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Abstract: The aim of this research is to investigate the frequency of conical-shaped shells, consisting
of different materials, based on higher-order shear deformation theory (HSDT). The shells are of non-
uniform thickness, consisting of two to six symmetric cross-ply layers. Simply supported boundary
conditions were used to analyse the frequency of conical-shaped shells. The differential equations,
consisting of displacement and rotational functions, were approximated using spline approximation.
A generalised eigenvalue problem was obtained and solved numerically for an eigenfrequency
parameter and associated eigenvector of spline coefficients. The frequency of shells was analysed by
varying the geometric parameters such as length of shell, cone angle, node number in circumference
direction and number of layers, as well as three thickness variations such as linear, sinusoidal and
exponential. It was also evident that by varying geometrical parameters, the mechanical parameters
such as stress, moment and shear resultants were affected. Research results concluded that for three
different thickness variations, as the number of layers of conical shells increases, the frequency values
decrease. Moreover, by varying length ratios and cone angles, shells with variable thickness had
lower frequency values compared to shells of constant thickness. The numerical results obtained
were verified through the already existing literature. It is evident that the present results are very
close to the already existing literature.

Keywords: analysis; vibration; variable thickness; eigenfrequency; higher-order theory

1. Introduction

Composite shells have been widely used in marine, mechanical and aeronautical engi-
neering. Conical shells are used in numerous structures, e.g., in submarine and offshore
structures, aircraft, tubular structures, towers and tanks. Conical shells of variable thickness
can be used in various engineering applications, such as pressure vessels, storage tanks
and aerospace structures. The variable thickness allows for optimisation of the shell’s
weight and strength, making it a versatile design choice. Additionally, the conical shape
provides structural stability and efficient load distribution. Overall, the use of conical shells
of variable thickness can offer a balance between performance and material efficiency in
engineering designs. Properties such as high stiffness to weight and low density are striking
features of composites, which are particularly useful for engineering structures because
they require high stiffness and light weight. Shells are considerably stronger and stiffer
than other structural forms, since they efficiently resist applied external loads by virtue of
their geometrical form, i.e., spatial curvatures. Owing to this, the present study is based
on conical shell structures. Conical shells of non-uniform thickness have better stress and
strain distributions, as well as an optimum weight compared to shells of uniform thickness,
and it is important to know how the mechanical properties, such as natural frequency, are
influenced by varying the dimensions and geometrical parameters of the shell. Composite
structures of variable thickness are used in many engineering fields. Moreover, conical
shells of variable thickness have been vastly used in the aerospace and missile industries.
The purpose of variable thickness is to obtain a required stable structure or to acquire a
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required frequency. There are a number of theories that accurately predict the structural
and dynamic behaviour of composite structures. Among them, composite plates and
shells can be analysed with reasonable accuracy using the equivalent single-layer [1,2] and
layer-wise [3] theories based on the 2D descriptions of the structures. In the equivalent
single-layer theories, mid-plane displacements are considered as field variables and are
described through the thickness variation of displacements over the assumed deformation
of the cross-section. The equivalent single-layer formulations are usually simpler compared
to layer-wise formulations and are easier to apply in numerical procedures, providing
accurate displacement and stress components, particularly for thin and moderately thick
laminates. Free vibration analysis of rotating functionally graded conical shells were exam-
ined and investigated [4]. The higher-order shear deformation theory, used to analyse the
free vibration of stiffened rotating FGM conical shells in a thermal environment, was stud-
ied [5]. Moreover, the nonlinear free vibration analysis of truncated conical shells, made
of bidirectional functionally graded materials, was examined [6]. Ref. [7] investigated the
modeling and free vibration analysis of variable stiffness systems for sandwich conical shell
structures with variable thickness. Functionally graded CNT-reinforced composite conical
shell panels were studied [8]. The Chebyshev-RPIM meshless solution for the free vibration
of conical shell panels with variable thickness and fiber curvature was examined by [9]. Free
vibration analyses of rotating cross-ply laminated combined elliptical–cylindrical–conical
shells have also been investigated [10]. Zigzag theories [11] are combinations of the equiva-
lent single-layer and layer-wise theories. Zigzag theories are as computationally efficient
as single-layer theories and can produce as accurate predictions as layer-wise theories.
Moreover, higher-order shear deformation theory calculates more precise inter-laminar
stress distributions and satisfies the conditions of zero-shear stress at the top and bottom
surfaces of the plate. In addition, in higher-order theory, the displacement component is
expanded up to the third power term along z-coordinates, in order to have a fourth power
variation of transverse shear strains and transverse shear stresses through the plate thick-
ness (Reddy [12]). The free vibration of conical shells using HSDT in thermal surrounding
were examined by Singha et al. [13]. Deb Singha et al. [14] analysed pre-twisted conical
shells with functionally graded carbon nanotube. The frequencies of coupled conical shells
have also been investigated (Gia Ninh [15] and Bagheri [16]). The DQM method was used
to study conical and cylindrical shells and annular circular plates by Safarpour et al. [17].
GNP-reinforced conical shells were investigated by Afshari [18]. Refined shear deformation
theory has been used to analyse the nonlinear forced vibration of conical shells (Amabili
and Balasubramanian [19]). Using HSDT and DQM, the buckling and vibration of annular
plates were analysed by Zhang et al. [20]. Taati et al. [21] investigated the free vibration of
cylindrical shells of variable thickness using a closed form solution. Sandwich conical shells
were studied by Zarei et al. [22]. The Walsh series technique was used by Guo et al. [23] to
examine the frequencies of cone-shaped shells. Maji and Singh [24] used shear deformation
theory to investigate the free vibration of conical shells under rotation. The Haar wavelet
technique was used to analyse functionally graded conical shells in order to study free
vibration and buckling behaviours by Pakravan et al. [25]. Immersed cylinder-shaped
shells of varying thickness were studied by Wang et al. [26]. Functionally graded plates
were analysed by Thai et al. [27]. Phung-Van et al. [28] examined multilayer functionally
graded graphene platelet-reinforced composite nanoplates. This current study is different
in one way or another when compared with all of the above-mentioned studies. None of
the studies used the spline approximation method, nor composite materials consisting of
six layers, each of different materials.

This research work aims to investigate the frequency of conical-shaped shells consist-
ing of different materials based on higher-order shear deformation theory (HSDT). The
shells are of non-uniform thickness, consisting of two to six symmetric cross-ply layers.
The advantage of the proposed solution methodology is to obtain lower, desired frequency
values, and to achieve structural stability, as well as to reduce the weight, size and cost
of construction. The novelty of this present work is that it examines the free vibration
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of conical-shaped shells of variable thickness consisting of two to six layers under the
influence of higher-order shear deformation theory for simply supported end conditions
using the spline approximation method. Moreover, the frequencies of constant and vari-
able thickness shells are compared. The frequencies of shells, by varying the geometric
parameters such as length of shell, cone angle, node number in circumference direction
and number of layers, as well as three thickness variations such as linear, sinusoidal and
exponential, are examined. It is also evident that by varying the geometrical parameters, the
mechanical parameters, such as stress, moment and shear resultants, are affected. Graphs
and tables depict the obtained results.

The main motivation of this study is to investigate the vibration of shells and to achieve
lower frequency values for more stable structures. In order to achieve this aim, shells of
non-uniform thickness and consisting of different layers were considered. Generally, for
shell structures, lower frequencies are often preferred as they indicate larger, more global
modes of vibration that are typically easier to control and dampen. It is evident from the
obtained results that as the number of layers of conical shells increases, the frequency values
decrease. Moreover, by varying length ratios and cone angles, shells with non-uniform
thickness have lower frequency values compared to shells of constant thickness. So, our
objective to achieve lower frequency values was fulfilled by non-uniform thickness and
increasing the number of layers of shell.

2. Solution of Problem

The displacement fields considered are based on third-order shear deformation theory
(Reddy [12]). Two different shear deformation theories are visualised in Figure 1.
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Figure 1. Deformation theories.

A laminated conical shell of variable thickness along the axial direction, having an
arbitrary number of layers that are perfectly bonded together, is shown in Figure 2. The
orthogonal coordinate system (x, θ, z) is fixed at its reference surface, which is taken to be
at the middle surface. The radius of the cone at any point along its length is r = x sin α.
The radius at the small end of the cone is ra = a sin α and the other end is rb = b sin α. α is
the semi-vertical angle and ℓ is the length of the cone along its generator.
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The displacement field was considered according to third-order shear deformation
theory by Reddy [12].

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t)− 4z3

3h2

(
ϕx +

∂w0
∂x

)
v(x, y, z, t) = v0(x, y, t) + zϕθ(x, y, t)− 4z3

3h2

(
ϕθ +

∂w0
∂y

)
w(x, y, z, t) = w0(x, y, t)

(1)

where u, v and w are the displacement components in the x, θ and z directions, respectively,
u0, v0 and w0 are the in-plane displacements of the middle plane, and ϕx and ϕθ are the
shear rotations at any point on the middle surface of the plate.

The stress resultants are defined (Reddy [12]) as follows:
Nr
Nθ

Nrθ

 =
h/2∫

−h/2


σr
σθ

σrθ

 dz,


Mr
Mθ

Mrθ

 =
h/2∫

−h/2
z


σr
σθ

σrθ

 dz,


Or
Oθ

Orθ

 =
h/2∫

−h/2
z3


σr
σθ

σrθ

 dz

{
Qθ

Qr

}
=

h/2∫
−h/2

z2
{

τθz
τrz

}
dz and

{
Rθ

Rr

}
=

h/2∫
−h/2

z2
{

τθz
τrz

}
dz

(2)

where N, M and Q are stress, moment and shear resultants, respectively. Higher stress
resultants are O and R.

The stress–strain relations (Reddy [12]) were obtained as follows:



Nr
Nθ

Nrθ

Mr
Mθ

Mrθ

Or
Oθ

Orθ


=



A11 A12 A16 B11 B12 B16 E11 E12 E16
A12 A22 A26 B12 B22 B26 E12 E22 E26
A16 A26 A66 B16 B26 B66 E16 E26 E66
B11 B12 B16 D11 D12 D16 F11 F12 F16
B12 B22 B26 D12 D22 D26 F12 F22 F26
B16 B26 B66 D16 D26 D66 F16 F26 F66
E11 E12 E16 F11 F12 F16 H11 H12 H16
E12 E22 E26 F12 F22 F26 H12 H22 H26
E16 E26 E66 F16 F26 F66 H16 H26 H66





(0)

εr
(0)
εθ
(0)
γrθ
(1)

εr
(1)
εθ
(1)
γrθ
(3)

εr
(3)
εθ
(3)
γrθ



,


Qθ

Qr
Rθ

Rr

 =


A44 A45 D44 D45
A45 A55 D45 D55
D44 D45 F44 F45
D45 D55 F45 F55




(0)

γθz
(0)
γrz
(2)
γθz
(2)
γrz



(3)

where ε is strain and γ is the shear strain components. Details regarding Aij, Bij, Dij, Eij, Fij, Hij,
can be found in Ref. [29].

In-plane strains are defined as

ε =


εx
εθ

γxθ


ε = ε0 + zε1 + z3ε3 =


ε0

x
ε0

θ
γ0

xθ

+ z


ε1

x
ε1

θ
γ1

xθ

+ z3


ε3

x
ε3

θ
γ3

xθ


(4)
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and the shear strain components are defined as

γ =

{
γθz
γxz

}
γ = γ0 + z2γ2 =

{
γ0

θz
γ0

xz

}
+ z2

{
γ2

θz
γ2

xz

} (5)

When the materials are oriented at an angle θ with the x-axis, the transformed stress–
strain relations are


σx

(k)

σθ
(k)

τxθ
(k)

τθz
(k)

τxz
(k)

 =



Q11
(k) Q12

(k) Q16
(k) 0 0

Q12
(k) Q22

(k) Q26
(k) 0 0

Q16
(k) Q26

(k) Q66
(k) 0 0

0 0 0 Q44
(k) Q45

(k)

0 0 0 Q45
(k) Q55

(k)




εx

(k)

εθ
(k)

γxθ
(k)

γθz
(k)

γxzγxz
(k)

 (6)

where Q(k)
ij is defined as follows

Q(k)
11 = Q(k)

11 cos4 θ + Q(k)
22 sin4 θ + 2

(
Q(k)

12 + 2Q(k)
66

)
sin2 θcos2 θ

Q(k)
22 = Q(k)

11 sin4 θ + Q(k)
22 cos4 θ + 2

(
Q(k)

12 + 2Q(k)
66

)
sin2 θcos2 θ

Q(k)
12 =

(
Q(k)

11 + Q(k)
22 − Q(k)

66

)
sin2 θcos2 θ + Q(k)

12

(
cos4 θ + sin4 θ

)
Q(k)

16 =
(

Q(k)
11 − Q(k)

12 − 2Q(k)
66

)
cos3θsinθ −

(
Q(k)

22 − Q(k)
12 − 2Q(k)

66

)
sin3θcosθ

Q(k)
26 =

(
Q(k)

11 − Q(k)
12 − 2Q(k)

66

)
cosθsin3θ −

(
Q(k)

22 − Q(k)
12 − 2Q(k)

66

)
sinθcos3θ

Q(k)
66 =

(
Q(k)

11 + Q(k)
22 − 2Q(k)

12 − 2Q(k)
66

)
cos2 θsin2 θ + Q(k)

66

(
sin4 θ + cos4θ

)
Q(k)

44 = Q(k)
55 sin2 θ + Q(k)

44 cos2 θ

Q(k)
55 = Q(k)

55 cos2 θ + Q(k)
44 sin2 θ

Q(k)
45 =

(
Q(k)

55 − Q(k)
44

)
cosθsinθ

The equilibrium equations for conical shells of variable thickness after applying
stress–strain relations (Equation (2)) are as follows:(

A11g ∂2

∂x2 + A11

(
g′ + g 1

x

)
∂

∂x + A66g 1
x2 sin2 α

∂2

∂θ2 + A12g′ 1
x − A22g 1

x2

)
U

+
(
(A12 + A66)g 1

x sin α
∂2

∂x∂θ +
(

A12g′ 1
x sin α − A22g 1

x2 sin α
− A66g 1

x2 sin α

)
∂
∂θ

)
V

−
(

E11c2g ∂3

∂x3 +
(

E11c2g′ − E11c2g 1
x + E12c2g 1

x

)
∂2

∂x2 − A12g 1
x tan α

∂
∂x

+
(

E12c2g 1
x2 sin2 α

+ 2E66c2g 1
x2 sin2 α

)
∂3

∂x∂θ2

+
(

E12c2g′ 1
x2 sin2 α

− E12c2g 1
x3 sin2 α

− E22c2g 1
x3 sin2 α

)
∂2

∂θ2 −
(

A12g′ − A22g 1
x

)
1

x tan α

)
W

+
(
(B11 − E11c2)g ∂2

∂x2 + (B11 − E11c2)
(

g′ + g 1
x

)
∂

∂x

+(B66 − E66c2)g 1
x2 sin2 α

∂2

∂θ2 + (B12 − E12c2)g′ 1
x − (B22 − E22c2)g 1

x2

)
ϕx

+
(
((B12 − E12c2) + (B66 − E66c2))g 1

x sin α
∂2

∂x∂θ + (B12 − E12c2)g′ 1
x sin α

∂
∂θ

− (B22 − E22c2 + B66 − E66c2)g 1
x2 sin α

∂
∂θ

)
ϕθ

= I0
..
u + J1

..
ϕx − c1 I3

∂
..
w

∂x

(7a)
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(
(A66 + A12)g 1

x sin α
∂2

∂x∂θ +
(

A66

(
g′ + g 1

x

)
1

x sin α + A22g 1
x2 sin α

)
∂
∂θ

)
U

+
(

A66g ∂2

∂x2 + A66

(
g′ + g 1

x

)
∂

∂x + A22g 1
x2 sin2 α

∂2

∂θ2 − A66

(
g′ + g 1

x

)
1
x − (A44 − D44c1)g 1

x2 tan2 α

)
V

−
(
(2E66c2 + E12c2)g 1

x sin α
∂3

∂x2∂θ
+

(
2E66c2

(
g′ + g 1

x

)
1

x sin α

)
∂2

∂x∂θ

+E22c2g 1
x3 sin3 α

∂3

∂θ3 − (A22 + A44 − D44c1)g 1
x2 sin α tan α

∂
∂θ

)
W

+
(
((B66 − E66c2) + (B12 − E12c2))g 1

x sin α
∂2

∂x∂θ

+
(
(B66 − E66c2)

(
g′ + g 1

x

)
1

x sin α + (B22 − E22c2)g 1
x2 sin α

)
∂
∂θ

)
ϕx

+
(
(B66 − E66c2)g ∂2

∂x2 +
(
(B66 − E66c2)

(
g′ + g 2

x

))
∂

∂x + (B22 − E22c2)g 1
x2 sin2 α

∂2

∂θ2

+(A44 − D44c1)g 1
x tan α − (B66 − E66c2)

(
g′ + g 1

x

)
1
x

)
ϕθ

=
(

I0 +
2

x tan α I1

) ..
v +

(
J1 +

1
x tan α I2 −c1

1
x tan α I4

) ..
ϕθ −

(
c1 I3 + c1

1
x tan α I4

)
∂

..
w

∂θ

(7b)

(
E11c2g ∂3

∂x3 +
(

2E11c2g′ + E12c2g 1
x

)
∂2

∂x2 −
(

A12g 1
x tan α − E11c2g′′ − 2E12c2

(
g′ − g 1

x

)
1
x

)
∂

∂x

+
(

E12c2g 1
x2 sin2 α

+ E66c2g 2
x2 sin2 α

)
∂3

∂x∂θ2

+
(

E22c2g 1
x3 sin2 α

+ E66c2

(
g′ − g 1

x

)
2

x2 sin2 α

)
∂2

∂θ2

−
(

A22g 1
x2 tan α

− E12c2g′′ 1
x + 2E12g′ 1

x2 − E12c2g 2
x3

))
U

+
(
−E12c2g 1

x2 sin α
∂2

∂x2 +
(

E12c2g′′ 1
x sin α − 2E12g′ 1

x2 sin α
+ E12g′ 1

x sin α + E12c2g 2
x3 sin α

)
∂

∂x

+
(

E66c2g 2
x sin α + E12c2g 1

x sin α

)
∂3

∂x2∂θ

+
(

E66c2g′ 2
x sin α − E66c2g 1

x2 sin α
+ E12c2

(
g′ − g 1

x

)
1

x sin α

)
∂2

∂x∂θ +
(

E22c2g 1
x3 sin3 α

)
∂3

∂θ3

−
(
(A44 − D44c1 − D44c2 + F44c1c2 − A22)g 1

x2 sin α tan α
− E66c2

(
g′ − g 1

x

)
2

x2 sin α

)
∂
∂θ

)
V

−
(

H11c2
2g ∂4

∂x4 + 2H11c2
2g′ ∂3

∂x3

−
(
(A55 − D55c1 − D55c2 + F55c1c2)g + E12c2g 1

x tan α − H11c2
2g′′ + E12gc2

1
x tan α

)
∂2

∂x2

−
(

2E12c2

(
g′ − g 1

x

)
1

x tan α + (A55c1 − D55c1 − D55c2 + F55c1c2)
(

g′ + g 1
x

))
∂

∂x

+
(

2H12c2
2g 1

x2 sin2 α
+ 4H66c2

2g 1
x2 sin2 α

)
∂4

∂x2∂θ2

+
(

4H66c2
2

(
g′ − g 1

x

)
1

x2 sin2 α
+ H12c2

2

(
g′ − g 2

x

)
1

x2 sin2 α

)
∂3

∂x∂θ2

−
(
(A44 − D44c1 − D44c2 + F44c1c2)g 1

x2 sin2 α

)
∂2

∂θ2 +
(

H22c2
2g 1

x4 sin4 α

)
∂4

∂θ4

+A22g 1
x2 tan2 α

+ E12g′′ c2
1

x tan α − 2E12c2g′ 1
x2 tan α

+ E12g 2
x3 tan α

)
W

+
((

F11c2 − H11c2
2
)

g ∂3

∂x3 + 2
(

F11c2 − H11c2
2
)

g′ ∂2

∂x2

+
(
(A55 − D55c1 − D55c2 + F55c1c2)g − (B12 − E12c2)g 1

x tan x +
(

F11c2 − H11c2
2
)

g′′

+2
(

F12c2 − H12c2
2
)(

g′ − g 1
x

)
1
x

)
∂

∂x +
((

F22c2 − H22c2
2
)

g 1
x3 sin2 α

+
(

F66c2 − H66c2
2
)

g 2
x2 sin2 α

)
∂3

∂x∂θ2

+
((

F22c2 − H22c2
2
)

g 1
x3 sin2 α

+
(

F66c2 − H66c2
2
)(

g′ − g 1
x

)
2

x2 sin2 α

)
∂2

∂θ2

+(A55 − D55c1 − D55c2 + F55c1c2)
(

g′ + g 1
x

)
− (B22 − E22c2)g 1

x2 tan α

+
(

F12c2 − H12c2
2
)

g′′ 1
x − 2

(
F12c2 − H12c2

2
)

g′ 1
x2 +

(
F12c2 − H12c2

2
)

g 2
x3

)
ϕx

+
(((

F66c2 − H66c2
2
)

g 2
x sin α +

(
F12c2 − H12c2

2
)

g 1
x sin α

)
∂3

∂x2∂θ

+
((

F66c2 − H66c2
2
)

g′ 2
x sin α −

(
F66c2 − H66c2

2
)

g 2
x2 sin α

+ 2
(

F12c2 − H12c2
2
)(

g′ − g 1
x

)
1

x sin α

)
∂2

∂x∂θ

+
((

F22c2 − H22c2
2
)

g 1
x3 sin3 α

)
∂3

∂θ3 +
(
(A44 − D44c1 − D44c2 + F44c1c2)g 1

x sin α

−(B22 − E22c2)g 1
x2 sin α tan α

−
(

F66c2 − H66c2
2
)(

g′ − g 1
x

)
2

x2 sin α

+
(

F12c2 − H12c2
2
)

g′′ 1
x sin α − 2

(
F12c2 − H12c2

2
)

g′ 1
x2 sin α

+
(

F12c2 − H12c2
2
)

g 2
x3 sin α

)
∂
∂θ

)
ϕθ

= c1 I3
∂

..
u

∂x +
(
c1 I3 +

c1
x tan α I4

)
∂

..
v

∂θ + I0
..
w − c2

1 I6

(
∂2 ..

w
∂x2 + ∂2 ..

w
∂θ2

)
+c1 J4

∂
..
ϕx
∂x + c1 J4

∂
..
ϕθ
∂θ

(7c)
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(
(B11 − E11c1)g ∂2

∂x2 +
(
(B11 − E11c1)

(
g′ + g 1

x

))
∂

∂x +
(
(B66 − E66c1)g 1

x2 sin2 α

)
∂2

∂θ2

+(B12 − E12c1)g′ 1
x − (B22 − E22c1)g 1

x2

)
U

+
(
((B12 − E12c1) + (B66 − E66c1))g 1

x sin α

)
∂2

∂x∂θ

+
(
(B12 − E12c1)g′ 1

x sin α − (B22 − E22c1)g 1
x2 sin α

− (B66 − E66c1)g 1
x2 sin α

)
∂
∂θ

)
V

−((F11c2 − H11c1c2)g ∂3

∂x3 +
(
(F11c2 − H11c1c2)g′ + (F11c2 − H11c1c2)g 1

x + (F12c2 − H12c1c2)g 1
x

)
∂2

∂x2

−
(
(B12 − E12c1)g 1

x tan α − ((A55 − D55c1 − D55c2 + F55c1c2)g)
)

∂
∂x

+
(
(F12c2 − H12c1c2) + 2(F66c2 − H66c1c2)g 1

x2 sin2 α

)
∂3

∂x∂θ2

+
(
(F12c2 − H12c1c2)

(
g′ − g 1

x

)
1

x2 sin2 α
− (F22c2 − H22c1c2)g 1

x3 sin2 α

)
∂2

∂θ2

−(B12 − E12c1)g′ 1
x tan α + (B22 − E22c1)g 1

x2 tan α

)
W

+
(
((D11 − F11c2 − F11c1 + H11c1c2)g) ∂2

∂x2 +
(
(D11 − F11c2 − F11c1 + H11c1c2)

(
g′ + g 1

x

))
∂

∂x

+
(
(D66 − F66c2 − F66c1 + H66c1c2)g 1

x2 sin2 α

)
∂2

∂θ2

+(D12 − F12c2 − F12c1 + H12c1c2)g′ 1
x − (D22 − F22c2 − F22c1 + H22c1c2)g 1

x2

−(A55 − D55c1 − D55c2 + F55c1c2)g)ϕx

+(((D12 − F12c2 − F12c1 + H12c1c2) + (D66 − F66c2 − F66c1 + H66c1c2)) g 1
x sin α

∂2

∂x∂θ

+(D12 − F12c2 − F12c1 + H12c1c2)g′ 1
x sin α

∂
∂θ − (D22 − F22c2 − F22c1 + H22c1c2)g 1

x2 sin α
∂
∂θ

−(D66 − F66c2 − F66c1 + H66c1c2)g 1
x2 sin α

∂
∂θ

)
ϕθ

= J1
..
u − c1 J4

∂
..
w

∂x + K2
..
ϕx

(7d)

((
((B66 − E66c1) + (B12 − E12c1))g 1

x sin α

)
∂2

∂x∂θ

+
(
(B66 − E66c1)

(
g′ + g 1

x

)
1

x sin α + (B22 − E22c1)g 1
x2 sin α

)
∂
∂θ

)
U

+
(
(B66 − E66c1)g + (B22 − E22c1)g 1

x2 sin2 α

)
∂2

∂x2 +
(
(B66 − E66c1)

(
g′ + g 1

x

))
∂

∂x

−(B66 − E66c1)
(

g′ + g 1
x

)
1
x − (A44 − D44c1 − D44c2 + F44c1c2)g 1

x tan α

)
V

−
((

(2(F66c2 − H66c1c2) + (F12c2 − H12c1c2))g 1
x sin α

)
∂3

∂x2∂θ
+

(
2(F66c2 − H66c1c2)

(
g′ + g 1

x

)
1

x sin α

)
∂2

∂x∂θ

+(F12c2 − H12c1c2)g 1
x3 sin3 α

∂3

∂θ3

−
(
(B22 − E22c1)g 1

x2 sin α tan α
− (A44 − D44c1 − D44c2 + F44c1c2)g 1

x sin α

)
∂
∂θ

)
W

+
(
((D66 − F66c2 − F66c1 + H66c1c2) + (D12 − F12c2 − F12c1 + H12c1c2))g 1

x sin α
∂2

∂x∂θ

+
(
(D66 − F66c2 − F66c1 + H66c1c2)

(
g′ + g 1

x

)
1

x sin α + (D22 − F22c2 − F22c1 + H22c1c2)g 1
x2 sin α

)
∂
∂θ

)
ϕx

+((D66 − F66c2 − F66c1 + H66c1c2)g ∂2

∂x2

+(D66 − F66c2 − F66c1 + H66c1c2)
(

g′ + g 1
x

)
∂

∂x

+
(
(D22 − F22c2 − F22c1 + H22c1c2)g 1

x2 sin2 α

)
∂2

∂θ2

−(D66 − F66c2 − F66c1 + H66c1c2)
(

g′ + g 1
x

)
1
x − (A44c1 − D44c1 − D44c2 + F44c1c2)g

)
ϕθ

=
(

J1 +
1

x tan α I2 − c1
1

x tan α I4

) ..
v − c1 J4

∂
..
w

∂θ + K2
..
ϕθ

(7e)

α is the cone angle

Mx = Mx − c1Px, Mθ = Mθ − c1Pθ , Mxθ = Mxθ − c1Pxθ

Qθ = Qθ − c2Rθ , Qx = Qx − c2Rx

J1 = I1 − c1 I3,

J4 = I4 − c1 I6,

K2 = I2 − 2c1 I4 + c2
1 I6

The displacements and rotational functions are assumed in the cos and sine functions.
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where ,N M  and Q  are stress, moment and shear resultants, respectively. Higher stress 
resultants are O  and R . 

The stress–strain relations (Reddy [12]) were obtained as follows: 

Figure 2. Layered conical shell of variable thickness.

The non-dimensional parameters are as follows:

X = x−a
l , a ≤ x ≤ b and X ∈ [0, 1]

λ = ω l
√

I1
A11

, a frequency parameter
β = a

b , the length ratio
γ = h0

ra
, γ′ = h0

a , ratios of thickness to radius and to a length
δk =

hk
h , the relative layer thickness of the k-th layer

(8)

The three types of thickness variations considered are as follows.

Case (i):

If Ce = Cs = 0, then the thickness variation becomes linear. In this case it can be easily
shown that

Cℓ =
1
η − 1, where η is the taper ratio hk(0)/hk(1).

Case (ii):

If Cℓ = Cs = 0, then the thickness varies exponentially.

Case (iii):

If Cℓ = Ce = 0, then the thickness varies sinusoidally.
It may be noted that the thickness of any layer at the end is X = 0 is h0k for cases (i) and (iii),

but is h0k(1+ Ce) for case (ii).
The thickness variation of the kth layer of the shell is assumed in the form as

hk(x) = h0k g(x)

where

g(x) = 1 + Cℓ

(
x − xa

ℓ

)
+ Ce exp

(
x − xa

ℓ

)
+ Cs sin π

(
x − xa

ℓ

)
,

where h0k is a constant thickness of the kth layer, ℓ = b − a is the length of the cone and xa
is the distance from the origin to x = a (small end of the cone). The thickness of the shell
becomes uniform when g(x) = 1.

Since the thickness is assumed to be varying along the axial direction, one can define
the elastic coefficients Aij, Bij and Dij (extensional, bending–extensional coupling and
bending stiffnesses) and higher-order stiffness coefficients Eij, Fij and Hij corresponding to
layers of uniform thickness with superscript ‘c’.

Aij = Ac
ij g(x), Bij = Bc

ij g(x), Dij = Dc
ij g(x), Eij = Ec

ij g(x), Fij = Fc
ij g(x), Hij = Hc

ij g(x)

Method of Solution

The differential equations obtained are approximated by using cubic and quantic
spline functions, in the range of X ∈ [0, 1].
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Displacements U(X), V(X) and W(X) and rotational functions ΦX(X), Φθ(X) are
approximated, respectively, by the splines Refs. [30–33].

U(X) =
4
∑

i=0
aiXi +

N−1
∑

j=0
bj(X − Xj)

5H(X − Xj)

V(X) =
2
∑

i=0
ciXi +

N−1
∑

j=0
dj(X − Xj)

3H(X − Xj)

W(X) =
4
∑

i=0
eiXi +

N−1
∑

j=0
f j(X − Xj)

5H(X − Xj)

ΦX(X) =
4
∑

i=0
giXi +

N−1
∑

j=0
gj(X − Xj)

5H(X − Xj)

Φθ(X) =
2
∑

i=0
liXi +

N−1
∑

j=0
qj(X − Xj)

3H(X − Xj)

(9)

where ai, ci, ei, gi, li, bi, di, fi, pi and qi are unknown coefficients (i.e., spline coefficients),
H(X − Xj) is the Heaviside step function and N is the number of intervals into which the
range [0, 1] of X is divided. The points X = Xs =

s
N , (s = 0, 1, 2 . . . N) are chosen as the

knots of the splines, as well as the collocation points. Thus, the splines are assumed to
satisfy the differential equations at all Xs. The resulting expressions contain (5N + 5) a
homogeneous system of equations in the (5N + 21) spline coefficients.

The simply supported boundary condition is considered.
This boundary condition gives 13 more equations, thus making a total of (5N + 18)

equations, with the same number of unknowns. The resulting field and boundary condition
equations may be written in the form

[M]{q} = λ2[P]{q} (10)

where [M] and [P] are square matrices, and {q} is a column matrix. This is treated as a
generalised eigenvalue problem in the eigenfrequency parameter λ and the eigenvector
{q}, whose elements are the spline coefficients. It is solved for the first three eigenvalues,
giving the corresponding frequency parameters, and the related eigenvectors from which
the mode shapes can be constructed. The square matrices consist of stress, strain and
displacement components effecting the frequency parameter value.

3. Results and Discussion

In this present study, the conical shells consisted of Kevlar Epoxy and Graphite
Epoxy layers. Shells with two, three, four, five and six symmetric cross-ply layers were
considered. The effects of the three different types of thicknesses (such as linear, sinusoidal
and exponential) on the frequency value were examined.

The elastic properties of Kevlar Epoxy and Graphite Epoxy are given in Table 1.

Table 1. Elastic properties of materials used.

Elastic
Property Density ×103N−s2/m4

Young
Modulus

Ex×1010N/m2

Young
Modulus

Ey×1010N/m2

Shear
Modulus

Gxz×1010N/m2

Shear
Modulus

Gyz×1010N/m2

Shear
Modulus

Gxy×1010N/m2

Major
Poisson

Ratio, υxy

Graphite
Epoxy 2550 11.72 42.75 4.14 3.45 4.14 0.27

Kevlar
Epoxy 1770 9.65 144.8 4.14 3.45 4.14 0.30

Table 2 shows the comparison of this present study with Irie et al. [34], Liew et al. [35]
and Dai et al. [36]. It is evident from the results that the present results are very close to the
already existing literature.
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Table 2. Comparison of frequency parameter of present study with Refs. [34–36].

n α=30◦ α=60◦

Ref. [34] Ref. [35] Ref. [36] Present Ref. [34] Ref. [35] Ref. [36] Present

1 0.5923 - 0.5922 0.5921 0.4754 - 0.4754 0.4753

2 0.7910 0.7909 0.7909 0.7908 0.5722 0.5719 0.5721 0.5720

3 0.7284 0.7281 0.7282 0.7281 0.6001 0.5998 0.6001 0.6000

4 0.6352 0.6347 0.6349 0.6348 0.6054 0.6049 0.6053 0.6052

5 0.5531 0.5522 0.5525 0.5524 0.6077 0.6071 0.6075 0.6074

6 0.4949 0.4938 0.4941 0.4940 0.6159 0.6152 0.6156 0.6155

7 0.4653 0.4639 0.4643 0.4642 0.6343 0.6335 0.6340 0.6339

8 0.4654 0.4629 0.4633 0.4632 0.6650 0.6641 0.6646 0.6645

9 0.4892 0.4875 0.4879 0.4878 0.7084 0.7075 0.7080 0.7079

Table 3 shows a comparison of this present study (linear thickness variation and
constant thickness) with Kumar et al. [37] (constant thickness). It is concluded that shells
with non-uniform thickness have lower frequency value compared to shells with constant
thickness. Lower frequencies are often preferred as they indicate larger, more global
modes of vibration, which are typically easier to control and maintain the stability of the
structure. The data comparisons in Tables 3 and 4 show that the frequency parameter
value is significantly less for shells of non-uniform thickness compared to shell of constant
thickness. The deviation in the results is due to the non-uniform thickness formulation. It
is evident from the results that the shells of non-uniform thickness are less stiff, but more
flexible and stable compared to shells of constant thickness.

Table 3. Comparison of non-dimensional frequency parameter of present study λ = ωℓ
√

I0
A11

with

Kumar et al. [37] ω = ω a2

h

√
ρ
E2

.

θ α 0/θ/0 0/θ/0/θ 0/θ/θ/0

Ref. [37]
Constant
Thickness

Ref. [29]
Constant
Thickness

Present
Non-Uniform

Thickness
(Linear)

Ref. [37]
Constant
Thickness

Ref. [29]
Constant
Thickness

Present
Non-Uniform

Thickness
(Linear)

Ref. [37]
Constant
Thickness

Ref. [29]
Constant
Thickness

Present
Non-Uniform

Thickness
(Linear)

90◦ 15◦ 40.0104 39.2930 38.1350 46.9078 45.9213 44.8321 43.0824 42.4646 41.2301

30◦ 40.7529 41.7195 40.0167 53.0184 54.7141 53.1856 45.1971 46.8699 45.1028

45◦ 47.1356 46.4112 45.3290 67.3628 66.4144 65.3421 54.2594 53.4415 52.1206

Table 4. Comparison of fundamental angular frequency ω with respect to length ratio β of constant
and variable thickness of 6-layered shells for n = 2, γ = 0.05 for different cone angles for simply
supported end conditions.

β

α=30◦ α=45◦ α=60◦

Ref. [29]
Constant

Thickness

Present
Non-Uniform

Thickness (Linear)

Ref. [29]
Constant

Thickness

Present
Non-Uniform

Thickness (Linear)

Ref. [29]
Constant

Thickness

Present
Non-Uniform

Thickness (Linear)

0.1 0.77668 0.47835 1.42325 1.63228 1.62430 1.54407

0.3 1.95024 0.67658 3.04714 1.81080 4.10529 1.73537

0.5 3.92301 2.04632 4.10978 2.23309 5.32410 2.70950

0.7 6.02111 3.79282 6.26694 3.61209 6.44491 3.79006

0.9 19.28013 9.05599 21.3657 11.16722 27.23109 17.14523

In Table 4, a comparative study was conducted for the effect of length ratios on
angular frequency values of different cone angles of shells of constant and non-uniform
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thickness. Shells with non-uniform thickness have lower angular frequency values than
the shells with constant thickness. Our objective to obtain lower frequency was achieved
through this result as well. Moreover, a comparison of constant and non-uniform thickness
shells by varying cone angle is shown in Table 5. Table 6 shows that the influence of
exponential thickness variation on the frequency parameter. It was observed that as the
layers of conical shells increase, the frequency value decreases. The same trend can be
seen in Table 7, where the relationship is shown between sinusoidal thickness variation
and the frequency parameter. In Table 8, the effect of linear thickness variation on the
frequency parameter is shown. If we compare Tables 6–8, the differences in the values of
the frequency parameter is very small, but the fact is, a marginal difference is significant
for engineers while constructing stable structures. The value of the frequency parameter is
higher for three-layered shells than for two-layered shell. Otherwise, four- to six-layered
shell frequency parameter values lower as the number of layers increases. The results given
in Tables 2–8 show that as the number of layers of conical shells increases, the frequency
values decrease. Moreover, by varying the length ratios and cone angles, shells with non-
uniform thickness have lower frequency values compared to shells of constant thickness.
So, our objective to achieve lower frequency values was fulfilled by non-uniform thickness
and increasing the number of layers of shells. In conclusion, our results evidently show the
appropriateness of the methodology used.

Table 5. Comparison of frequency parameter λm, m = 1, 2, 3 with respect to cone angle α of constant
and variable thickness of 5-layered conical shells for n = 2, γ′ = 0.5 and β = 0.3 for simply supported
end conditions.

α

Ref. [29]
λ 1

Constant
Thickness

Present
λ 1

Non-Uniform
Thickness (Linear)

Ref. [29]
λ 2

Constant
Thickness

Present
λ 2

Non-Uniform
Thickness (Linear)

Ref. [29]
λ 3

Constant
Thickness

Present
λ 3

Non-Uniform
Thickness (Linear)

10 0.00674 0.005735 0.00799 0.004567 0.01011 0.006426

20 0.00481 0.003271 0.00599 0.003650 0.00677 0.005544

30 0.00370 0.002364 0.00460 0.002321 0.00516 0.0040231

40 0.00354 0.002071 0.00418 0.001802 0.00481 0.0037220

50 0.00346 0.001958 0.00402 0.001737 0.00458 0.003413

60 0.00345 0.001933 0.00402 0.001737 0.00446 0.0033210

70 0.00346 0.001931 0.00401 0.001701 0.00445 0.003311

80 0.00344 0.001803 0.00403 0.001700 0.00439 0.0032210

Table 6. Effect of coefficient of exponential variation in thickness on fundamental frequency parameter
of two- to six-layered shells.

Ce

2-Layered
(0◦/90◦)

(Graphite
Epoxy/Kevlar

Epoxy)

3-Layered
(0◦/90◦/0◦)
(Graphite

Epoxy/Kevlar
Epoxy/Graphite

Epoxy)

4-Layered
(0◦/90◦/0◦/90◦)

(Graphite
Epoxy/Kevlar

Epoxy/Graphite
Epoxy/Kevlar Epoxy)

5-Layered
(0◦/90◦/0◦/90◦/0◦)

(Graphite Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar
Epoxy/Graphite Epoxy)

6-Layered
(0◦/90◦/0◦/90◦/0◦/90◦)

(Graphite Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar Epoxy)
−0.2 0.024284 0.019866 0.018463 0.016177 0.015243

−0.1 0.024294 0.019866 0.017913 0.016155 0.015109

0 0.024294 0.019663 0.017823 0.016536 0.015091

0.1 0.024243 0.019726 0.018012 0.016172 0.015149

0.2 0.024281 0.019874 0.018513 0.016078 0.014964

−0.2 0.024284 0.019866 0.018463 0.016177 0.015243
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Table 7. Effect of coefficient of sinusoidal variation in thickness on fundamental frequency parameter
of two- to six-layered shells.

Cs

2-Layered
(0◦/90◦)

(Graphite
Epoxy/Kevlar

Epoxy)

3-Layered
(0◦/90◦/0◦)
(Graphite

Epoxy/Kevlar
Epoxy/Graphite

Epoxy)

4-Layered
(0◦/90◦/0◦/90◦)

(Graphite
Epoxy/Kevlar

Epoxy/Graphite
Epoxy/Kevlar Epoxy)

5-Layered
(0◦/90◦/0◦/90◦/0◦)

(Graphite Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar
Epoxy/Graphite Epoxy)

6-Layered
(0◦/90◦/0◦/90◦/0◦/90◦)

(Graphite Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar Epoxy)
−0.5 0.020274 0.01824 0.017201 0.016536 0.015149

−0.3 0.020284 0.01824 0.017231 0.016536 0.015149

−0.1 0.020264 0.01824 0.017221 0.016536 0.015149

0.1 0.020284 0.01824 0.017225 0.016536 0.015149

0.3 0.020284 0.01824 0.017246 0.016536 0.015149

0.5 0.020284 0.01824 0.017218 0.016536 0.015149

Table 8. Effect of coefficient of linear variation in thickness on fundamental frequency parameter of
two- to six-layered shells.

η

2-Layered
(0◦/90◦)

(Graphite
Epoxy/Kevlar

Epoxy)

3-Layered
(0◦/90◦/0◦)
(Graphite

Epoxy/Kevlar
Epoxy/Graphite

Epoxy)

4-Layered
(0◦/90◦/0◦/90◦)

(Graphite
Epoxy/Kevlar

Epoxy/Graphite
Epoxy/Kevlar Epoxy)

5-Layered
(0◦/90◦/0◦/90◦/0◦)

(Graphite Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar
Epoxy/Graphite Epoxy)

6-Layered
(0◦/90◦/0◦/90◦/0◦/90◦)

(Graphite Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar
Epoxy/Graphite

Epoxy/Kevlar Epoxy)

0.5 0.018621 0.019896 0.016996 0.01541 0.009996

0.7 0.018913 0.019858 0.017117 0.01542 0.010095

0.9 0.018824 0.019841 0.016929 0.01542 0.010118

1.1 0.018503 0.019741 0.017135 0.01543 0.010309

1.3 0.018615 0.019723 0.016946 0.01543 0.010055

1.5 0.018712 0.019625 0.016898 0.01541 0.010134

1.7 0.018804 0.019804 0.017271 0.01543 0.01006

1.9 0.018973 0.019863 0.017399 0.01542 0.009997

2.1 0.018626 0.019771 0.016715 0.01541 0.010214

Figure 3a–c depicts the effect of three different thickness variations (linear, exponential
and sinusoidal) on the frequency parameter of three-layered shells (0◦/90◦/0◦; Graphite
Epoxy/Kevlar Epoxy/Graphite Epoxy). The effect of length ratio on the fundamental an-
gular frequency parameter of two- to six-layered shells are shown in Figure 4. The effect of
cone angle on the frequency parameter of five- and six-layered conical shells can be seen in
Figure 5, under linear thickness variation, in Figure 6, under exponential thickness variation,
and Figure 7, under sinusoidal thickness variation. Moreover, the influence of circumferen-
tial node number on the frequency parameter of five- and six-layered (0◦/90◦/0◦/90◦/0◦;
Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy) and
(0◦/90◦/0◦/90◦/0◦/90◦; Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/
Graphite Epoxy/Kevlar Epoxy) conical shells under linear thickness variation, exponen-
tial thickness variation and sinusoidal thickness variation can be seen in Figures 8–10,
respectively. Figure 11 depicts the circumferential vibration form for n = 2, 3 and 4.
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Figure 3. Effect of three thickness variations ((a) sinusoidal, (b) exponential and (c) linear) on the
frequency parameter.
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Figure 5. Effect of cone angle on the frequency parameter. (a) Five-layered (00/900/00/900/00)
Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy. (b) Six-layered
(0◦/90◦/0◦/90◦/0◦/90◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite
Epoxy/Kevlar Epoxy shells under the effect of linear thickness variation.
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Figure 6. Effect of cone angle on the frequency parameter. (a) Five-layered (0◦/90◦/0◦/90◦/0◦)
Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy. (b) Six-layered
(0◦/90◦/0◦/90◦/0◦/90◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite
Epoxy/Kevlar Epoxy shells under the effect of exponential thickness variation.
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Figure 7. Effect of cone angle on the frequency parameter. (a) Five-layered (0◦/90◦/0◦/90◦/0◦)
Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy. (b) Six-layered
(0◦/90◦/0◦/90◦/0◦/90◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite
Epoxy/Kevlar Epoxy shells under the effect of sinusoidal thickness variation.
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Figure 8. Effect of circumferential node number on the frequency parameter. (a) Five-layered
(0◦/90◦/0◦/90◦/0◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy.
(b) Six-layered (0◦/90◦/0◦/90◦/0◦/90◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar
Epoxy/Graphite Epoxy/Kevlar Epoxy shells under the effect of linear thickness variation.
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Figure 9. Effect of circumferential node number on the frequency parameter. (a) Five-layered
(0◦/90◦/0◦/90◦/0◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy.
(b) Six-layered (0◦/90◦/0◦/90◦/0◦/90◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar
Epoxy/Graphite Epoxy/Kevlar Epoxy shells under the effect of exponential thickness variation.
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Figure 10. Effect of circumferential node number on the frequency parameter. (a) Five-layered
(0◦/90◦/0◦/90◦/0◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar Epoxy/GraphiteEpoxy.
(b) Six-layered (0◦/90◦/0◦/90◦/0◦/90◦) Graphite Epoxy/Kevlar Epoxy/Graphite Epoxy/Kevlar
Epoxy/Graphite Epoxy/Kevlar Epoxy shells under the effect of sinusoidal thickness variation.
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4. Conclusions

This study was based on the free vibration of conical shells of non-uniform thickness,
consisting of two to six symmetric cross-ply layers, with each layer consisting of a different
material under the influence of HSDT for simply supported end conditions. The main aim
of this study was to investigate the vibration of shells and to achieve lower frequency values
for more stable structures. In order to achieve this aim, shells of non-uniform thickness
and consisting of different layers were considered. It is evident from the results that as
the number of layers of conical shells increases, the frequency values decrease. Moreover,
by varying length ratios and cone angles, shells with non-uniform thickness have lower
frequency values compared to shells of constant thickness. So, the objective of achieving
lower frequency values was fulfilled by non-uniform thickness and increasing the number
of layers of the shells. In conclusion, the results evidently show the appropriateness of the
methodology used.
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