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Abstract: Symmetrical as well as asymmetrical statistical models play a prominent role in describing
and predicting the real-world phenomena of nature. Among other fields, these models are very
useful for modeling data in the sector of civil engineering. Due to the applicability of the statistical
models in civil engineering and other related sectors, this paper offers a statistical methodology
to improve the distributional flexibility of traditional models. The suggested method/approach
is called the extended-X family of distributions. The proposed method has the ability to generate
symmetrical and asymmetrical probability distributions. Based on the extended-X family approach,
an updated version of the Weibull model, namely, the extended Weibull model, is studied. The
proposed model is very flexible and has the ability to capture the symmetrical and asymmetrical
shapes of its density function. For the extended-X method, the estimation of parameters, a simulation
study, and some mathematical properties are derived. Finally, the practical illustration/usefulness of
the suggested model is shown by analyzing two data sets taken from the field of engineering. Both
data sets represent the fracture toughness of alumina (Al2O3).

Keywords: Weibull model; family of distributions; goodness of fit measures; maximum likelihood
estimation; simulation study; statistical modeling; alumina

1. Introduction

Probability distributions are widely implemented in almost every field, especially in
civil engineering, healthcare sciences, electrical engineering, corrosion, aerospace, man-
agement, hydrology, and financial sectors, among others. For more information about the
implementation of the probability distributions, we refer to [1–7].

Undoubtedly, probability distributions play a significant and important role in model-
ing real-life scenarios in every field of life. However, it is also a crystal clear fact that no
specific probability distribution can provide reasonably a good fit in all scenarios. Therefore,
we often need to have probability distributions with updated distributional flexibility to fit
the practical data sets closely. The need to optimally fit real data sets in different scenarios
has led researchers to explore new probability distributions. To date, a substantial number
of papers have appeared in the literature focusing on the development of new probability
distributions (or new distributional methods or family of distributions) to exceptionally fit
the practical data sets [8–14].

The modified/updated probability distributions as well as the new distributional
methods are introduced by incorporating different parameters such as the transmuter pa-
rameter, scale parameter, location parameter, or rate parameter. Thanks to these probability
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distributions and the family of probability distributions, the majority of them have carried
out the inevitable goal of optimally fitting practical data sets. On the other hand, however,
the number of parameters of these distributional methods has also increased to seven [15].

Indubitably, the addition of new parameters significantly improves the fitting ability of
the existing distributions; however, it also leads to some problems such as the (i) estimation
consequences, (ii) the cumbersome process of deriving the distribution characteristics,
and (iii) re-parameterization problems, etc. This paper also contributes to the literature by
considering and implementing a useful method, namely, the extended-X (E-X) method for
updating the distributional flexibility and characteristics of the probability distributions.
Unlike some other traditional distributional methods, the E-X method has a single addi-
tional parameter rather than two, three, or more additional parameters. Below, we provide
the basic distributional functions of the E-X method.

Definition 1. The distribution function (DF) F(x; α, ξξξ) of the E-X method is defined by

F(x; α, ξξξ) =
eα − eα(1−[G(x;ξξξ)]2)

eα − 1
, x ∈ R, (1)

where G(x; ξξξ) is a valid DF with a vector of parameters ξξξ and α ∈ R+ is an additional parameter.

Corresponding to F(x; α, ξξξ), the probability density function (PDF) f (x; α, ξξξ), survival
function (SF) S(x; α, ξξξ), hazard function (HF) h(x; α, ξξξ), reverse HF r(x; α, ξξξ), and cumulative
HF H(x; α, ξξξ) are given by

f (x; α, ξξξ) =
2αg(x; ξξξ)G(x; ξξξ)

eα − 1
eα(1−[G(x;ξξξ)]2), x ∈ R, (2)

S(x; α, ξξξ) =
eα(1−[G(x;ξξξ)]2) − 1

eα − 1
, x ∈ R,

h(x; α, ξξξ) =
2αg(x; ξξξ)G(x; ξξξ)

eα(1−[G(x;ξξξ)]2) − 1
eα(1−[G(x;ξξξ)]2), x ∈ R,

r(x; α, ξξξ) =
2αg(x; ξξξ)G(x; ξξξ)

eα − eα(1−[G(x;ξξξ)]2)
eα(1−[G(x;ξξξ)]2), x ∈ R,

and

H(x; α, ξξξ) = − log

(
eα(1−[G(x;ξξξ)]2) − 1

eα − 1

)
, x ∈ R,

respectively.
The new PDF presented in Equation (2) is most tractable when the baseline PDF

g(x; α, ξξξ) and DF G(x; α, ξξξ) have simple analytical expressions.
Some key motivations/advantages of implementing the E-X method are the following:

• The E-X is a prominent method to obtain flexible models that are capable of capturing
different patterns of f (x; α, ξξξ) and h(x; α, ξξξ).

• The E-X approach is capable of updating the distribution flexibility of the baseline
models to provide a close fit to real-world data sets.

• The E-X method generates new models having a closed form of F(x; α, ξξξ).
• The quantile function (QF) of the E-X method is in an explicit form, which makes

it easy to generate random numbers without using the rootSolve function in the R
programming software.

• The E-X approach adds only one additional parameter to introduce newly updated
distributions, rather than adding two or more additional parameters.

In Section 2, we discuss a special member of the E-X method. For the new model,
the expressions of F(x; α, ξξξ), f (x; α, ξξξ), S(x; α, ξξξ), and h(x; α, ξξξ) are obtained. In addition
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to the numerical expressions, a visual display of f (x; α, ξξξ) and h(x; α, ξξξ) is also provided.
Section 3 provides certain distributional properties of the E-X distributions. The estimation
and simulation studies are carried out in Section 4. Two practical data sets are analyzed in
Section 5. The future research directions are discussed in Section 6. Some final remarks are
provided in Section 7.

2. A Sub-Model Description and its Special Cases

This section is devoted to introducing a special sub-model of the E-X family, called the
extended Weibull (E-Weibull) distribution. Furthermore, the special cases of the E-Weibull
are also discussed.

2.1. A Sub-Model Description

For x ∈ R+, let G(x; ξξξ), g(x; ξξξ), and h(x; ξξξ) be the DF, PDF, and HF of the two parame-
ters (γ ∈ R+, θ ∈ R+) Weibull distribution [16], given by

G(x; ξξξ) = 1 − e−γxθ
, x ∈ R+, (3)

g(x; ξξξ) = θγxθ−1e−γxθ
, x ∈ R+,

and
h(x; ξξξ) = θγxθ−1, x ∈ R+,

respectively, where ξξξ = (γ, θ). The Weibull distribution reduces to the (i) Rayleigh dis-
tribution when θ = 2 in Equation (3), and (ii) exponential distribution when θ = 1 in
Equation (3).

Some possible plots of h(x; ξξξ) of the Weibull distribution are presented in Figure 1.
These plots show that the HF of the Weibull distribution can either be (i) increasing, when
θ > 1 (with any value of γ ∈ R+), (ii) decreasing, when θ < 1 (with any value of γ ∈ R+),
or (iii) constant, when θ = 1 (with any value of γ ∈ R+).
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Figure 1. Visual display of h(x; ξξξ) for γ = 1 and different values of θ.

Figure 1 shows that the HF in the Weibull distribution is only able to capture monotonic
shapes such as increasing, decreasing, or constant. Therefore, in most cases where the HF
of the data has non-monotonic behavior (such as unimodal, modified unimodal, or bathtub
shapes), particularly when data follows a bathtub behavior, the Weibull distribution does
not provide the best fit [17–21]. To overcome this deficiency of h(x; ξξξ) of the Weibull
distribution, we introduce a modified/updated version of the Weibull distribution with the
following DF F(x; α, ξξξ).

F(x; α, ξξξ) =
eα − e

α

(
1−
[
1−e−γxθ

]2
)

eα − 1
, x ∈ R+, α ∈ R+, γ ∈ R+, θ ∈ R+, (4)
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and SF S(x; α, ξξξ) are given by

S(x; α, ξξξ) =
e

α

(
1−
[
1−e−γxθ

]2
)
− 1

eα − 1
.

The visual illustrations of F(x; α, ξξξ) and S(x; α, ξξξ) of the E-Weibull distribution are
presented in Figure 2.
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Figure 2. A visual display of F(x; α, ξξξ) and S(x; α, ξξξ) of the E-Weibull distribution.

For x ∈ R+, α ∈ R+, γ ∈ R+, and θ ∈ R+, the PDF f (x; α, ξξξ) of the E-Weibull
distribution is given by

f (x; α, ξξξ) =
2γθαxθ−1e−γxθ

[
1 − e−γxθ

]
(eα − 1)

e
α

(
1−
[
1−e−γxθ

]2
)

. (5)

The corresponding HF h(x; α, ξξξ) is

h(x; α, ξξξ) =
2γθαxθ−1e−γxθ

[
1 − e−γxθ

]
e

α

(
1−
[
1−e−γxθ

]2
)
− 1

e
α

(
1−
[
1−e−γxθ

]2
)

.

A visual illustration of f (x; α, ξξξ) of the E-Weibull distribution is shown in Figure 3.
The visual illustration of f (x; α, ξξξ) is provided for (i) α = 1.8, θ = 0.5, γ = 1.0, (red-line
curve), (ii) α = 2.5, θ = 2.2, γ = 1.0, (green-line curve), (iii) α = 0.01, θ = 3.6, γ = 0.1,
(black-line curve), and (iv) α = 0.01, θ = 2.9, γ = 0.4, (blue-line curve). Figure 3 shows
that the PDF of the E-Weibull distribution has four different shapes, such as (i) decreasing
(red-line curve), (ii) right-skewed (green-line curve), (iii) left-skewed (black-line curve),
and (iv) symmetrical (blue-line curve).
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Figure 3. A visual display of f (x; α, ξξξ) of the E-Weibull distribution.
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A visual illustration of h(x; α, ξξξ) of the E-Weibull distribution is provided in Figure 4.
The visual illustrations of h(x; α, ξξξ) are sketched for (i) α = 2.1, θ = 0.8, γ = 1.1, (red-line
curve), (ii) α = 1.2, θ = 0.5, γ = 1.0, (green-line curve), (iii) α = 12.2, θ = 2.5, γ = 1.4,
(black-line curve), (iv) α = 0.8, θ = 1.7, γ = 2, (blue-line curve), and (v) α = 2.1, θ = 0.3,
γ = 0.2, (gold-line curve). Figure 4 shows that the HF of the E-Weibull distribution has
five different shapes, such as (i) uni-modal (red-line curve), (ii) decreasing (green-line
curve), (iii) increasing–decreasing–increasing or modified uni-modal (black-line curve),
(iv) increasing (blue-line curve), and (v) bathtub (gold-line curve).
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Figure 4. A visual display of h(x; α, ξξξ) of the E-Weibull distribution.

2.2. Special Cases of the E-Weibull Distribution

This subsection offers the special cases of the E-Weibull distribution. The E-Weibull
distribution can be reduced to five new subcases. Let X have the E-Weibull distribution
with DF in Equation (4), then X is reduced.

3. The Statistical Properties

Here, we derive some statistical properties (SPs) of the E-X distributions such as series
representation, quantile function (QF), rth moment, and moment generating function (MGF).

3.1. The Series Representation

This subsection offers a series representation of f (x; α, ξξξ) of the E-X distributions.
Consider the series ex, we have

ex =
∞

∑
k=0

xk

k!
.

By incorporating the above series in Equation (2), we obtain

f (x; α, ξξξ) =
2

(eα − 1)

∞

∑
k=0

αk+1

k!
g(x; ξξξ)G(x; ξξξ)

(
1 − [G(x; ξξξ)]2

)k
. (6)

Using the series

(1 − z)k =
∞

∑
i=0

(−1)i
(

k
i

)
zi, |z| < 1.

Thus, from Equation (6), we obtain

f (x; α, ξξξ) =
2

(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!
g(x; ξξξ)[G(x; ξξξ)]2i+1. (7)

The form of f (x; α, ξξξ) provided in Equation (7) can also be expressed as
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f (x; α, ξξξ) =
2

(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!
∆i(x; ξξξ), (8)

where ∆i(x; ξξξ) = g(x; ξξξ)[G(x; ξξξ)]2i+1.

3.2. The QF

The QF plays a useful role in generating random numbers from a probability distribu-
tion. The QF of E-X distributions, denoted by Qu, has the following form

xq = G−1
(

1 − log(eα − u[eα − 1])
α

) 1
2
, (9)

where u ∈ (0, 1).

3.3. The rth Moment

The rth moment of the E-X distributions with PDF f (x; α, ξξξ), denoted by µ′
r, is

derived as
µ′

r = E(Xr) =
∫ ∞

−∞
xr f (x; α, ξξξ)dx. (10)

Using Equation (8) in Equation (10), we obtain

µ′
r =

2
(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!

∫ ∞

−∞
xrg(x; ξξξ)[G(x; ξξξ)]2i+1dx,

µ′
r =

2
(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!
2i + 2
2i + 2

∫ ∞

−∞
xrg(x; ξξξ)[G(x; ξξξ)](2i+2)−1dx,

µ′
r =

2
(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!(2i + 2)

∫ ∞

−∞
xr(2i + 2)g(x; ξξξ)[G(x; ξξξ)](2i+2)−1dx,

µ′
r =

(i + 1)−1

(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!(2i + 2)

∫ ∞

−∞
xrmi(x; ξξξ)dx, (11)

where mi(x; ξξξ) = (2i + 2)g(x; ξξξ)[G(x; ξξξ)](2i+2)−1 is the exponentiated PDF with exponenti-
ated parameter (2i + 2). We can also express Equation (11) as follows

µ′
r =

(i + 1)−1

(eα − 1)

∞

∑
k=0

∞

∑
i=0

(−1)i
(

k
i

)
αk+1

k!(2i + 2)
Ar,i(x; ξξξ), (12)

where
Ar,i(x; ξξξ) =

∫ ∞

−∞
xrmi(x; ξξξ)dx.

For r = 1 and r = 2, we obtain the mean and variance for any sub-model of the
E-X family. Using Equation (12), we can derive the rth moment for any sub-model of the
proposed class. Furthermore, the MGF of X, expressed by MX(t), is given by

MX(t) =
(i + 1)−1

(eα − 1)

∞

∑
k=0

∞

∑
i=0

∞

∑
r=0

(−1)i
(

k
i

)
αk+1tr

k!r!(2i + 2)
Ar,i(x; ξξξ). (13)

4. Estimation and Simulation

Here, we implement a well-known estimation approach to obtain the maximum
likelihood estimators (MLEs) of (α, ξξξ) expressed by

(
α̂MLE, ξ̂ξξMLE

)
. After obtaining α̂MLE

and ξ̂ξξMLE, a simulation is conducted to see their behaviors/performances.
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4.1. Estimation

Consider a random sample, for example, X1, X2, . . . , Xn of size n taken from f (x; α, ξξξ)
with parameters α and ξξξ. Then, corresponding to f (x; α, ξξξ), the likelihood function (LF),
denoted by λ(α, θ, γ|x1, x2, . . . , xn), is given by

λ(α, θ, γ|x1, x2, . . . , xn) =
n

∏
i=1

f (xi; α, ξξξ). (14)

Using Equation (5) in Equation (14), we obtain

λ(α, θ, γ|x1, x2, . . . , xn) =
n

∏
i=1

2αθγxθ−1
i e−γxθ

i

(
1 − e−γxθ

i

)
(eα − 1)

e
α

(
1−
[

1−e−γxθ
i

]2
)

. (15)

In link to Equation (15), the log LF ℓ(α, θ, γ) is given by

ℓ(α, θ, γ) = n log 2 + n log α + n log θ + n log γ + (θ − 1)
n

∑
i=1

log xi −
n

∑
i=1

γxθ
i (16)

+
n

∑
i=1

log
(

1 − e−γxθ
i

)
+

n

∑
i=1

α

(
1 −

[
1 − e−γxθ

i

]2
)
− n log(eα − 1).

Corresponding to Equation (16), the partial derivatives based on α, θ, and γ are
given by

∂

∂α
ℓ(α, θ, γ) =

n
α
+ n −

n

∑
i=1

(
1 − e−γxθ

i

)2
− neα

eα − 1
,

∂

∂θ
ℓ(α, θ, γ) =

n
θ
+

n

∑
i=1

log xi − γ
n

∑
i=1

(log xi)xθ
i + γ

n

∑
i=1

(log xi)xθ
i e−xθ

i γ(
1 − e−γxθ

i

)
− 2αγ

n

∑
i=1

(log xi)xθ
i e−γxθ

i

(
1 − e−γxθ

i

)
,

and

∂

∂γ
ℓ(α, θ, γ) =

n
γ
−

n

∑
i=1

xθ
i +

n

∑
i=1

xθ
i e−γxθ

i(
1 − e−γxθ

i

) − 2α
n

∑
i=1

xθ
i e−γxθ

i

(
1 − e−γxθ

i

)
,

respectively.
On solving ∂

∂α ℓ(α, θ, γ) = 0, ∂
∂θ ℓ(α, θ, γ) = 0, and ∂

∂γ ℓ(α, θ, γ) = 0, we obtain α̂MLE

θ̂MLE, and γ̂MLE, respectively. As we can see, the expressions of the MLEs are not in explicit
forms. Therefore, we need to use an iterative procedure such as the Newton–Raphson
method to obtain the estimates of the parameters numerically.

In the practice of statistical applications, the asymptotic variance–covariance matrix is
an important factor. It provides useful information about the precision and uncertainty of
the MLEs. The variance–covariance matrix is constructed with the help of an information
matrix whose elements are obtained using the second-order derivatives of the log-likelihood
functions of the MLEs. The elements of the information matrix are obtained by taking the
negative expectation of the second-order derivatives of the log-likelihood functions. In the
present three-parameter case, the variance–covariance matrix is given by I11 I12 I13

I21 I22 I23
I31 I32 I33

−1

=

 V(α̂) Cov
(
α̂, θ̂
)

Cov(α̂, γ̂)
Cov

(
θ̂, α̂
)

V
(
θ̂
)

Cov
(
θ̂, γ̂
)

Cov(γ̂, α̂) Cov
(
γ̂, θ̂
)

V(γ̂)

−1

,
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where

I11 =
∂

∂α2 ℓ(α, θ, γ) =
ne2α

(eα − 1)2 − neα

eα − 1
− n

α2 ,

I22 =
∂

∂θ2 ℓ(α, θ, γ) = −γ
n

∑
i=1

xθ
i (log xi)

2 + 2αγ2
n

∑
i=1

x2θ
i (log xi)

2e−γxθ
i

(
1 − e−γxθ

i

)
− γ2

n

∑
i=1

x2θ
i (log xi)

2e−γxθ
i(

1 − e−γxθ
i

) + γ
n

∑
i=1

xθ
i (log xi)

2e−γxθ
i(

1 − e−γxθ
i

)
− 2αγ

n

∑
i=1

xθ
i (log xi)

2e−γxθ
i

(
1 − e−γxθ

i

)
− n

θ2

− 2αγ2
n

∑
i=1

x2θ
i (log xi)e−2γxθ

i

− γ2
n

∑
i=1

x2θ
i (log xi)

2e−γxθ
i(

1 − e−γxθ
i

)2 ,

I33 =
∂

∂γ2 ℓ(α, θ, γ) = 2α
n

∑
i=1

x2θ
i e−γxθ

i

(
1 − e−γxθ

i

)
−

n

∑
i=1

x2θ
i e−γxθ

i(
1 − e−γxθ

i

)
−

n

∑
i=1

x2θ
i e−2γxθ

i(
1 − e−γxθ

i

)2 − 2α
n

∑
i=1

x2θ
i e−2γxθ

i − n
γ2 ,

I12 =
∂

∂α∂θ
ℓ(α, θ, γ) = −2γ

n

∑
i=1

xθ
i (log xi)e−γxθ

i

(
1 − e−γxθ

i

)
,

I13 =
∂

∂α∂γ
ℓ(α, θ, γ) = −2

n

∑
i=1

xθ
i e−γxθ

i

(
1 − e−γxθ

i

)
,

and

I32 =
∂

∂γ∂θ
ℓ(α, θ, γ) = 2αγ

n

∑
i=1

x2θ
i (log xi)e−γxθ

i

(
1 − e−γxθ

i

)
−

n

∑
i=1

xθ
i (log xi)

− γ
n

∑
i=1

x2θ
i (log xi)e−γxθ

i(
1 − e−γxθ

i

) +
n

∑
i=1

xθ
i (log xi)e−γxθ

i(
1 − e−γxθ

i

)
− 2α

n

∑
i=1

xθ
i (log xi)e−γxθ

i

(
1 − e−γxθ

i

)
− 2αγ

n

∑
i=1

x2θ
i (log xi)e−2γxθ

i

− γ
n

∑
i=1

x2θ
i (log xi)e−2γxθ

i(
1 − e−γxθ

i

)2 .

4.2. Simulation

Here, we assess the performances of α̂MLE and ξ̂ξξMLE, by incorporating a brief simu-
lation study. To carry out this study, we implement the inverse DF method to generate
the random numbers from the E-Weibull distribution with DF F(x; α, ξξξ) and PDF f (x; α, ξξξ)
presented in Equation (4) and Equation (5), respectively.

It is important to note that we can perform the simulation study using the initial
values of the parameters within the given range of the parameters. There are no hard and
fast rules over selecting the initial values of the parameters. Within the given range of the
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parameters, we can choose any value. In this subsection, we perform a simulation study for
two different combination sets of the model parameters, such as (a) θ = 0.6, γ = 1.2, α = 0.8,
and (b) θ = 1.2, γ = 0.5, α = 1.

For both two sets of parameters presented in (a) and (b), a random sample of sizes
n = 50, 100, 150, . . . , 1000 are generated by implementing the following formula:

Qu = G−1
(

1 − log(eα − u[eα − 1])
α

) 1
2
.

The simulation results are replicated 1000 times. To evaluate the performances of α̂MLE
and ξ̂ξξMLE, two statistical approaches/procedures are considered. The analytical results of
these quantities are, respectively, obtained as

Bias
(

Θ̂ΘΘ
)
=

1
1000

1000

∑
k=1

(
Θ̂ΘΘk −ΘΘΘ

)
,

and

MSE
(

Θ̂ΘΘ
)
=

1
1000

1000

∑
k=1

(
Θ̂ΘΘk −ΘΘΘ

)2
,

where ΘΘΘ = (α, θ, γ).
The simulation results are obtained by implementing the R-script with the L-BFGS-B

algorithm. For more information about the L-BFGS-B algorithm, we refer to [22]. Corre-
sponding to (a) θ = 0.6, γ = 1.2, α = 0.8, the simulation result of the E-Weibull distribu-
tion is presented in Table 1 and displayed visually in Figure 5, whereas in relation to (b)
θ = 1.2, γ = 0.5, α = 1, the simulation result of the E-Weibull distribution is presented in
Table 2 and displayed visually in Figure 6.

Table 1. Simulation results for the E-Weibull distribution.

Set 1: θ = 0.6, γ = 1.2, α = 0.8.

n Parameters Estimates MSEs Biases

θ 0.6049476 0.00499659 0.00494755
50 γ 1.2551280 0.14450400 0.05512813

α 1.0426544 0.59331445 0.24265444

θ 0.6005533 0.00234897 0.00055333
100 γ 1.2425210 0.08386770 0.04252140

α 0.9534761 0.24032552 0.15347606

θ 0.6002110 0.00153915 0.00021101
150 γ 1.2112220 0.06873700 0.01122178

α 0.8766179 0.11933972 0.07661793

θ 0.6020050 0.00105163 0.00200500
200 γ 1.2165500 0.04596168 0.01654977

α 0.8515907 0.06649227 0.05159065

θ 0.6006022 0.00077746 0.00060218
300 γ 1.2058170 0.03372750 0.00581712

α 0.8327267 0.04568434 0.03272672

θ 0.6024499 0.00055874 0.00244992
400 γ 1.2042760 0.02571049 0.00427639

α 0.8217224 0.02968523 0.02172245

θ 0.5998417 0.00049501 −0.00015833
500 γ 1.2007200 0.01915068 0.00071994

α 0.8191257 0.02544670 0.01912566
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Table 1. Cont.

Set 1: θ = 0.6, γ = 1.2, α = 0.8.

n Parameters Estimates MSEs Biases

θ 0.6003340 0.00036804 0.00033401
600 γ 1.1980350 0.01698582 −0.00196531

α 0.8134189 0.01992697 0.01341893

θ 0.6004238 0.00032848 0.00042383
700 γ 1.2009870 0.01392998 0.00098655

α 0.8148440 0.01676339 0.01484398

θ 0.5997210 0.00027106 −0.00027895
800 γ 1.2043020 0.01180620 0.00430183

α 0.8134790 0.01452197 0.01347903

θ 0.6003043 0.00024637 0.00030430
900 γ 1.1964130 0.01043127 −0.00358707

α 0.8086972 0.01221243 0.00869715

θ 0.6003874 0.00022317 0.00038743
1000 γ 1.1995220 0.00906631 −0.00047760

α 0.8088841 0.01085164 0.00888406
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Figure 5. A visual display of the simulation results of the E-Weibull distribution for θ = 0.6,
γ = 1.2, α = 0.8.
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Table 2. Simulation results for the E-Weibull distribution.

Set 2: θ = 1.2, γ = 0.5, α = 1

n Parameters Estimates MSEs Biases

θ 1.2259760 0.03178910 0.02597563
50 γ 0.5115946 0.02014171 0.01159464

α 1.2608530 0.78577385 0.26085267

θ 1.2106610 0.01362797 0.01066061
100 γ 0.5046863 0.01113516 0.00468632

α 1.1380080 0.32288255 0.13800823

θ 1.2053130 0.00853220 0.00531329
150 γ 0.5065875 0.00677564 0.00658753

α 1.0834850 0.14853435 0.08348485

θ 1.2037680 0.00642700 0.00376764
200 γ 0.4990183 0.00528436 −0.00098173

α 1.0508120 0.09908880 0.05081233

θ 1.2014800 0.00439835 0.00148045
300 γ 0.5036268 0.00315291 0.00362679

α 1.0374950 0.05371933 0.03749508

θ 1.2003880 0.00325330 0.00038808
400 γ 0.5023467 0.00249109 0.00234669

α 1.0347320 0.04488695 0.03473155

θ 1.2027780 0.00258701 0.00277782
500 γ 0.5020358 0.00214560 0.00203577

α 1.0199860 0.03393216 0.01998558

θ 1.2008270 0.00223004 0.00082663
600 γ 0.5012683 0.00155480 0.00126833

α 1.0210830 0.02414743 0.02108303

θ 1.2004010 0.00175688 0.00040114
700 γ 0.5002717 0.00138508 0.00027174

α 1.0141590 0.02154580 0.01415942

θ 1.2021160 0.00167774 0.00211633
800 γ 0.5009623 0.00120435 0.00096234

α 1.0130060 0.01881078 0.01300580

θ 1.2003070 0.00141695 0.00030684
900 γ 0.4993483 0.00100807 −0.00065170

α 1.0051790 0.01494259 0.00517902

θ 1.2019830 0.00137085 0.00198250
1000 γ 0.5003773 0.00104251 0.00037729

α 1.0105540 0.01719370 0.01055399
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Figure 6. A visual display of the simulation results of the E-Weibull distribution for
θ = 1.2, γ = 0.5, α = 1.

5. Applications

Here, we implement the E-Weibull distribution to two data sets taken from the field of
civil engineering. Both the data sets represent the fracture toughness of the alumina (Al2O3)
material. The data sets are measured in the units of MPa m1/2. Using certain evaluation
criteria, we compare the performance (i.e., fitting power) of the E-Weibull distribution with
other competing distributions.

5.1. Descriptions of the Data Sets

The first data set represents the fracture toughness of Al2O3 and is taken from [23].
Onward, we call the first data set Data 1. The observations of Data 1 are given by 5.5, 5, 4.9,
6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1, 4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73,
4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4,
3.95, 4, 4.5, 4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8,
5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25, 4.75, 4.5,
4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4,5, 2.1, 4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3,
4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5.

The second data set also represents the fracture toughness of Al2O3 and is taken from
https://data.world/datasets/aluminum (accessed on 12 July 2023). Onward, we call the
second data set Data 2. The observations of Data 2 are given by 7.060066, 6.418242, 6.289877,
8.215349, 6.546606, 6.674971, 6.674971, 6.418242, 6.033147, 5.134593, 5.776417, 5.391323,
5.262958, 5.853436, 6.431078, 6.033147, 4.017819, 4.004983, 3.440177, 3.555706, 3.465850,
3.029410, 5.622380, 7.355305, 5.583870, 8.741645, 2.451768, 3.414504, 3.350322, 2.156529,
2.618643, 2.669988, 2.734171, 4.877864, 4.788008, 4.762335, 4.210366, 5.006228, 5.134593,
4.877864, 5.262958, 5.006228, 5.198776, 5.134593, 5.070411, 5.134593, 5.776417, 5.776417,
5.391323, 5.840600, 5.968965, 5.262958, 5.455505, 5.519688, 5.776417, 6.033147, 6.610789,
5.519688, 5.776417, 6.289877, 6.418242, 6.867518, 6.610789, 6.739154, 7.445160, 7.509343,
7.573525, 7.380978, 8.022802, 7.766072, 7.573525, 4.621134, 5.262958, 5.776417, 6.803336,
6.225694, 6.803336, 6.995883, 6.546606, 6.803336, 6.674971, 6.803336, 6.739154, 6.097329,
5.776417, 5.391323, 5.134593, 5.327140, 5.455505, 5.519688, 4.813681, 5.070411, 4.505606,
5.301467, 6.931701, 6.418242, 2.695661, 5.904782, 4.107675, 3.209121, 5.262958, 4.492769,
4.107675, 4.236039, 5.904782, 5.519688, 5.519688, 5.776417, 7.060066, 5.904782, 6.289877,
5.519688, 3.850945, 4.364404, 4.749499, 5.648053, 6.289877, 6.289877, 6.418242, 10.654281,
9.370633, 7.188430, 8.728808, 7.958619, 9.884092, 9.370633, 10.525916, 10.140822, 8.343714,
8.600444.

Corresponding to Data 1 and Data 2, related to the fracture toughness of Al2O3,
the histograms, total time on test plot transformation (TTT-transform), box plots, and violin
plots are presented in Figure 7 and Figure 8, respectively. For more detailed information
about the TTT-transform and violin plot, we refer to [24,25].

https://data.world/datasets/aluminum
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Figure 7. The histogram, TTT-transform, box plot, and violin plot using Data 1.

data

F
re

q
u
e
n
c
y

2 4 6 8 10

0
1
0

2
0

3
0

4
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n

)

2 4 6 8 10

2
4

6
8

1
0

Figure 8. The histogram, TTT-transform, box plot, and violin plot using Data 2.
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5.2. The Rival Distributions

To demonstrate the utility and superiority of the E-Weibull distribution over other
distributions, we consider some competing/rival distributions. The rival distributions are
the prominent and well-known modifications of the Weibull distribution. The DFs of the
rival distributions are

• The exponentiated Weibull (Exp-Weibull) distribution of Mudholkar and Srivas-
tava [26] with DF as follows:

F(x; δ1, γ, θ) =
(

1 − e−γxθ
)δ1

, x ∈ R+, δ1, γ, θ ∈ R+.

• The Kumaraswamy Weibull (Kum-Weibull) distribution of Cordeiro et al. [27] with DF
as follows:

F(x; δ1, δ2, γ, θ) = 1 −
(

1 −
[
1 − e−γxθ

]δ1
)δ2

, x ∈ R+, δ1, δ2, γ, θ ∈ R+.

• A New Alpha Power Cosine-Weibull (NAC-Weibull) of Alghamdi and Abd El-Raouf [28]
with DF as follows:

F(x; θ, γ, α1) =
α

cos

 π
2 −

π

(
1−e−γxθ

)
2


1 − 1

α1 − 1
, x ∈ R+, θ, γ, α1 ∈ R+, α1 ̸= 1.

• The exponentiated Flexible Weibull (EF-Weibull) of El-Gohary et al. [29] with DF as
follows:

F(x; γ, β, α1) =

1 − e−e

(
γx− β

x

)δ1

x ∈ R+, γ, β, δ1 ∈ R+.

5.3. The Evaluation Criteria

After selecting the competing models, next we consider seven statistical measures
with p-values to see which model provides the closest fit to the fracture toughness of Al2O3
data sets. The numerical values of these statistical measures are computed as

• The Akaike information criteria (AIC)

AIC = 2p − 2ℓ(ΘΘΘ);

• The Bayesian information criteria (BIC)

BIC = p log(m)− 2ℓ(ΘΘΘ);

• The Consistent Akaike information criteria (CAIC)

CAIC =
2mp

m − p − 1
− 2ℓ(ΘΘΘ);

• The Hannan–Quinn information criteria (HQIC)

HQIC = 2p log(log(m))− 2ℓ(ΘΘΘ);

• The Anderson–Darling (AD) test

AD = −n − 1
n

n

∑
i=1

(2i − 1)[log F(xi) + log{1 − F(xn−i+1)}];
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• The Cramer–von Mises (CM) test

CM =
1

12n
+

n

∑
i=1

[
2i − 1

2n
− F(xi)

]2
;

• The Kolmogorov–Smirnov (KS) test

KS = supx
∣∣Fn(x)− F(x)

∣∣.
The values of the MLEs along with their corresponding confidence intervals and the

above decisive measures are calculated using the package AdequacyModel in R-script with
optim() and method = BFGS.

A model having the lowest values of the above statistical measures indicates a close
fit to the data. Based on these measures, it is observed that the E-Weibull distribution has
smaller values of these analytical measures as compared to the Exp-Weibull and Kum-
Weibull distributions.

5.4. Analysis of Data 1

Corresponding to the first data set related to the fracture toughness of Al2O3, the values
of α̂MLE, θ̂MLE, γ̂MLE, δ̂1MLE, δ̂2MLE, α̂1MLE, and β̂MLE are provided in Table 3. Furthermore,
the 95 % confidence interval (CI) of the MLEs is also provided in Table 3. The numerical val-
ues of the respective statistical measures for the E-Weibull, Exp-Weibull, and Kum-Weibull
distributions are obtained in Tables 4 and 5. The analytical results in Tables 4 and 5, confirm
the best-fitting capability of the E-Weibull distribution as it has the lowest values of the
considered tests. Furthermore, for Data 1, the visual illustration of the performances of the
E-Weibull distribution is also considered. For the visual performances, we consider the plots
of the estimated PDF, empirical CDF, Kaplan–Meier survival plot, probability–probability
(PP), and quantile–quantile (QQ) plots; see Figure 9. From the visual illustrations in Figure 9,
it is obvious that the E-Weibull distribution fits Data 1 closely.

Table 3. The values of α̂MLE, θ̂MLE, γ̂MLE, δ̂1MLE, δ̂2MLE, α̂1MLE, and β̂MLE for the first data set of Al2O3.

Model α̂MLE θ̂MLE γ̂MLE δ̂1 MLE δ̂2 MLE α̂1 MLE β̂MLE

E-Weibull 2.185
(4.016, 0.354)

2.807
(3.426, 2.188)

0.030
(0.066, 0.005)

- - - -

Exp-Weibull - 3.537
(3.883, 3.191)

0.006
(0.010, 0.002)

1.737
(2.230, 1.244)

- - -

Kum-Weibull - 2.251
(2.996, 1.506)

0.013
(0.028, 0.001)

2.631
(3.560, 1.704)

14.190
(45.340, 1.902)

- -

NAC-Weibull - 3.459
(3.659, 3.259)

0.003
(0.004, 0.002)

- - 3.692
(6.843, 0.541)

-

EF-Weibull - - 0.300
(0.319, 0.282)

35.425
(66.037, 4.813)

- - 0.326
(1.110, 0.016)

Table 4. The values of the AIC, CAIC, BIC, and HQIC of the fitted models using the first data set
of Al2O3.

Model AIC CAIC BIC HQIC

E-Weibull 344.0993 344.3080 352.4366 347.4848
Exp-Weibull 346.9896 347.1983 355.3270 350.3751
Kum-Weibull 347.3122 347.6631 358.4287 351.8263
NAC-Weibull 346.9654 346.1741 354.3028 349.3509

EF-Weibull 349.4578 349.6665 357.7952 352.8434
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Table 5. The values of the CM, AD, KS, and p-value of the fitted models using the first data set
of Al2O3.

Model CM AD KS p-Value

E-Weibull 0.0984 0.6352 0.0644 0.7054
Exp-Weibull 0.1573 0.9780 0.0939 0.2443
Kum-Weibull 0.1261 0.7864 0.0800 0.4315
NAC-Weibull 0.0922 0.7550 0.0955 0.2277

EF-Weibull 0.1631 1.0422 0.0942 0.2408
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Figure 9. In relation to Data 1, the Fitted PDF, DF, SF, QQ, and PP plots of the E-Weibull distribution.

5.5. Analysis of Data 2

For the second data set of the fracture toughness of Al2O3, the values of α̂MLE, θ̂MLE,
γ̂MLE, δ̂1MLE, δ̂2MLE, α̂1MLE, and β̂MLE along with the 95% CI of the MLEs are reported
in Table 6, whereas the values of the statistical tests for the E-Weibull, Exp-Weibull, and
Kum-Weibull distributions are presented in Tables 7 and 8. From the numerical description
provided in Tables 7 and 8, it is clear that the E-Weibull distribution is the best competitor
model. In addition to the numerical results (Tables 7 and 8), the performances of the
E-Weibull distribution are also presented visually in Figure 10. The plots in Figure 10 again
visually confirm that the E-Weibull distribution closely follows Data 2.

Table 6. The values of α̂MLE, θ̂MLE, γ̂MLE, δ̂1 MLE, δ̂2 MLE, α̂1 MLE, and β̂MLE for the second data set
of Al2O3.

Model α̂MLE θ̂MLE γ̂MLE δ̂1 MLE δ̂2 MLE α̂1 MLE β̂MLE

E-Weibull 3.928
(5.140, 0.717)

1.890
(2.503, 1.276)

0.086
(0.208, 0.034)

- - - -

Exp-Weibull - 2.349
(4.596, 1.030)

0.024
(0.062, 0.013)

2.813
(3.009, 1.688)

- - -

Kum-Weibull - 1.408
(2.151, 1.284)

0.095
(0.141, 0.048)

4.975
(6.622, 3.327)

4.585
(7.953, 1.216)

- -

NAC-Weibull - 0.002
(0.003, 0.001)

2.933
(4.933, 0.933)

- - 3.101
(3.229, 2.973)

-

EF-Weibull - - 0.208
(0.224, 0.192)

10.721
(26.212, 4.769)

- - 1.104
(4.091, 0.083)
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Table 7. The values of the AIC, CAIC, BIC, and HQIC of the fitted models using the second data set
of Al2O3.

Model AIC CAIC BIC HQIC

E-Weibull 497.2910 497.4815 505.8936 500.7865
Exp-Weibull 499.7503 499.9408 508.3529 503.2459
Kum-Weibull 501.4224 501.7424 512.8926 506.0831
NAC-Weibull 507.0984 507.2889 515.7010 510.5940

EF-Weibull 500.2151 500.4056 508.8177 503.7106

Table 8. The values of the CM, AD, KS, and p-value of the fitted models using the second data set
of Al2O3.

Model CM AD KS p-Value

E-Weibull 0.1134 0.6960 0.0666 0.6114
Exp-Weibull 0.1824 1.0656 0.0870 0.2783
Kum-Weibull 0.1740 1.0186 0.0871 0.2771
NAC-Weibull 0.2320 1.3915 0.1134 0.0702

EF-Weibull 0.1919 1.1185 0.0826 0.3376
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Figure 10. In relation to Data 2, the Fitted PDF, DF, SF, QQ, and PP plots of the E-Weibull distribution.

6. Future Research Work

We highlighted earlier the importance and applications of statistical methodologies in
applied fields. In the future, therefore, we are motivated to further extend our model to
update its distributional flexibility. Some possible extensions of the E-X distributions could
be handled as follows:

• The exponentiated version of the E-X distributions:
Mudholkar and Srivastava [26] suggested a useful method for extending the existing
distributions called the exponentiated family of distributions. The CDF M(x; δ1, ΘΘΘ) of
the exponentiated family of distributions is expressed by

M(x; δ1, ΘΘΘ) = (F(x; ΘΘΘ))δ1 , x ∈ R, δ1 > 0. (17)
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In the future, we are intending to study the exponentiated version of the E-X distribu-
tions called the exponentiated E-X (EE-X) distributions. The CDF M(x; δ1, ΘΘΘ) of the
EE-X distributions is obtained by using Equation (1) in Equation (17), as given by

M(x; δ1, ΘΘΘ) =

(
eα − eα(1−[G(x;ξξξ)]2)

eα − 1

)δ1

, x ∈ R,

where ΘΘΘ = (α, ξξξ).
• The Kumaraswamy version of the E-X distributions:

Cordeiro et al. [27] proposed the Kumaraswamy family of distributions. The CDF
M(x; δ1, δ2, ΘΘΘ) of the Kumaraswamy family of distributions is given by

M(x; δ1, δ2, ΘΘΘ) = 1 −
[
1 − (F(x; ΘΘΘ))δ1

]δ2
, x ∈ R, δ1 > 0, δ2 > 0. (18)

In the future, we are also committed to study the Kumaraswamy version of the E-X dis-
tributions called the Kumaraswamy E-X (KE-X) distributions. The CDF M(x; δ1, δ2, ΘΘΘ)
of the KE-X distributions is obtained by using Equation (1) in Equation (18), as given by

M(x; δ1, δ2, ΘΘΘ) = 1 −

1 −
[

eα − eα(1−[G(x;ξξξ)]2)

eα − 1

]δ1
δ2

, x ∈ R.

• The Marshall–Olkin version of the E-X distributions:
Marshall and Olkin [30] introduced a very useful distributional method for obtaining
new probability distributions with CDF M(x; κ, ΘΘΘ) given by

M(x; κ, ΘΘΘ) =
F(x; ΘΘΘ)

κ + (1 − κ)F(x; ΘΘΘ)
x ∈ R, κ ∈ R+. (19)

As a future study, we can also study a new version of the E-X distributions using
the given distributional method in Equation (19). The new modified form of the E-X
distributions based on Equation (19) may be called the Marshall–Olkin E-X (MOE-X)
distributions. The CDF M(x; κ, ΘΘΘ) of the MOE-X distributions is obtained by using
Equation (1) in Equation (19), as given by

M(x; κ, ΘΘΘ) =

(
eα−eα(1−[G(x;ξξξ)]2)

eα−1

)
κ + (1 − κ)

(
eα−eα(1−[G(x;ξξξ)]2)

eα−1

) x ∈ R.

• The alpha power transformed version of the E-X distributions:
Mahdavi and Kundu [31] used the alpha power transformation method and suggested
a useful method for generating new probability distributions with CDF M(x; α1, ΘΘΘ)
given by

M(x; α1, ΘΘΘ) =
α

F(x;ΘΘΘ)
1 − 1
α1 − 1

x ∈ R, α1,∈ R+, α1 ̸= 1. (20)

As a future study, we are also planning to introduce the alpha power transformed
version of the E-X distributions called the alpha power transformed E-X (APTE-X)
distributions. The CDF M(x; α1, ΘΘΘ) of the APTE-X distributions is obtained by using
Equation (1) in Equation (20), as given by

M(x; α1, ΘΘΘ) =
α

(
eα−e

α(1−[G(x;ξξξ)]2)
eα−1

)
1 − 1

α1 − 1
, x ∈ R.
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7. Final Remarks

Probability distributions have a great role in civil engineering and other connected
fields. These models are very crucial for modeling different kinds of data sets. With the
help of probability distributions, we can model and predict the performances of different
entities. Keeping in view the crucial role of probability distributions in different engineering
sectors, this paper considered a useful approach to obtain new probability distributions,
namely, the E-X family. Some statistical properties of the E-X distributions including QF,
rth moment, and MGF were derived. The MLEs of the E-X distributions were also obtained.
Based on the E-X method, an updated version of the Weibull distribution, namely, the
E-Weibull distribution was introduced. To illustrate the E-Weibull distribution, two data
sets representing the fracture toughness of Al2O3 were analyzed. Based on the selected
evaluation criteria, it was observed that the E-Weibull distribution was the best-suited
model for analyzing the Al2O3 data sets.

Our future goals are centered on understanding and exploring the heavy-tailed char-
acteristics of the proposed model. Furthermore, we are determined to implement the
proposed distribution for statistical analysis of financial data sets that possess these heavy-
tailed characteristics.
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