it mainly showed impetus, with the members
in the region from the Xuzhou metropolitan area to the Hefei metropolitan area as pole
cities. Two high-value clusters with an ILR impetus appeared in Xuzhou metropolitan
area and Zhejiang, with Xuzhou, Suqian, Huaian, Suzhou–Anhui, and Quzhou as the pole
cities; high-value clusters with resistance appeared in northern Anhui, southern Anhui, and
southern Jiangsu, with Bozhou, Huaibei, Fuyang, Huainan, Tongling, and Taizhou–Jiangsu
as the pole cities. CLR showed impetus in southern Zhejiang and northern Jiangsu, with
Lishui, Quzhou, Taizhou–ZheJiang, Xuzhou, and Yancheng as the pole cities; there was
resistance in the Anhui and Shanghai metropolitan area, with Shanghai, Jiaxing, Hefei, and
Bozhou as the pole cities (Figure 10).
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4. Discussion

This section involves the discussion of the evolution mode of urban logistics land
from the perspectives of supply and demand, growth and inventory, revealing the driving
mechanism of urban logistics land from the perspectives of scale and proportion, and
power and resistance; also, there is a summary of the important analysis results of this
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study, comparing these findings with the views of other scholars to identify their common-
alities and differences, and ultimately providing direction for theoretical construction and
result application.

4.1. Evolution Model: Supply vs. Demand and Growth vs. Inventory

The evolution pattern of logistics land is the spatial projection of the result of the
dynamic equilibrium of supply and demand in the YRD logistics market, so accurately
determining the quantity, quality, structure, space, practice, coupling relationship of re-
gional logistics supply and demand and its change is the key to enhancing the scientific and
forward-looking spatial planning of logistics land [76]. The demand for logistics land is the
basis of logistics land supply, while logistics land supply is the prerequisite guarantee for
logistics land demand [77]. Demand for logistics land is a product of regional economic and
social development, specifically referring to the material flow demand and its spatial projec-
tion generated by the relevant subjects in their economic and social activities (enterprises,
institutions or government departments, social organizations, individuals, etc.) in order to
satisfy their needs of production, operation, business, and life. The supply of logistics land
is the service capacity of material flow (transportation, storage, loading and unloading,
circulation processing, distribution, packaging, etc.) and its spatial projection (all types of
freight yards, warehousing facilities, logistics parks, logistics centers, and logistics villages,
etc.) that the logistics supplier provides to the logistics demander [78]. According to the
general supply and demand equilibrium theory, only when the demand and supply of
logistics land are in a dynamic equilibrium state can the sustainable development of urban
and regional economy and society be guaranteed [79,80]. In China, the supply of land
resources is monopolized by the government, so the policies and spatial planning for the
development of the logistics industry enacted by the government have a direct impact
on the supply and allocation of logistics land [81]. The spatial planning of logistics land
is mainly to study the logistics development strategy, industrial policy and management
mechanism from the government’s standpoint, and to coordinate, rationally plan and
overall control the flow of urban and regional materials for the sustainable development of
economy and society [82].

The evolution mode of logistics land in the YRD is diversified, and has changed from a
growth-oriented stage to a stage where both growth and inventory coexist. The analysis for
2000–2020 shows that Shanghai, Zhenjiang, Huzhou, Jinhua, Zhoushan, Taizhou–ZheJiang,
Hefei, Suzhou–Anhui, Huainan, Chuzhou, Lu’an, Xuancheng, and Tongling are in the
stage of reduction development with a gradual reduction in both LLS and LLR, and the
contraction of logistics space. Therefore, due to the oversupply of logistics land and the
saturation of the logistics market, these cities should emphasize the reuse and quality
improvement of their stock land in logistics spatial planning in the future. They should
strictly control the approval of the conversion of non-logistics land, such as arable land,
into logistics land, conduct surveys and consider the integration of logistics land, promote
the redevelopment of inefficient logistics land or even its conversion into non-logistics
land, and push the transformation of logistics land from a state of oversupply to a state
of balanced supply and demand. In addition, they should strengthen the remediation
and upgrading of the stock logistics land, renovate old logistics facilities, introduce new
logistics technologies, enhance the material attractiveness and service support of logistics
land to the surrounding areas, and promote the transformation of the development of
logistics land from extensive use to high-end use.

For the rapidly developing and underdeveloped cities in the YRD, such as Nantong,
Lianyungang, Hangzhou, Ningbo, Wenzhou, Quzhou, Lishui, Huaibei, Bozhou, Fuyang,
Maanshan, and Bengbu, the supply of logistics land is still in short supply, so they should
implement the incremental development strategy in future planning and management.
First, they should prepare logistics industry development and land use planning, with
focus placed on safeguarding the demand for new land for the construction of national and
regional logistics hubs, centers, bases, parks and other key facilities, increasing support for
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logistics land for logistics end points, and comprehensively enhancing the security of land
resources for logistics development. Second, they should push transformation of other
idle stock land resources into logistics use, focusing on the study of the use of old factory
buildings and warehouses of industrial enterprises as the representatives of the inefficient
stock of land resources for investment in the construction of logistics facilities. Third, they
should, in accordance with urban renewal and facility renovation planning, provide policy
support to enterprises that use their original land for logistics infrastructure renovation
and upgrading in applying for planning conditions, planning permits, and the transfer of
allocated land, while designing and establishing a system of preferential policies for taxes
and fees for logistics land (Figure 11).
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4.2. Driving Mechanism: Scale vs. Proportion and Power vs. Resistance

From the perspective of dependent variables, there are great differences in the driving
mechanism of different factors on LLS and LLR (Figure 12). According to the action
intensity, all factors have greater influence on scale than ratio. From the nature of action,
the nodes of factor resistance and impetus transformation were not the same, although
had both positive and negative effects. For the spatial effects, the spatial extent and
pattern characteristics of each factor’s influence varied greatly, as did the pole cities [83].
Therefore, LLS and LLR should be managed differently, and designed neither in favor of
one over another nor in a “one-size-fit-all” manner. Unlike residential land, land for public
administration and public services, industrial land, land for transportation facilities, and
green space, logistics land does not have planning and control requirements regarding
scale and ratio in the Urban Land Classification and Planning Construction Land Use
Standards. The Chinese government’s current land supply management is characterized
by a distinct economic orientation, with land-per-capita investment and tax revenues
commonly used as the key performance assessment indicators. The investment and tax
contribution per unit area brought by logistics land is significantly smaller than that of
productive industrial land, consumptive commercial land, and living residential land, thus
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leading to no intrinsic motivation of local and city governments for logistics land supply,
which further exacerbates the dilemma of insufficient and difficult supply of logistics land.
Notably, the public welfare and operational nature of logistics facilities have led to the
strong social benefits of logistics land, and there is an urgent need for the government to
reverse the idea of “economy-only” or “economy-focus” in land supply. Therefore, the
suggestion for the government is to set reasonable performance assessment indicators for
logistics land, replace investment intensity and tax contribution with logistics intensity,
and gradually include logistics land into the scope of urban infrastructure and public
service facilities land. It should also revise the Urban Land Classification and Planning
Construction Land Use Standards as soon as possible to clarify the standards for the control
of LLS and LLR and provide a legal basis for the spatial planning of logistics land use.
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From the perspective of independent variables, the influence of different factors varies
greatly, and their hierarchy, complexity and spatial effects are very significant, so for the
planning and management of logistics land, it is necessary to identify and highlight the
value of single factor, while emphasizing the superimposed effect of multiple factors and
figuring out the comprehensive impact, to propose the most appropriate planning strategy
and optimization policy [84]. In terms of the single factor, the influence of the pressure
factor is stronger than that of the response factor in both LLS and LLR. Pressure is the
source of demand and response is the behavior of supply, thus proving that demand
is the mainstay in the dynamic equilibrium system of supply and demand for logistics
land, and therefore demand survey and mapping analysis should be the precondition
for logistics land and spatial planning [85]. It is necessary to note that a single-factor



Land 2024, 13, 616 23 of 28

influence is not the same as social consensus. For example, traditionally the government
has attached great importance to the synergistic development of the logistics industry and
the manufacturing industry, and introduced a series of development policies [85]. However,
the empirical study in the YRD shows that the influence of commerce on logistics land use
is higher than that of industry, indicating that along with the improvement of the quality
of urbanization and the quality of life, especially the development of e-commerce, the
government should highlight the position of commerce and trade while emphasizing the
coordinated development of logistics and manufacturing [86]. The combined influence of
environmental factors on logistics land should be calculated by inverse operations using
geographically weighted regression coefficients as weights. For example, the final impact
of all factors on logistics land use in cities such as Taizhou–ZheJiang, Ningbo, Quzhou,
Shanghai, Shaoxing, Xuzhou, Lishui, Suqian, Bengbu, Jinhua, Suzhou–Anhui, and Lu’an
was shown as the impetus. However, it was shown as the resistance in cities such as
Jiaxing, Xuancheng, Wenzhou, Suzhou–Jiangsu, Yancheng, Maanshan, Wuhu, Yangzhou,
Lianyungang, Nantong, and Taizhou–Jiangsu, and therefore they should be categorized
into different zonings in the regional logistics land and spatial planning of YRD, with a
design of differentiated management policies.

5. Conclusions

Based on BCG and GWR spatial metrology models, this research has built an empirical
case on the evolution model and impact mechanism of urban logistics land use in the YRD
from 2000 to 2020, and has reached the following conclusions:

Firstly, logistics land in the YRD varied greatly between cities, with significant hierar-
chical and spatial agglomeration. In terms of LLS, high-value cities were clustered in the
Shanghai, Nanjing, Hefei and Xuzhou metropolitan areas in the early stage, and evolved to
be distributed along transportation corridors in the form of fingers and belts in the later
stage. The LLR showed that high-value cities were mostly clustered inland in the early
stage, but migrated and expanded to the coast in the later stage.

Secondly, the spatiotemporal evolution of logistics land in the YRD has led to the
emergence of four models, which are as follows: high scale–high speed cities, low scale–low
speed, high scale–low speed cities, and low scale–high speed cities. Among them, the scale
of logistics land has a positive spatial autocorrelation, and the proportion is exactly the
opposite. It is worth noting that there is a phenomenon of both growth and inventory
changes in the trend of logistics land use, and Shanghai, Zhenjiang, Huzhou, etc. are
already in the stage of reduced development.

Thirdly, both the geographic distribution of logistics land and the evolutionary pattern
showed significant spatial effects. The positive spatial autocorrelation of LLS was getting
higher, while the spatial autocorrelation of the LLR turned from positive to negative
and from insignificant to significant. The hotspot urban clusters of LLS and LLR were
distributed in opposite directions, with the former in the Shanghai urban agglomeration
area in the coastal region for a long time, and the latter in Anhui in the inland region for a
long time. The evolution pattern of LLS showed a positive spatial autocorrelation, with
hotspot cities clustered in coastal areas and cold spot cities in inland areas. The evolution
pattern of LLR showed a negative spatial autocorrelation, but both hotspot and coldspot
cities had a weak spatial agglomeration.

Fourthly, LLS and LLR had a very complex driving mechanism, and there was great
heterogeneity in the intensity, nature and spatial effects of the influence of different factors.
The level of influencing factors is divided into three levels (key, important and auxiliary),
and the intensity of the pressure factor’s influence on LLS and LLR was higher overall than
that of the response factor. The factors are shown as the impetus and resistance in nature,
with large differences in positive and negative action transition nodes. The influence of
the factors showed a significant spatial agglomeration, while the influence of the Gross
Domestic Product, economic density, highway length, and road network density on the
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LLS exhibited gradient asymptotic characteristics, and the spatial effects of the other factors
all manifested as cluster agglomerations.

Fifthly, the empirical study of logistics land use in the YRD has brought about the
following spatial planning implications. First, logistics land demand survey and mapping
analysis are the prerequisites and basis for territorial spatial planning. Second, logistics
land planning in the new era should be city-specific, and the planning idea and mode
are changing from growth to both growth and inventory. Third, the government should
rationalize the performance assessment indicators for logistics land while weakening its
economic contribution, and include logistics land in the scope of urban infrastructure
and public service facility land. Fourth, a revision should be made to the Urban Land
Classification and Planning Construction Land Use Standards to clarify the standards for
controlling LLS and LLR. Fifth, in the planning and management of logistics land, it is
necessary to identify and highlight the value of a single factor, and update the idea in a
timely manner (e.g., suggest the synergistic of the logistics industry from the manufacturing
to the business); it is also necessary to emphasize the superimposed effect of multiple factors,
set up planning zoning, and design differentiated management policies.

The marginal contribution of our research is to quantitatively analyze the geographic
distribution characteristics and evolution patterns of logistics land by introducing a spatial
measurement model, and to further reveal the driving mechanism behind them, thus estab-
lishing a technical framework that integrates “evolution model-driving mechanism-spatial
planning”. The research methodology, analytical results, and policy recommendations of
this research will provide important information and evidence for the spatial planning
of logistics land in the YRD and even in China, and will also serve as a reference for the
design of logistics spatial policies in other urban agglomerations around the world.

There are also some limitations in this study. First, due to the complexity of the
components of logistics land and the lack of further detailed statistics and survey data, this
study only dealt with the scale and ratio of logistics land as a whole, failing to measure
the characteristics and change in the urban logistics land structure. Second, factors such as
government policy and planning, logistics technology innovation, land prices and carbon
emissions also have a large impact on the distribution and evolution of logistics land. Due
to the difficulty of quantifying these factors and with no sufficient complete data available,
this study did not include them in the driving mechanism analysis. These limitations
inevitably have an impact on the results of the analysis, so the government and business
decision makers should optimize and improve the results of the study based on the actual
conditions during the use of them.
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