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Abstract: This paper proposes a novel route optimization framework to solve the problem of instant
pick-up and delivery for e-grocery orders. The proposed framework extends the traditional time-
windowed package delivery problem. We demonstrate the effectiveness of our approach for this
integrated problem using actual delivery data from HepsiJet, a leading e-commerce logistics provider
in Turkey. We first employ several machine learning algorithms and simulations to investigate the
capacity of the courier. Subsequently, a dynamic route planning workflow is executed with a highly
specialized and novel routing algorithm. Our proposed heuristic approach considers combined fleet
operations for delivering regular packages originating from a central depot and dynamic e-grocery
orders picked up at local supermarkets and delivered to the customers. The heuristic algorithm
constitutes k-opt and node transfer operation variations customized for this integrated problem.
We report the performance of our approach in problem instances from the literature and instances
from HepsiJet’s daily operations, which we also publicly share as new route optimization problem
instances. Our results suggest that, despite the more complex nature of the integrated problem,
our proposed algorithm and solution framework produce more efficient and cost-effective solutions
that offer additional business opportunities for companies such as HepsiJet. The computational
analyses reveal that implementing our proposed approach yields significant efficiency gains and cost
reductions for the company, with a distance reduction of over 30%, underscoring our approach’s
effectiveness in achieving substantial cost savings and enhanced efficiency through integrating two
distinct delivery operations.

Keywords: route optimization; capacity planning; machine learning; gradient boosting tree; VRP with
time windows; VRP with pick-up and delivery; dynamic routing

1. Introduction

Portable computers, mobile phones, wireless, and mobile networks allow us to access
the Internet from almost anywhere and maintain our connection dynamically even when we
are on the move, ushering in a new economic era. People can now easily shop on traditional
e-commerce websites, online marketplaces, and mobile market apps that provide fast delivery
without leaving their homes all day. Furthermore, people in many OECD countries have
reduced their physical presences and interactions due to the COVID-19 crisis. Self-imposed
social distancing, combined with strict containment measures implemented in many OECD
countries, has effectively halted much traditional brick-and-mortar retailing, at least temporarily,
causing a major increase in online shopping and the use of e-commerce [1,2].

In the United States, between February and April 2020, retail and food service sales
fell 7.7% compared with the same period in 2019. However, sales for grocery and non-store
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retailers increased 16% and 14.8%, respectively. In the EU-27.2 countries, mail-order or online
retail sales increased by 30% in April 2020 compared with April 2019, while store retail sales
decreased by 17.9%. As a result, shifts from physical retail to e-commerce will likely be
significant around the globe. For example, in the United States, the share of e-commerce in
total retail increased slowly from 9.6% in Q1 2018 to 11.8% in Q1 2020 but rather quickly to
16.1% in Q2 2020 [3,4]. Especially on specific shopping days such as Black Friday, Mother’s
Day, or Christmas holidays, this demand has reached its maximum level, and the need for
faster and more cost-effective package deliveries has arisen significantly [5].

In Turkey, e-commerce sales reached USD 13.1 billion in the first half of 2020, 64%
higher compared with its previous year. This major increase, which was at least partially
due to the rise of the COVID-19 pandemic and the subsequent lockdowns, has significantly
affected the already challenged package delivery industry [6]. Consequently, transportation
and logistics for e-commerce have been facing a grand challenge that can be turned into an
opportunity, if managed well with intelligent supply chain management techniques [7].

The operation of collecting orders from customers and delivering them on time in-
volves many parameters and logistical decisions. Traditionally, e-commerce customers
are served from inventories stored in or delivered to central locations (e.g., warehouses,
distribution centers, and cross-docks) within the parameters requested by the customer
(e.g., delivery time windows or same-day delivery) or the limitations of the logistics op-
erations. The increased demand for e-commerce and e-grocery, for the reasons explained
above, resulted in a similarly increased demand for a relatively new mode of delivery:
instant delivery. By instant delivery, we refer to customer requests that are typically served
from local stores or supermarkets in a shorter-than-same-day time frame, such as being
picked up within minutes of placing the order and delivered within the next hour or so.
During the COVID-19 pandemic, social distancing rules, lockdowns, and the risk of disease
transmission caused changes in consumer behavior, leading to the popularity of instant
delivery, with high revenue generation opportunities for the e-commerce businesses. Under
the pandemic conditions, instant delivery companies broke sales records as shops were
closed as people stayed home. The number of instant delivery application users in Turkey
reached almost 1.5 million deliveries in the second half of 2019 and continues to increase
rapidly [8].

Standard VRP problems are suitable for modeling traditional cargo operations. In
these operations, fleet carriers take custody of all shipments from a single depot at the
start of the delivery process and deliver them to different points during the day. There are
no strict time windows during distribution. The other type of last-mile operation is on-
demand instant delivery operations. These operations are based on picking up deliveries
from different points during the day, depending on customer demands, and distributing
them to other points within a short time window. In these operations, demands can also
arrive dynamically during the day. These types of operations are categorized in the VRP
literature as Dynamic Pick-up and Delivery with Time Window Vehicle Routing Problems
(DPDTWVRPs).

In certain practical settings, an e-commerce business may handle both types of opera-
tions simultaneously (i.e., traditional cargo delivery and instant delivery) with two parallel
fleets. For example, with the relatively recent acquisition of Whole Foods Market, Amazon
can use its logistics experience and resources to facilitate the instant delivery of groceries
along with its traditional e-commerce. At the time of writing this article, Amazon only
offers the instant delivery of groceries to Amazon Prime members in select ZIP codes. In
such cases, capacity sharing between the two fleets of e-commerce and instant delivery
can provide an opportunity to expand the business overall, albeit with proper planning
and scheduling.

This paper addresses the problem of capacity sharing between two types of fleets in
the same business. By combining these operations, the number of required couriers and
overall costs can be reduced. This in turn will increase the earnings of the non-salaried,
crowd-sourced drivers that charge based on the distribution and collection process. In order
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to combine these two operations, a framework is needed to solve VRPs and DPDTWVRPs
in terms of routing. In addition, the capacities of the fleets must be planned correctly for
integration to work efficiently. To the best of our knowledge, there is no single solution
in the literature to cover all aspects of such a problem. The proposed framework in
this paper solves two different routing problems simultaneously and also employs the
capacity planning aspect proposed in a previous work with the support of machine learning
methods [9].

More specifically, we offer a route optimization solution framework that aims to
address this new trend in e-commerce logistics (i.e., instant delivery) in integration with
conventional package delivery logistics. We propose an integrated route optimization
framework that operates a combined fleet, sharing vehicle capacities between the instant
delivery orders served from local grocery stores and the traditional time-windowed orders
served from a central depot. To achieve desirable levels of cost efficiency and customer
satisfaction, we use an array of mathematical models, including machine learning (ML) and
simulation, to address not only the route optimization side but also the courier capacity
planning aspect of the entire logistics operation. Specifically, we first use ML to predict the
number of packages and allocate courier capacity to delivery areas. Then, we employ a
route optimization approach to efficiently serve the complete set of delivery requests for
the two markets combined. The main goal is to make efficient and optimized use of the
extra idle times of the vehicles to serve a new market, as opposed to running two sets of
disjointed operations for two separate fleets.

To show the effectiveness of our proposed framework and the business value of
the integrated routing approach, we conduct two sets of computational experiments:
testing our proposed algorithm on instances from the literature and testing it on real-world
problem instances from HepsiJet in Turkey. HepsiJet is a rapidly growing, technology-
driven e-commerce logistics company launched in May 2017 with a business plan that
involves crowd-sourced couriers. It showed a growth trend by increasing the number
of cross-docks along with the spread of e-commerce throughout Turkey. The size of its
operations (measured by the number of delivered packages) rose by 91% from 2018 to 2019
and by 171% from 2019 to 2020. Fast delivery and timely arrival are essential in e-grocery
shopping, as customers expect their groceries to arrive promptly and at a scheduled time.
This helps them plan their days accordingly and guarantees that fresh and perishable items
are delivered on time. In our case study, we demonstrate how the proposed approach can
improve the current operations and how it can also validate the business case of logistically
integrating the instant delivery market and generating business and consumer value.

The contributions of this study are threefold:

• We present an overall framework along with its operational details for potential
deployment of a capacity planning and routing optimization solution that seeks
efficiency by integrating last-mile delivery operations. This framework can be used by
logistics planners and optimization experts to achieve operational efficiencies above
and beyond what they have already achieved.

• As part of the presented framework, we propose an optimization solution that attempts
to solve two traditionally disjointed but equally complex variants of the vehicle routing
problem to achieve further operational efficiency using a shared fleet. To the best of
our knowledge, this is the first attempt at solving this kind of a unified problem and
validating its effectiveness in an industrial setting.

• We provide and publicly share an authentic real-world data set for future researchers
to develop and apply new algorithms, aimed at solving the complex unified rout-
ing optimization problem we have tackled in our study. This data set comes with
features reflecting the detailed real-life dimensions of rich vehicle routing problems
typically encountered in real-world settings. We report the solutions we have found
for benchmarking purposes as well.

In what follows, we present a review of the relevant literature, followed by the mathemati-
cal definition of the problem at hand, our proposed framework and optimization methodology,
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as well as our computational results and suggestions for future directions for research. In the
context of our study, the symmetry concept is essential as it relates to the equitable allocation of
resources between the two distinct types of delivery operations. Symmetry ensures that both
instant and traditional delivery services are optimally integrated, allowing for balanced use of
fleet capacities and operational efforts.

2. Literature Review
2.1. Vehicle Routing Problems (VRPs)

Vehicle routing problems are one of the most widely studied problems in the optimiza-
tion literature. In many areas, such as production and supply chains, the first focal point of
companies is to increase the efficiency of their delivery operations and fleet optimization in
general. The classical vehicle routing problem (VRP) involves assigning routes to a fleet of
vehicles at the lowest possible overall cost in order to serve a set of customers with known
demands. Each customer typically needs to be visited only once by an assigned vehicle
(with or without capacity limitations), which starts (and typically ends) its daily route at a
central warehouse location [10,11].

Many variables and configurations can be encountered in the literature that attempt to
adapt the vehicle routing problem to real-life situations, such as delivery time windows,
paired pick-up and delivery, distance constraints, vehicle number and capacity constraints,
and open and closed routes. A VRP with many or most of these real-life business require-
ments is referred to as a rich vehicle routing problem. The authors of [12] provided a general
classification and brief descriptions of many such real-world vehicle routing problem exten-
sions. One of the VRP extensions that we study in this paper, the PDPTW, involves pick-up
and delivery with time windows where a customer requires his or her order to be picked
up at a location other than the requested delivery location. In this case, the pick-up and
delivery requests are known in advance, and the number of vehicles is an input parameter.

Many modeling approaches and algorithms, including mathematical, linear, branch-
cutting, exact or heuristic, and deterministic or stochastic, have been proposed in the
literature to solve various types of vehicle routing problems. To cite a few, the authors
of [13] proposed a self-adaptive framework for classical vehicle routing problems integrated
into the local search heuristic algorithm. The authors of [14] proposed an adaptive large
neighborhood search (ALNS) algorithm to solve a pick-up and delivery vehicle routing
problem with stochastic demand.

There are numerous reasons for considering variable input data in a dynamic VRP
(DVRP) setting. Various dynamic features that cause dynamism in the classical VRP can
be defined as uncertain inputs (e.g., new requests or order cancellations, adjustments to
order size or deadline, and increased travel time due to traffic congestion) or stochastic
inputs (e.g., customer requests based on random variables). A comprehensive review of
the dynamic elements in the literature review of the DVRP can be found in [15,16]. The
authors of [17] re-examined more complex formulations due to the delay. The authors
of [17,18] believe that DVRP implementations are more difficult in city logistics, where
traffic jams and other events are more likely to disrupt routing plans. This situation may be
critical when customers require same-day delivery, requiring a faster response time to their
demands and traffic conditions. The authors of [19] generated modules to obtain real-time
traffic data and predict travel times to assist decision makers at a hypothetical shipping
company, and they integrated DVRPs into a DSS framework.

In the classic urban model, the courier serves shippers and customers on the same
planning day with delivery, pick-up, or both. In other words, it optimizes the costs and
benefits for various stakeholders globally, whereas city logistics aims to balance customer
satisfaction with travel costs. The authors of [20] captured the transition from traditional
retail logistics to complicated omnichannel logistics challenges, emphasizing retailers’ need to
adjust their logistics strategies to meet the demands of high-level consumer experiences across
multiple channels by examining 373 articles. The authors of [21] presented an innovative edge-
based approach for the vehicle routing problem with time windows (VRPTW), integrating
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a graph attention network into a deep reinforcement learning model. The authors of [22]
introduced a clustering-based routing heuristic (CRH) to optimize last-mile logistics for fresh
food e-commerce by efficiently clustering demand nodes to improve delivery vehicle routing,
diminishing the computational complexity and time to yield optimal solutions. The authors
of [23] explored the vehicle routing problem with time windows (VRPTW) using a tabu
search optimization technique and obtained the best-known solution for every instance of 38
benchmark instances. The authors of [24] developed a mixed-integer optimization model to
solve the time-constrained capacitated vehicle routing problem (TCVRP) which is tailored to
e-commerce parcel delivery vehicles, especially emphasizing electric vehicles (EVs) without
the necessity for mid-route recharging.

This more holistic goal should consider the customer’s living conditions as they are
affected by pollution and traffic congestion [25]. Pollution is not explicitly addressed in
the DVRP documents reviewed. However, readers interested in green logistics can find
information on the green VRPs (GVRPs) and pollution routing problems (PRPs) in [11].
Finally, some articles considered the priority of orders. In this case, orders that have been
waiting in the system longer than others have higher priority the day after planning [26–28].

Unlike other cases, there are two types of couriers in this problem. The start and end
points of the route for the first type of courier are the cross-docks. This type of courier
transports HepsiJet shipments, which they pick up at a cross-dock and deliver to customers.
Furthermore, they carry grocery orders by stopping at supermarket locations if their vehicle
capacities and routes permit. The second type of courier picks up orders at the pocket
warehouses that carry stock and delivers them to the final destinations. Pocket warehouse
couriers have a single pocket warehouse as their starting and ending point, and they only
carry pocket warehouse orders.

After the couriers start their routes, adding new HepsiJet orders to the routes is not
possible. However, it is possible to create new mobile warehouse orders during the day.
Pocket warehouse shipments that are newly created are dynamically assigned to couriers.
The first stage of the project aims to transport fast delivery market shipments as pocket
warehouse orders. The infrastructure has been designed so that any company that operates
a pocket warehouse or store business model and stores stock can be considered a customer.
Our problem differs because it involves two types of warehouses (cross-docks and pocket
warehouses) and two levels of dynamic order types with time windows.

2.2. Capacity Planning with Machine Learning

In the transportation domain, machine learning methods based on regression models
have been proposed for the prediction of the emission rates of vehicles for the capacitated
vehicle routing problem [29,30], the correlation between the number of heavy goods vehicles
and deliveries [31], driver deviation on routes [32], etc. There are various studies focused
on last-mile food delivery systems. Using the number of locations, visiting area, distance,
and dispersion, the travel time was predicted using different state-of-the-art regressors
for last-mile delivery [33]. Also, regression models [34] are used to estimate the delivery
demands of online orders.

For delivery capacity planning and service quality, only a few studies have been
conducted to cope with congestion in transportation systems. To reduce the slack capacity
in vehicles, a deep reinforcement learning algorithm, namely the deep Q network-based
approach, has been proposed to assign shipments to the relevant couriers for efficient
delivery [35]. In this capacity planning study, which the authors considered a multi-
point pick-up and delivery problem with time intervals and transfers, they developed a
crowd-sourced system in which the availability of the drivers to be able to deliver for a
certain period is shared, and service requests are forwarded [36]. The authors of [34] used
regression models to predict the delivery demands of orders placed over the Internet.

For capacity planning, several optimization-based solutions have been proposed in
cases where the crowd-sourced delivery density of hundreds of billions of dollars of annual
food orders is in question. In one of these studies, the authors of [37] suggested a solution
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for planning capacity based on the delivery area’s distances, payments per delivery for
couriers, and delivery time to enhance multiple food deliveries in the short term. Machine
learning research focusing on food delivery aims to predict the delivery time and minimize
costs [38]. An early study [39] in the field of logistics used multiple forecasting methods (a
moving average method, autoregressive (AR) model, and the autoregressive integrated
moving average (ARIMA)) to forecast the delivery volumes for different products based
on historical shipment data and input constraints. Therefore, in our previous works [9,40],
state-of-the-art regression models were employed to predict the daily delivery capacity
of a fleet starting their routes from a cross-dock depot and for a specific time slot. In
another study, the authors of [41] developed a capacity planning platform to be used in
many different service areas and offered to employees, selecting suitable service providers
whose earnings are determined through fixed additional fees. A regression algorithm has
been applied to the real-world capacity prediction problems of electricity load [42,43], pile
bearing [44], and batteries [33].

Based on this thorough review of the literature, we can conclude that there are algo-
rithms that solve standard VRPs and DPDTWVRPs separately. However, no framework has
been presented yet to solve these two problems in a combined way which also includes ca-
pacity planning details. The scope of the problem addressed in this paper is comprehensive.
This paper offers a framework for a solution that covers all the aspects of this problem.

3. Problem Definition

HepsiJet provides a crowd-sourced delivery service with over 2000 couriers working at
more than 150 cross-docks. The delivery packages that reach the cross-docks in the last-mile
process of the delivery operations are appropriated by the couriers and delivered to the
recipient addresses. This last-mile operation can be described as a traditional static multi-
vehicle single-depot vehicle routing problem. Within the scope of this paper, we will refer
to these deliveries as standard deliveries. They include products which are already stocked
in the satellite or regional warehouses of business partners and are suitable for fast delivery
in a short period of time after an order is placed, along with standard cargo services.

The last-mile life cycle of standard deliveries begins when daily shipments arrive at the
relevant cross-dock in ring vehicles. Packages arriving at the cross-docks are appropriated
in the morning by crowd-sourced couriers, who then proceed with the deliveries and
complete the life cycle when all packages are delivered. On the other hand, instant deliveries
with hard time windows have a different process flow. This flow starts when the order
reaches the relevant company cross-dock. Then, the order is assigned to a courier in the
cross-dock either manually or automatically. The assigned courier must pick up the package
at the pick-up point and deliver it to the recipient within the required time window.

In this paper, we address the combined problem of satisfying both workflows with a
single set of couriers operating at the cross-dock level. In this setting, couriers who deliver
standard packages may also be tasked with delivering instant delivery orders, and vice
versa. The goal is to make the optimum use of any idle capacity the two separate fleets of
couriers would have if they were to run their delivery operations independently. Within
this context, and with the help of machine learning (ML)-based methods, we also aim to
predict the number of time-windowed instant deliveries that the couriers can additionally
distribute using their idle capacities at their respective cross-docks. Using ML, we predict
in advance the number of shipments for each cross-dock in the coming days. Given these
predictions, the number of instant deliveries that a cross-dock can commit to with its idle
capacity is then revealed.

In the next subsection, we present a mathematical model for the combined route
optimization problem. In the Methodology section, we outline a heuristic algorithm
to solve this routing problem and also detail our ML-based solution for the capacity
planning problem.
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Mathematical Model

We developed a mixed-integer linear programming model for the combined route
optimization problem, considering time windows and a unified fleet of couriers that
can dynamically deliver both order types. We account for the possibility that additional
optimizations can take place during the day for building or updating daily routes from
this point on. Deliveries that are not previously completed at the time of optimization are
included, along with any instant delivery orders received in the meantime. As a result,
couriers start at the cross-dock depot but do not return there except at the end of the day
after all deliveries are completed. Packages loaded onto a vehicle at the cross-dock in the
morning stay on the same vehicle until delivered. Each optimization (from the second
round on) considers the last known completed delivery location of a courier as the starting
location for their new route.

We provide below the mathematical model representing this problem along with the
notation, as well as the model parameters and decision variables.

Parameters

• V : set of all couriers;
• Ns : delivery nodes for standard orders, where Ns = {1, . . . , n1};
• Np : pick-up nodes for instant orders, where Np = {n1 + 1, . . . , n1 + n2};
• Nq : delivery nodes for instant orders, where Nq = {n1 + n2 + 1, . . . , n1 + 2n2};
• N0 = {0} : cross-dock (starting) node ∀k ∈ V (first optimization);
• Nk

d : departure node of courier k ∈ V (subsequent optimizations);
• N : set of all nodes, where N = Ns ∪ Np ∪ Nq ∪ N0 ∪ Nk

d ;
• d : first optimization indicator, which is one for the first optimization and zero otherwise;
• T : remaining time until the end of the delivery period;
• wi : revenue or profit per delivery obtained by delivering to node i;
• cij, tij : driving cost and driving time from node i to j, respectively;
• si : required service (pick-up or drop-off) time at node i;
• ai, bi : time window’s lower and upper limits for node i, respectively;
• gi : one if the deadline for delivery i is today and zero otherwise;
• li : late delivery cost for delivery i;
• Yk

i : one if d = 0 and node i’s delivery package was loaded onto vehicle k in the first
optimization and zero otherwise;

• α, β, γ : objective function weights for revenue or profit generated from deliveries,
total cost of delivery, and late delivery penalties, respectively.

Decision Variables

• xk
ij : one if vehicle k travels from node i to j and zero otherwise;

• Di : one if delivery at node i has not been made and zero otherwise;
• Ai : arrival time of the vehicle for delivery at node i.

Mathematical Model

max

α ∑
i∈Ns∪Nq

∑
j∈N

∑
k∈V

wixk
ji − β ∑

i,j∈N
∑

k∈V
cijxk

ij − γ ∑
i∈Ns∪Ne

giliDi

 (1)

∑
i∈N

∑
j∈N

((
tij + sj

)
∗ xk

ij

)
≤ T ∀k ∈ V (2)

∑
i∈N\∪k Nk

d

xk
0i = d ∀k ∈ V (3)
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∑
i∈Ns∪Np∪Nq∪N0

xk
ji = 1 − d ∀k ∈ V, j ∈ Nk

d (4)

∑
i∈N

xk
i0 = 1 ∀k ∈ V (5)

∑
i∈N

∑
k∈V

xk
ij ≤ 1 ∀j ∈ Ns ∪ Np ∪ Nq (6)

∑
j∈N\∪k Nk

d

∑
k∈V

xk
ij ≤ 1 ∀i ∈ Ns ∪ Np ∪ Nq (7)

∑
i∈N

∑
k∈V

xk
ij = ∑

i∈N
∑

k∈V
xk

ji ∀j ∈ N (8)

Ai + si + tij ≤ Aj + M
(

1 − xk
ij

)
∀i, j ∈ N, k ∈ V (9)

Ai ≤ Ai+n2 ∀i ∈ Np (10)

ai ≤ Ai ≤ bi ∀i ∈ N (11)

∑
j∈N\{0}

xk
ji ≥ Yk

i (1 − d) ∀i ∈ Ns, k ∈ V (12)

Di = 1 − ∑
k∈V

∑
j∈N

xk
ij ∀i ∈ Ns ∪ Nq (13)

si = 0 ∀i ∈ Nk
d ∪ N0 (14)

Ai = 0 ∀i ∈ Nk
d ∪ N0 (15)

The objective function in Equation (1) optimizes the weighted combination of the total
revenue or profit generated from the deliveries, the total cost of transportation, and the
penalties for late deliveries. According to the constraints in Equation (2), the total time
spent by each courier driving to and delivering at all locations visited cannot exceed the
remaining time until the end of the day. The constraints in Equation (3) ensure that all
couriers start from the cross-dock in the first optimization. In subsequent optimization(s),
the last known position of each vehicle is taken as the starting location. The constraints
in Equation (4) satisfy the couriers’ departure from their last-known locations for reop-
timization(s). Return to the warehouse for every courier is ensured by the constraints
in Equation (5). One-time visiting and departing delivery points is provided by the con-
straints in Equations (6) and (7), respectively. The constraints in Equation (8) ensure that
the number of exits should equal the number of arrivals at a location. The constraints
in Equation (9) maintain the iterative calculation of the arrival times for each point with
respect to both the service times and travel times. The constraints in Equation (10) ensure
that products are picked up before they are delivered for instant delivery orders. Instant
delivery orders must be delivered within a certain time window, which is ensured by
Equation (11). Standard deliveries loaded in the first optimization are delivered by the
same vehicle according to the constraints in Equation (12). For cost calculation purposes, a
variable to keep track of the deliveries made is defined by the constraints in Equation (13).
Finally, the constraints in Equations (14) and (15) set the starting times for the departure
nodes as well as the zero service times at these nodes.
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4. Methodology
4.1. Vehicle Routing Problem

The k-opt algorithm is the first local improvement method used during optimization.
This algorithm aims to reduce the total route time by changing the order of a courier’s
planned deliveries. Here, k represents the number of connections between nodes in a
single route that will be removed and connected differently. For example, if k = 3, then a
better solution (in terms of a shorter route time) is sought in all combinations of removing
3 connections from the route and reconnecting the affected nodes by adding 3 different
connections. If there is no better solution as a result of this operation, the node sequence is
said to be 3-optimal. The k-opt algorithm improves each courier’s route individually, but
it operates in a limited solution space because it does not allow node transfers between
couriers. This means a node oddly included in a route will never leave the route, leading to
a suboptimal solution. To address this issue, we implemented node transfer mechanisms in
which couriers transfer or exchange their delivery nodes to or with one another. These are
classified into different types based on the number of nodes transferred and the methods
used to select the couriers to and from which the transfer will be made. During this node
transfer stage, the optimization criterion is to minimize the sum of all couriers’ route times.
Algorithm 1 below outlines this entire process.

Algorithm 1 Route Optimization Steps

1: Add first nodes to all vehicles ▷ Initialize routes
2: Add standard nodes to suitable vehicles
3: Add marketplace nodes to suitable vehicles
4: while further addition possible do ▷ Iterate until no more additions
5: Replace standard nodes with marketplace nodes if needed
6: Add standard nodes to suitable vehicles
7: while route improvement possible do
8: Apply k-opt to each vehicle
9: Apply node transfers between vehicles

10: end while
11: end while

We implemented 8 different node transfer types as follows:

• nt1FromMax chooses one node from the vehicle with the maximum total time and
transfers it to another vehicle.

• nt1ToMin transfers a node from any vehicle to the vehicle with the minimum total time.
• nt2FromMax is similar to nt1FromMax, but two nodes are chosen and transferred.
• In nt2Mutual, two vehicles are chosen, and then a node transfer is made between them.
• In nt2Seq, a node transfer is made between 3 vehicles, where one node is transferred

from the first vehicle to the second and another node is transferred from the second
vehicle to the third.
The last three transfer types include marketplace posts:

• ntMr1 chooses a marketplace node and transfers it to another vehicle.
• ntMrAll chooses all nodes of a randomly chosen marketplace for another vehicle.
• ntMrAllMutual chooses two vehicles, and all nodes of a chosen marketplace for these

vehicles are transferred between the vehicles.

The variety of node transfer mechanisms in routing optimization, such as single,
dual, and sequential three-node transfers, along with marketplace-based approaches, offer
enhanced flexibility in route management. This variety allows for specific maneuvers that
might not be possible with a single type of transfer, accommodating different operational
scenarios and enabling more adaptive and efficient route adjustments. Consequently, this
flexibility plays a crucial role in minimizing the total route times of couriers, leading to more
effective and dynamic optimization in routing scenarios. These node transfer mechanisms
are executed sequentially in the order shown in Algorithm 2. When a successful (i.e., time-
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reducing) node transfer is made, the execution restarts from the beginning. The transfer
steps continue until no new transfer can produce an improved solution.

Algorithm 2 Node Transfers for Route Optimization

1: while potential for improvement exists do
2: try nt1FromMax ▷ Transfer from max route
3: try nt1ToMin ▷ Transfer to min route
4: try nt2FromMax ▷ 2-node transfer from max
5: try nt2Mutual ▷ Mutual 2-node transfer
6: try nt2Seq ▷ Sequential 2-node transfer
7: try ntMr1 ▷ Marketplace node transfer for 1 node
8: try ntMrAll ▷ Marketplace node transfer for all nodes
9: try ntMrAllMutual ▷ Mutual marketplace node transfer

10: end while

4.2. Capacity Planning

In this work, an approach for delivery capacity prediction is developed in which the
delivery information of the cross-docks is utilized to predict the daily capacity of a fleet that
starts its routes from a cross-dock depot in a specific time slot. The first step in the approach
is data preparation, which includes removing outliers, constructing feature vectors, and
aggregating data on a daily basis. In the second stage, numerous attributes for each cross-
dock during each time interval are determined, containing deliveries completed in a single
day, three days, and one week. After the extraction phrase, a training dataset is composed,
enclosing all the deliveries from all the cross-docks for each interval during a training
period. The initial regression model is then trained to utilize this comprehensive dataset.

4.2.1. Data Preparation

For the data preparation step, the deliveries are aggregated daily, and the samples
including null values are dropped. In this step, the raw features listed in Table 1 are also
selected by analyzing the data in terms of the rate of null values, the number of unique
values, and the reliability of the prediction performance using simple experiments. The
raw features that are processed at this stage include the cross-dock, time slot, delivery ID,
courier ID, date, district, and delivery address.

Table 1. Raw features and their descriptions.

Input Feature Description

xdock_id Identifier for the cross-dock facility
slot Specific time interval within a day
dow, dom, doy Day of week, month, and year for the current day, respectively
moy Month of the year for the current day

dow_yest, dom_yest, doy_yest Day of the week, month, and year for the previous day,
respectively

moy_yest Month of the year for the previous day
delivery_id Identifier for the delivery
courier_id Identifier for the courier
address_id Identifier for the delivery address
district_id Identifier for the district of the delivery address
delivery_attempt Count of attempts made for the delivery until successful
ontime Indicator of whether the delivery was made on time or not

4.2.2. Feature Extraction

In the feature extraction process in our previous works [9,40] for the capacity planning
stage, we incorporated time-based features (such as the day of the week, month, year, and
special days like Black Friday and Christmas). Also, we aggregated historical deliveries
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from the same cross-dock with the same time slot over the last day, the last 3 days, and
the last week. These aggregated data were then included in the feature set, resulting
in the generation of a total of 32 features. The aggregated features consisted of several
components: the number of deliveries and couriers who worked actively on that day, the
count of unique districts and addresses to which the deliveries were made, and the average
as well as the maximum number of deliveries completed by a single courier.

4.2.3. Feature and Model Selection

The most discriminative features and the best model were selected by considering
the reliability of the regression for capacity prediction. This process was also used to
generate a shared regression model for all the cross-docks. For the regression model on the
cross-docks, after analyzing the p values of the features, those that were less than 0.05 were
selected as the most suitable features for the regression model (Table 2).

Table 2. Selected features and their descriptions.

Input Feature Description

xdock_id Identifier for the each cross-dock
slot Specific time interval within a day
dow Day of week for the target prediction day
total_del_num_yest Count of deliveries made yesterday
mean_district_num_yest Mean number of districts delivered yesterday
mean_attempt_num_yest Mean delivery attempts made by all couriers yesterday
mean_capacity_yest Mean deliveries of all couriers yesterday
max_capacity_yest Maximum deliveries made by a courier yesterday
mean_total_del_num_3d Mean total deliveries made in the last 3 days
mean_courier_num_3d Mean courier count in the last 3 days
mean_attempt_num_3d Mean number of delivery attempts in the last 3 days
mean_address_num_3d Mean number of unique addresses in the last 3 days
mean_capacity_3d Mean number of deliveries by all couriers in last 3 days
mean_total_del_num_1week Mean total deliveries made in the last week
mean_attempt_num_1week Mean number of delivery attempts in the last week
mean_capacity_1week Mean deliveries of all couriers in the last week

The deliveries were distributed across the cross-dock’s bound regions that were al-
located to a limited time slot between the preferred earliest pick-up time and the latest
delivery time. The couriers of the cross-dock also had limited time and capacity.

For prediction of the total daily delivery capacity regarding cross-docks and time
slots, the proposed approach, which is the extended version of our previous work [9], is
composed of the steps demonstrated in Figure 1: (1) data preparation for analysis of the
raw delivery data and removal of outliers, (2) selection of the raw features to be used in
modeling, (3) extraction of time-based and aggregated features for regression, based on
the historical data of the cross-dock in all the slots, (4) feature selection, (5) model selection
using a number of state-of-the-art algorithms with the best parameters, (6) generation of the
capacity prediction model, and (8) updating of the selected model to learn recent data and
adapt to unexpected changes on a daily basis. Furthermore, several regression models were
investigated to predict the delivery capacity. These regression algorithms were gradient
boosting tree regression (GBT), Gaussian process regression (GPR) [45], the XGBoost
regressor, linear regression (LR), random forest regressor (RFR), multilayer perceptron
(MLP) regression, and the support vector regressor (SVR), which were compared in the
model selection process [40]. The algorithms were used with their best hyper-parameter
sets estimated using the selected set. The GBT model outperformed other regression models
for predicting the cross-dock delivery capacity.
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Figure 1. The proposed approach for system integration.

4.3. System Integration

We developed a fully integrated system that brings together all the elements of this
solution framework in Figure 2. Our design involves a thorough analysis of each component
to ensure they work together seamlessly. With this system design, machine learning-based
capacity estimation, estimation of the number of packages on the relevant days, and fast
deliveries with dynamic pick-up and delivery time windows that can be distributed in
addition to standard packages will be accepted. This system, which starts with predicting
the number of packages for the following days, will end with the distribution of all packages
during the day in the order prescribed by the optimization model. The number of packages
for the following days will be predicted one week in advance. Forecasts will be updated as
we approach the corresponding day. With these updates, the accuracy of the estimation of
the relevant day will increase as the future day approaches, and accordingly, the calculation
of the additional capacity will become more efficient. Following capacity planning and
the acceptance of additional shipments to the extent permitted by the capacity, all steps
will be listed with route optimization before the courier departs, using the information of
all known shipments at the beginning of the relevant day (both regular TSP packages and
time-windowed pick-up and delivery packages).
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Figure 2. The proposed approach for predicting the total daily delivery capacity.

In order to answer the question of how many dynamic pick-up and delivery ship-
ments are equivalent to the free capacity of the couriers from the standard shipments, the
total delivery times of the randomly selected past 1000 pick-up and delivery orders were
prepared as a sample set. Regarding all these orders, the distribution times were calculated
with a random standard delivery location as a departure point. The pick-up service time,
delivery service time, and travel time were summed to obtain an artificial total delivery
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time for each order. The average instant delivery time was calculated for each cross-dock
set. A safety time of 15% was added to the calculated cross-dock-based average time.

Simulation

To represent the service time variability, the best-fitting probability distribution ap-
plication was used to model each package service time. During the selection of the most
suitable distribution, a sample was created with the one-day all delivery service times of
300 couriers. A Python package called FITTER was implemented and used to find the
first five best-fitting distributions for all courier deliveries with respect to the sum squared
errors from the following list:

• Cauchy;
• Chi2;
• Exponential;
• Exponpow;
• Gamma;
• Lognorm;
• Normal;
• Powerlaw;
• Rayleigh;
• Uniform.

The distributions created with the best-fitting parameters were ranked according to
the sum square errors for the 300 courier day samples. As a result of the best-fitting tests,
the Cauchy distribution was identified as the best-fitting distribution for 84% of the courier
day samples. The Gamma distribution and normal distribution followed with 8% and 6%,
respectively. In the context of these results, the Cauchy distribution was selected as the
most suitable one for modeling all cross-docks.

5. Computational Results

To the best of our knowledge, our model is the first to combine the problem of pick-up
and delivery with time windows with a standard VRP in an application setting. As a result,
there was no test data set available to benchmark this particular use case. To address this,
we designed a three-stage computational study to demonstrate the effectiveness of our
proposed solution. In the first stage, we demonstrate that our solution can result in cost
reductions in a company’s operations in comparison with its existing routing solutions
in place. In the second stage, we test the performance of our solution, which is uniquely
designed for our integrated problem, using Solomon’s VRPTW instances. This is clearly
not ideal, as our solution is not highly optimized or tuned for those instances but rather
designed to address the more generalized integrated problem. Yet, it should give us insight
into its performance in general. Finally, we generate a complete 1 day data set simulated
from the company’s operational data and use our solution to solve it. Since we do not
have an optimal solution as a ground truth to compare it against, we publish this data set
and the corresponding routing solution we obtained for future researchers to benchmark
against. The details for each experiment are given in the relevant sections below.

5.1. Experiment 1

In the early stages of HepsiJet, the last-mile operations were not following a struc-
tured routing optimization system. Couriers delivered the packages with respect to their
neighborhood know-how. If the process is considered from the route optimization point of
view, the problem reduces to single-vehicle route optimization. Before the vehicle departs,
it receives all deliveries’ custody from the cross-dock representative and then stops at every
delivery point. In the first phases of operations at HepsiJet, distributions are carried out at
the discretion of the couriers without benefiting from route optimization. Before using route
optimization, we could access the kilometers traveled by the transporter, as a database of
information was kept in which we could follow the movements of the transporter. When



Symmetry 2024, 16, 505 14 of 21

the daily shipment distribution order of the couriers taken from the database is analyzed, it
can be seen that the couriers sort and distribute the shipments based on their own district,
neighborhood, and environment know-how. However, by optimizing the distribution
order of the transporters using route optimization, it is possible to reduce the time spent
on distribution, as well as travel and gasoline costs. The setting was modeled as a TSP
problem since the orders to be distributed by each courier during the day were, certain and
these points were visited at least once a day. This experiment focused on the cost reduction
that the company would have achieved if these early distributions had benefited from the
route optimization algorithm proposed in this article.

In order to analyze the cost reduction opportunity, the information of the shipments
delivered by 10 couriers from each of 12 cross-docks intuitively for 10 days and without
using route optimization was obtained. In light of this information, the mileage traveled by
the transporters was calculated using the distribution order. Then, the regular shipments
of each courier were optimized with a k − opt-based heuristic algorithm and customized
forehead algorithm within the framework of this paper. These optimization outputs’
distance and time costs were compared with the actual non-optimized distribution costs.
In the context of this comparison, a cost reduction of almost 9% was observed in terms of
the total distance traveled by the company’s couriers. A cost reduction of the same rate
was also observed in terms of travel time. It can be estimated that the distance traveled by
the relevant couriers will decrease by an average of 20 km per day if the route optimization
output were to be used. The results of this experiment are shown in Table 3.

Table 3. Experiment 1 problem set results.

Cross Dock Number of
Couriers

Distance
(Original) (km)

Distance
(Optimized) (km) Cost Reduction

XD01 10 19,680 18,030 8.38%

XD02 10 15,670 14,270 8.93%

XD03 10 22,210 20,110 9.46%

XD04 7 12,070 11,100 8.04%

XD05 10 30,790 27,940 9.26%

XD06 7 8090 7190 11.12%

XD07 10 163,200 14,740 9.68%

XD08 10 244,300 22,240 8.96%

XD09 10 139,300 12,550 9.91%

XD10 10 274,300 24,810 9.55%

XD11 10 362,300 33,070 8.72%

XD12 9 452,800 42,570 5.98%

Overall 113 272,080 248,680 8.60%

5.2. Experiment 2

The algorithm proposed in this paper has rather complex properties when compared
with the classical simple vehicle routing problem. As a result, some questions can occur
regarding the measurability of the routing algorithm’s performance. In order to test the
performance and effectiveness of the route optimization model developed for this paper, a
performance analysis was conducted on the most cited routing sample problem set. The
Solomon benchmark sets, one of the most used data sets, was used since there is not yet
a benchmark test covering all the features for the unique problem that was aimed to be
solved in this framework. The problem set used was first produced in [46] to test the
time-windowed vehicle routing problems and then adapted to many different problem
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types. The solutions for problems of type R are shown in Table 4, while the solutions for
problems of type RC are shown in Table 5.

Table 4. R1 benchmark set result statistics.

R1 Problem Set

Problem Name Optimal Method Run Time(s) Percent

R101.25 617.1 652 0.306 5.7

R101.50 1044 1177.3 1.700 12.8

R102.25 547.1 674.3 0.321 23.2

R102.50 971.5 1119.5 2.654 23.2

R103.25 454.6 557.8 0.333 22.7

R103.50 772.9 981.5 3.271 27

R104.25 416.9 515.4 0.487 23.7

R104.50 625.4 743.7 7.509 18.9

R105.25 530.5 561 0.583 5.7

R105.50 899.3 1028.3 2.830 14.3

R106.25 465.4 548.2 0.828 17.8

R106.50 793 957.6 6.221 20.8

R107.25 424.3 499.6 0.405 17.7

R107.50 711.1 886.9 7.952 24.7

R108.25 397.3 493.8 0.663 24.3

R108.50 617.7 677 3.404 9.6

R109.25 441.3 516.8 0.339 17.1

R109.50 786.8 884.6 3.105 12.4

R110.25 444.1 474.8 0.681 6.9

R110.50 697 847.5 2.057 21.6

R111.25 428.8 514.1 0.387 19.9

R111.50 707.2 815.3 7.561 15.3

R112.25 393 435.3 0.447 10.8

R112.50 630.2 732.8 3.346 16.3

Table 5. RC1 benchmark set result statistics.

RC1 Problem Set

Problem Name Optimal Method Run Time (s) Percent

RC101.25 461.1 484.1 0.136 5%

RC101.50 944 1027.2 3.811 8.8%

RC102.25 351.8 356.1 0.472 1.2%

RC102.50 822.5 962.4 1.507 7%

RC103.25 332.8 346.2 1.699 4%

RC103.50 710.9 790 5.724 11.1%

RC104.25 306.6 340.3 0.974 11%
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Table 5. Cont.

RC1 Problem Set

Problem Name Optimal Method Run Time (s) Percent

RC104.50 545.8 642.1 4.279 17.6%

RC105.25 411.3 470 0.289 14.3%

RC105.50 855.3 981.6 7.258 14.8%

RC106.25 345.5 355.2 0.441 2.8%

RC106.50 723.2 849.9 2.508 17.5%

RC107.25 298.3 315.4 0.489 5.7%

RC107.50 642.7 676.2 4.638 5.2%

RC108.25 294.5 300.7 0.336 2.1%

RC108.50 598.1 647.8 4.100 8.3%

5.3. Experiment 3

In this study, a detailed experiment was carried out for the pilot implementation and
performance measurement of the proposed framework. Simulation data for two cross-
docks for 1 day were prepared for two problems of different sizes. Within the framework of
this study, an initial optimization was obtained with multi-vehicle route optimization for all
the instant deliveries and standard deliveries known to the cross-dock at the beginning of
the working day. Then, the distribution simulation was performed until a new instant order
was received, taking into account the service times and travel times. The optimization was
updated with the new order information every time new order information came in. New
dynamic orders coming within the framework of the simulation were dynamically assigned
to the couriers, and the distribution simulation continued. While there are 19 couriers
in one cross-dock, the other one amounted to only 3. Consequently, a total of 788 and
73 standard packages were distributed by these cross-docks, respectively. Each cross-dock
served two different markets. In addition, 179 and 18 market shipments were simulated
during the day, respectively. All optimizations for a cross-dock with 19 couriers had a run
time of 19 min. For the three-courier problem simulation, the total optimization run time
was 84 s. For both sets of experiments, it can be seen that the couriers distributed all the
shipments within the framework of their capacities, and in addition, the couriers in these
fleets were crowd-sourced, meaning that they were paid based on the number of packages
they collected and delivered. It can also be observed that the total distances traveled by
the transporters were relatively uniform. The results for the problem with 19 couriers are
shown in Table 6, while the results for the problem with three are shown in Table 7.

Table 6. Experiment 3 full problem results.

Vehicle ID Standard Number of
Markets

Number of
M1 Delivery

Number of
M2 Delivery

Total
Distance

0 47 0 0 0 166,694

1 50 0 0 0 170,583

2 50 0 0 0 146,823

3 49 0 0 0 162,635

4 50 0 0 0 169,870

5 40 1 10 0 175,217

6 15 2 9 25 169,575

7 47 0 0 0 153,759
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Table 6. Cont.

Vehicle ID Standard Number of
Markets

Number of
M1 Delivery

Number of
M2 Delivery

Total
Distance

8 29 1 21 0 167,572

9 50 0 0 0 162,972

10 36 1 13 0 150,875

11 0 2 53 22 208,333

12 53 0 0 0 180,110

13 39 1 10 0 155,523

14 49 0 0 0 179,146

15 52 0 0 0 169,696

16 45 1 0 4 153,758

17 53 0 0 0 170,857

18 34 1 12 0 143,507

Table 7. Experiment 3: 3 couriers scaled results.

Vehicle ID Standard Markets Market 1 Market 2 Total
Distance

0 28 1 0 1 27,593

1 12 2 14 3 29,975

2 33 0 0 0 24,160

For the problem of capacity planning, the proposed GBT regression model perfor-
mance is illustrated in Figure 3 for delivery capacity predictions in April. The overall
R2 value of the capacity prediction model was 0.816. The average RMSE values for each
cross-dock are given in Table 8, and the best prediction was obtained from cross-dock 2.
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Figure 3. Actual and predicted daily total capacity values.
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Table 8. The capacity prediction performances of the cross-docks.

Cross-Docks Avg. RMSE Avg. Actual Capacity Avg. Predicted Capacity

1 199.51 1964.91 2005.55
2 167.68 1918.55 1912.04
3 282.64 2358.13 2280.15
4 328.13 3050.36 3002.38
5 115.82 1192.41 1219.32
6 188.63 1773.13 1765.40
7 178.58 1378.52 1388.63
8 154.67 1696.05 1702.25
9 170.97 1438.63 1466.97
10 153.54 1529.02 1530.507

To measure the distance reduction that led to cost reduction provided by the frame-
work, we conducted additional experiments on the dataset used in Experiment 3. Our
approach was based on the assumption that there were enough hypothetical discrete car-
riers that could deliver fast deliveries with time windows. In this scenario, cross-dock
couriers would handle regular deliveries, while hypothetical couriers would handle fast
time-framed deliveries. Table 9 shows a 33.5% distance reduction for the full dataset,
indicating that the proposed approach satisfied a significant amount of cost reduction.
Additional fixed and overhead costs for the hypothetical couriers need to be considered for
real-life cost reduction calculations.

Table 9. Additional scenario results.

Problem Scale Capacity Sharing
(km)

Additional Courier
(km)

Percentage
Reduction

Full Problem 319,750.5 481,139.8 33.5%

3 Courier Scaled 75,728.1 109,919.7 31.1%

6. Conclusions and Future Works

We proposed a novel framework for planning and increasing the efficiency of a unique
delivery operation system that handles both standard and instant deliveries in a dynamic
fashion with specified time windows. Our framework consists of an initial capacity plan-
ning phase, followed by a routing optimization phase. In the capacity planning phase,
we presented a method combining a regression algorithm and a simulation methodology
for planning of the daily delivery capacity. We demonstrated the performance of the gra-
dient boosting tree (GBT) regression model, which gave better performance than several
state-of-the-art alternatives for most of the cross-docks in the previous work. In the routing
phase, the offered heuristic algorithm consists of special k− opt and node transfer operation
variations. The performance of the algorithm developed for this particular problem was
assessed over the Solomon benchmark instances. Our computational results demonstrate
the efficiency and cost reduction provided to the company by implementing our proposed
approach. The computational results indicate more than 30% distance reduction, suggest-
ing that the proposed approach satisfies a substantial cost reduction and efficiency for
combining two distinct delivery operations. In future work, the driver-based prediction
capability of the delivery number and time will be developed and integrated with the route
optimization module.
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and B.B. (Burcin Bozkaya); resources, E.T.K., S.C., B.B. (Barış Bayram) and G.A.; data analysis,
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Bayram); supervision, G.A., B.B. (Burcin Bozkaya) and R.A.-T.; project administration, G.A. and
E.T.K.; funding acquisition, G.A. All authors have read and agreed to the published version of
the manuscript.
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