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Abstract: This paper introduces an enhanced variant of the Adam optimizer—the BGE-Adam
optimization algorithm—that integrates three innovative technologies to augment the adaptability,
convergence, and robustness of the original algorithm under various training conditions. Firstly,
the BGE-Adam algorithm incorporates a dynamic β parameter adjustment mechanism that utilizes
the rate of gradient variations to dynamically adjust the exponential decay rates of the first and
second moment estimates (β1 and β2), the adjustment of β1 and β2 is symmetrical, which means
that the rules that the algorithm considers when adjusting β1 and β2 are the same. This design helps
to maintain the consistency and balance of the algorithm, allowing the optimization algorithm to
adaptively capture the trending movements of gradients. Secondly, it estimates the direction of future
gradients by a simple gradient prediction model, combining historic gradient information with the
current gradient. Lastly, entropy weighting is integrated into the gradient update step. This strategy
enhances the model’s exploratory nature by introducing a certain amount of noise, thereby improving
its adaptability to complex loss surfaces. Experimental results on classical datasets, MNIST and
CIFAR10, and gastrointestinal disease medical datasets demonstrate that the BGE-Adam algorithm
has improved convergence and generalization capabilities. In particular, on the specific medical
image gastrointestinal disease test dataset, the BGE-Adam optimization algorithm achieved an
accuracy of 69.36%, a significant improvement over the 67.66% accuracy attained using the standard
Adam algorithm; on the CIFAR10 test dataset, the accuracy of the BGE-Adam algorithm reached
71.4%, which is higher than the 70.65% accuracy of the Adam optimization algorithm; and on the
MNIST dataset, the BGE-Adam algorithm’s accuracy was 99.34%, surpassing the Adam optimization
algorithm’s accuracy of 99.23%. The BGE-Adam optimization algorithm exhibits better convergence
and robustness. This research not only demonstrates the effectiveness of the combination of these
three technologies but also provides new perspectives for the future development of deep learning
optimization algorithms.

Keywords: deep learning; BGE-Adam optimization algorithm; dynamic β adjustment; gradient
prediction model; entropy weighting

1. Introduction

In today’s rapidly evolving field of artificial intelligence, deep learning is reshaping
our understanding of machine learning with its powerful data representation capabilities.
Its applications in image recognition, natural language processing, autonomous driving,
and other fields have proven its enormous potential for solving complex pattern recognition
and high-dimensional data-processing problems [1]. The success of deep neural networks
relies on effective training methods, among which optimization algorithms play a crucial

Symmetry 2024, 16, 623. https://doi.org/10.3390/sym16050623 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16050623
https://doi.org/10.3390/sym16050623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0000-2049-1829
https://orcid.org/0009-0003-5168-6145
https://orcid.org/0009-0003-3475-1056
https://orcid.org/0000-0001-5533-7645
https://doi.org/10.3390/sym16050623
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16050623?type=check_update&version=1


Symmetry 2024, 16, 623 2 of 16

role. Optimization algorithms not only determine the convergence speed of model training,
but also directly affect the stability of the training process and the final performance of the
model. The Adam optimizer [2], one of the most popular optimization algorithms, has
gained widespread recognition in the field of deep learning for its excellent adaptability
and efficient computational performance. By combining the momentum method with an
adaptive learning rate adjustment mechanism, the Adam optimization algorithm enhances
the stability and convergence speed of the training process. Nonetheless, researchers have
found that the original Adam algorithm has some issues in practical applications: the
Adam optimizer still has limitations in finding the global optimal solution, particularly
when dealing with complex loss surfaces, where the standard Adam optimizer may fall
into local minima or converge slowly in certain situations [3].

Consequently, researchers have been dedicated to proposing various improvements
to enhance the performance and stability of the Adam algorithm, as well as to extend its
application scope. Substantial research has been conducted to refine and explore the Adam
optimization algorithm. Z. Zhang and others [4] introduced an improved variant called
ND-Adam, based on controlling the variance in parameter update directions, aimed at
maintaining a more consistent update path. However, although this method has shown en-
hancements in direction consistency, it may negatively affect convergence speed for certain
problems. Reyad, M and colleagues [5] proposed the HN Adam optimization algorithm,
an iteration over Adam designed to bolster its precision and generalization capabilities.
However, this too comes with its own set of challenges, requiring fine-tuning of newly
introduced hyperparameters, thus adding to its complexity. Juntang Zhuang et al. [6]
put forward the AdaBelief Optimizer, accounting for the disparity between predicted and
observed gradients with the goal of promoting stability and rapid convergence. Never-
theless, this approach might lead to overcorrection at times, impacting training dynamics.
John Duchi et al. [7] introduced the AdaGrad algorithm, adapting learning rates to fit
each dimension of the parameters, offering better performance with sparse data. How-
ever, the approach suffers from a monotonically decreasing learning rate, which could
prematurely halt learning. X. Chen, C. Liang, and others [8] devised the AdamW opti-
mization algorithm, refining the weight update rules through the separation of weight
decay, an approach better suited to addressing regularization issues, though it might re-
quire further adjustments to the decay rate to prevent overfitting. Luo Liangchen and
colleagues [9] came up with the AdaBound optimization algorithm that amalgamates the
benefits of AdaGrad and SGD, dynamically bounding the learning rate to approximate
that of SGD. However, the algorithm’s effectiveness depends on the choice of boundary
functions, demanding continuous adjustments to these boundaries, thus increasing the
complexity of the optimization process. Matthew D. Zeiler and others [10] proposed the
AdaDelta optimization algorithm, which mitigates the rapid decay of learning rates to zero
by considering historical gradient information. Yet, it also possesses limitations, calling for
careful adjustment of its hyperparameters to suit specific optimization problems. Variants
like AdaMax and Nadam improved second-moment estimations [11], adjusting learning
rates more effectively across various gradient magnitudes [12]. N. Landro, I. Gallo, and
R. La Grassa [13] explored a novel optimization method combining Adam and SGD [14].
A potential drawback of merging these two approaches is the additional hyperparameter
adjustments needed to decide when and how to integrate both optimizers, possibly mak-
ing the process more complex. Dokkyun Yi and others [15] put forward an Adam-based
improved optimization algorithm, specifically targeting efficient optimization methods
for non-convex cost functions. The proposed approach dealt with the local minima is-
sue by introducing a cost function in the parameter update rules of the ADAM method.
However, these modified algorithms do not always guarantee superior performance over
Adam in practical applications. Such enhancements may confront issues like unreasonable
hyperparameter adjustment, increased computational complexity, and local optima [16].

In light of these challenges, this paper introduces a novel variant of the Adam
optimizer—BGE-Adam. This optimizer aims to enhance the adaptability and robustness of
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the original algorithm under various training conditions by integrating three innovative
technologies. First, by introducing a dynamic adjustment mechanism for the β parameters,
BGE-Adam is able to capture the trends in gradient changes more flexibly, making more
effective use of gradient information. Second, in conjunction with a simple gradient predic-
tion model, the optimizer can anticipate the future direction of gradients, thus allowing
for more accurate adjustment of the parameter update strategy. Finally, by incorporat-
ing entropy weighting into the gradient update steps, BGE-Adam enhances the model’s
ability to explore complex loss landscapes, effectively improving the model’s adaptability
to intricate loss surfaces. Extensive experimental validation was conducted on multiple
standard datasets, and the results show that BGE-Adam can accelerate the training process
and improve the performance of the final model in most cases. These achievements not
only validate the effectiveness of the proposed combination of techniques but also pave
new avenues for the future development of deep learning optimizers. By delving deeper
into the potential of these innovative technologies, we expect to offer more efficient and
robust optimization tools for the deep learning field, further advancing the application and
development of deep learning technologies across various domains.

2. Related Work

The Adam optimizer, initially introduced by Kingma and Ba, has been widely used
due to its robustness and efficiency across a broad array of tasks[2]. However, recent
advancements have suggested that the static hyperparameters in the Adam algorithm,
namely β1 and β2, which control the exponential decay rates for the moment estimates,
could be suboptimal in dynamically changing the landscapes of the loss functions [17,18].
This is why dynamically adjusting the beta parameter may help. Adaptability: If the
algorithm can dynamically adjust the β value based on the current change in the gradient,
the algorithm can react more flexibly to different types of data encountered during training
and different training stages. For example, in flat areas of the loss surface, it may be
necessary to rely more on historical gradient information to maintain direction and speed,
while in complex surface areas, it may be necessary to rely less on historical information
to quickly adapt to new gradients. Robustness: By maintaining the β parameter within
a reasonable range, that is, setting an upper and lower limit, extreme situations can be
avoided. This is because a value of β very close to 1 or very small may lead to unstable
optimization behavior—close to 1 may make the optimizer over-smooth in the gradient
information and thus, unresponsive to new gradient changes; too small a value may cause
The optimizer is too sensitive to gradient noise, making the steps too violent and unstable.
By setting reasonable limits, one can ensure that the optimizer finds a balance between
these two extremes and achieves robust performance.

Dynamically adjust the β parameter based on the gradient change rate, and adjust β1
and β2 in real time based on the historical information of the gradient in the algorithm:
These adjustments can make the optimizer more adaptable to the local characteristics of the
loss function, thereby improving the efficiency and stability of optimization. This process
can be divided into the following steps. In order to calculate the gradient change rate crt,
we need to compare the gradient of the current step gt with the gradient of the previous
step gt−1. The calculation process is as follows shown in Equation (1) in the next section,
in which ϵ is a small positive number that prevents the denominator from becoming zero.
With the gradient change rate, the optimizer will adjust the parameter based on this rate.
When the change rate is high, the gradient fluctuates greatly. At this time, β1 may be
reduced to reduce momentum and β2 may be increased to improve stability; conversely, β1
may be increased to increase momentum and β2 may be reduced to track faster changes.
The calculation process is shown in Equations (2) and (3), where f(crt) is some function that
defines the position of the β value between its minimum and maximum values according to
the gradient rate of change. Algorithms that dynamically adjust β parameters may perform
better when dealing with complex loss functions than traditional algorithms. In particular,
when the loss function has a steep region (possibly a local minimum) or a flat region
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(possibly a saddle point), the algorithm can adapt to different regions more flexibly and
avoid falling into the local optimum or wandering around the saddle point, thus improving
convergence. At the same time, reducing oscillations and accelerating convergence can
improve the efficiency of the optimization process.

Add entropy weights in the parameter update step: Based on the concepts of simulated
annealing and noise injection technology, entropy weight introduces random elements into
the optimization process [19]. Introducing the optimization method of entropy weight
helps the algorithm perform the necessary random exploration by properly injecting noise
into parameter updates. The benefits and operating principles of this mechanism can
be understood from the following aspects. In the early stages of optimization, the noise
introduced by high entropy weights allows the algorithm to explore a wide area of the
solution space, which increases the possibility of jumping out of the local optimum and
discovering a better solution space. This “exploration” in a high-entropy state helps the
algorithm obtain more information about the characteristics of the objective function. Sec-
ondly, introducing an entropy weight dynamic adjustment strategy can help the algorithm
avoid falling into a local minimum. When falling into a local optimum during optimization,
the standard gradient descent method may have difficulty in escaping because around
the local optimum point, the gradient of the objective function is close to or equal to zero.
The random perturbation introduced by the entropy weight gives the algorithm a certain
probability to cross obstacles near the local optimum and explore other possible better
regions. When implemented, the entropy weight adjustment can be dynamically adjusted
based on the current state of the algorithm and historical performance data. If slow progress
or stalled convergence is detected, the entropy weight can be temporarily increased to add
random perturbations to help the algorithm “unhook” from the jam. Conversely, as the
algorithm gradually approaches the potential optimal solution, gradually reducing the
entropy weight can reduce noise and fine-tune the solution closer to the optimal solution.In
summary, by rationally introducing and adjusting entropy weights in the update step,
the exploratory nature of the optimization algorithm is enhanced, thereby improving the
ability to avoid local optima and discover better global solutions.

3. Design of the BGE-Adam Algorithm
3.1. Dynamically Adjusted β-Parameter Mechanisms

For the standard Adam algorithm, the β parameters (β1 and β2) are set as hyperpa-
rameters before training begins and remain unchanged throughout the process. These
parameters have a critical impact on the decay of the first-order moment estimation (mean)
and the second-order moment estimation (uncentered variance). To adjust β1 and β2,
BGE-Adam introduces a mechanism based on the gradient’s rate of change to dynamically
adjust these two parameters: During the parameter refinement process, if the direction of
gradient change is consistent over several consecutive steps, this indicates that the current
direction is reliable, and thus, the value of β1 can be increased to give more weight to
the momentum, thereby accelerating the learning process. Conversely, if the direction of
gradient change varies frequently, this may suggest proximity to a local minimum, in which
case the value of β1 can be reduced to lessen the impact of momentum and increase the
model’s sensitivity to new information. The same strategy can be applied to β2 to adjust the
sensitivity to the rate of gradient change. During initialization, BGE-Adam sets upper and
lower limits for changes in the β1 and β2 parameters, ensuring dynamic adjustments occur
within this range. BGE-Adam adapts to changes in gradients by dynamically adjusting
these hyperparameters; the formula for its dynamic adjustment is as follows:

The calculationof the gradient change rate crt is shown in Equation (1):

crt =
∥gt − gt−1∥
∥gt−1∥+ ϵ

(1)
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The dynamicadjustments of β1 and β2 are shown in Equations (2) and (3):

β1,t = β1,min + (β1,max − β1,min)× (1− crt) (2)

β2,t = β2,min + (β2,max − β2,min)× (1− crt) (3)

The term crt represents the gradient change rate at the time step, ϵ is a very small
number to avoid division by zero error, gt and gt−1, respectively, denote the gradient at
the current and previous time step, and “min” and “max” represent the minimum and
maximum values of hyperparameters, respectively.

3.2. Gradient Prediction Model

BGE-Adam introduces a gradient prediction mechanism to assist in forecasting the
direction of future gradients, thereby enhancing optimization performance. This prediction
principle is completed by taking the weighted average of the current and past gradients.
The parameter α is the weight factor of historical gradients in this weighted average. By ad-
justing α, one can control the model’s sensitivity to changes in gradients as well as the extent
to which historical information is considered when predicting the next gradient. Within the
gradient prediction model, the α parameter governs the degree to which historical gradients
influence the current gradient forecast. When α is close to 1, the predicted gradient will rely
more on historical gradients, suggesting that the model considers that gradient changes
will not be significant, and thus it filters out some of the noise in the gradient, making the
prediction smoother. When α is small and far from 1, the model gives more weight to the
current gradient, and the predicted gradient will respond more quickly to new gradient
information. The working principle here is similar to that of an exponentially weighted
moving average, a common technique used to smooth time series data. The α parameter
determines the degree of smoothing or conservatism of the gradients based on historical
gradient information. The gradient prediction model can help to regulate the gradient
update path, and its calculation is shown in Equation (4):

ĝt = α · ĝt−1 + (1− α) · gt (4)

where ĝt is the predicted gradient at time step t, α is the weight factor, and ĝt−1is the
predicted gradient at time step t− 1.

3.3. Entropy Weights

To enhance the optimization process’s exploratory nature and enable the model to
escape potential local optima, BGE-Adam incorporates entropy weighting during the pa-
rameter update step. The adjustment of entropy weight aims to introduce randomness
into the update steps of the optimization process, thereby assisting the model in avoiding
local minima and increasing the likelihood of encountering a global minimum. This con-
cept takes inspiration from the thermodynamic notion of “entropy”, which fundamentally
measures the disorder within a system [20]. Within optimization algorithms, the introduc-
tion of certain randomness can emulate a form of “thermodynamic noise” [21], aiding in
the escape from local optima and the discovery of additional potential solutions. More
specifically, the BGE-Adam optimizer adjusts the update steps by incorporating a stochastic
perturbation term associated with a hyperparameter ω. This term is generated by invoking
the torch.randn_like(p.data) method, which yields random numbers matching the shape
and size of the current parameters and conforms to a Gaussian distribution. The mean of
these random numbers is then calculated and multiplied by ω as the weighting of entropy.
Subsequently, during parameter updates, the model’s predicted next gradient is multiplied
by the computed entropy adjustment coefficient et introducing entropy-weighted random
perturbations into each parameter’s update step. By injecting a certain amount of noise
into the updates, this increases randomness and helps prevent the optimization process
from easily becoming stuck in local minima. The introduced entropy weighting adjustment
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adds randomness to the weight updates, which can, to some extent, improve the likelihood
of the algorithm avoiding local minima and exploring global minima. This approach can
also enhance the model’s generalization performance in certain contexts as it encourages
the exploration of less thoroughly searched regions of the parameter space. The specific
computation is demonstrated by the following Equation (5):

et = 1 + ω · N (0, 1) (5)

In which ω is the hyperparameter that controls the level of noise and N (0, 1) denotes
the standard normal distribution.

Integrating the three strategies mentioned, the parameter update rules are demon-
strated in the following Equations (6)–(10):

mt = β1,t ·mt−1 + (1− β1,t) · gt (6)

vt = β2,t · vt−1 + (1− β2,t) · g2
t (7)

m̂t =
mt

1− βt
1,t

(8)

v̂t =
vt

1− βt
2,t

(9)

θt+1 = θt − ηt ·
m̂t√

v̂t + ϵ
· et (10)

In this context, θt represents the parameter to be optimized, mt and vt are the first-
order and second-order moment estimates of the gradient, respectively, m̂t and v̂t are
the bias-corrected first-order and second-order moments, ηt is the learning rate, and et is
the entropy weight adjustment. The hyperparameter description table in the BGE-Adam
optimization algorithm is shown in Table 1.

Table 1. Hyperparameters Description of the Integrated Adam Optimizer.

Hyperparameter Description Default Value

lr (Learning Rate) Controls the update step size of the model at each iteration 0.001
alpha Determines the weight ratio of the predicted gradient to the actual gradient 0.5
betas (β Parameters) A pair of values used to compute the moving averages of the gradient and its square (0.9, 0.999)
eps (ε) A small number to prevent division by zero errors 1 × 10−8

weight_decay Weight decay, used for regularization and to prevent overfitting 0
entropy_weight Entropy weight, used to introduce randomness into the parameter space during optimization 0.01

amsgrad Boolean value indicating whether to use the AMSGrad variant to prevent sudden changes in gradient
updates False

beta1_max The maximum adjustment value of beta1 0.9
beta1_min The minimum adjustment value of beta1 0.5
beta2_max The maximum adjustment value of beta2 0.999
beta2_min The minimum adjustment value of beta2 0.9

3.4. BGE-Adam Algorithm

During the step function of the algorithm, the change rate between the current gradient
and the gradient from the previous time step is first calculated. This change rate, computed
by the computegradientchangerate function, is used to dynamically adjust the values of β1 and
β2. The logic for dynamic adjustment is computed through the computedynamicβ function,
which updates the values of the β parameters based on the gradient change rate and the
predetermined minimum and maximum values. This improvement allows the optimizer to
adapt to the trend in the gradients, enabling it to react quickly when there is a significant
change in gradient direction by adjusting the decay rates of the first-order and second-order
moment estimates. This helps the optimizer to modify its behavior more flexibly, showing
better performance at different optimization stages. Gradient prediction is implemented
within the GradientPredictionModel class, where a simple Exponential Moving Average
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(EMA) model is used to predict the following gradients. At each step, the actual gradient is
combined with the predicted gradient to estimate the direction of future gradients. By pre-
dicting future gradient directions, the optimizer can adjust its update strategy in advance,
potentially avoiding overly large parameter updates and instability. This assists in smoothing
the optimization path and accelerating convergence. Finally, in the parameter update section
of the step function, entropy weight adjustment is incorporated. This is achieved by adding a
certain amount of random noise to each weight update. The introduction of entropy weight
(multiplied by random normal noise) encourages the optimizer to explore a broader parameter
space, enhancing its ability to escape potential local minima. The introduction of entropy
weight is akin to adding an exploratory mechanism during the optimization process, allowing
the algorithm not only to focus on the current best direction of gradient descent but also to
perform a random exploration to some extent. This random exploration can help avoid local
optima and has the potential to discover better global solutions. In summary, BGE-Adam
merges three strategies, dynamic β adjustments, gradient prediction, and entropy weighting,
offering a new adaptive method for gradient descent. With this algorithm, the optimization
process can make more refined adjustments to model parameters while maintaining a stable
update step size, which has enhanced the algorithm’s ability to explore the solution space, thus
improving convergence speed and robustness of the model in different application scenarios.
The specific computational process of the improved optimization algorithm BGE-Adam is
shown in Algorithm 1—The specific computational process of the improved optimization
algorithm BGE-Adam.

Algorithm 1: BGE-Adam.
Input: initial point P0, first moment decay, second moment decay,
regularization constant
Output: pnew
1: Input: initial point P0, first moment decay, second moment decay, regularization

con-stant
2: Initialize m0 and v0, θ0, ω, α, β1min , β1max , β2min , β2max

3: for t = 1 to T
4: gt = ∇θ ft(θt−1)
5: mt = β1t−1 ·mt−1 + (1− β1t−1) · gt

6: vt = β2t−1 · vt−1 + (1− β2t−1) · g2
t

7: crt =
∥gt−gt−1∥
∥gt−1∥+ϵ

8: β1t = β1min + (β1max − β1min)× (1− crt)
9: β2t = β2min + (β2max − β2min)× (1− crt)

10: m̂t =
mt

1−βt
1
; v̂t =

vt
1−βt

2

11: bias_correction1 = 1− βt
1; bias_correction2 = 1− βt

2

12: step_size = lr·
√

1−βt
2

1−βt
1

13: ĝ = α · gprev + (1− α) · g
14: if p in grad_pred_model
15: pred_grad = grad_pred_model[p].pred(grad)
16: else
17: grad_pred_model[p].pred(grad) = GradPredModel(group[′α′])
18: pred_grad = grad_pred_model[p].pred(grad)
19: else do
20: et = 1 + ω · N(0, 1)
21: entropy_adjustment = 1 + entropy_weight · E[N(p.data)]
22: pnew ← p− step_size× ĝ√

v̂+ϵ
× entropy_adjustment

23: end for
24: Return pnew
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4. Experimental Results and Analyses
4.1. Experiment Environment and Configuration

This study implements the improved BGE-Adam optimization algorithm based on the
PyTorch deep learning framework [22]. This algorithm is an enhancement of the standard
Adam optimizer, and dynamically adjusts the values of β1 and β2 based on the rate of
change of gradients and predicts the next gradient, alongside integrating an entropy weight
into the parameter update adjustment strategy. The main software versions used in the
experiments are shown in Table 2.

Table 2. Main software versions used in the experiments.

Software Resources Version

Python 3.11.3
torch 2.0.0+cu11.8
torchvision 0.15.1+cu11.8
torchaudio 2.0.1+cu11.8
lightning 2.0.4
wandb W&B Local 0.47.2

The table lists the versions of Python and several important libraries used in the
experiments. This research was conducted using the lightning-template-hydra framework,
developed in Python, to validate the performance of the algorithm. The experiments have
strict requirements for the versions of the libraries and Python, with a Python environment
version requirement of 3.9 or above and a PyTorch version requirement of 2.0.0 or above.
This study tests the performance of the BGE-Adam optimization algorithm on multiple
datasets: MNIST, CIFAR10, and a specialized medical image dataset referred to here
as ”Medical”. Each of these three datasets contains a different number of images and
image quality. The MNIST dataset includes 70,000 grayscale images with 10 categories
representing handwritten digits 0–9. The CIFAR10 dataset [23] contains 60,000 color images
in 10 categories. The Medical dataset consists of 1885 color images, divided into 8 categories
based on the severity of the conditions [24]. In the experiments, all three datasets are divided
into three parts, including a training set, a validation set, and a test set. The experimental
datasets are shown in Table 3.

Table 3. Experimental dataset.

Dataset Number of Datasets Training Set Validation Set Test Set Classification

CIFAR10 60,000 45,000 5000 10,000 10
MNIST 70,000 55,000 5000 10,000 10
Medical 1885 1400 200 285 8

4.2. Experimental Results and Analysis

The BGE-Adam optimization algorithm improves upon the traditional Adam opti-
mizer by introducing a mechanism that dynamically adjusts the β1 and β2 values according
to the gradient change rate and predicting the next gradient step. By doing so, the algo-
rithm tailors the influence of past gradients on both the first-order (mean) and second-order
(uncentered variance) moment estimates, which can lead to better performance and faster
convergence compared to using fixed β values. Secondly, the BGE-Adam algorithm inte-
grates a gradient prediction mechanism that helps the optimizer traverse the loss surface
more smoothly, preventing excessive oscillations. This contributes to a steadier and often
quicker convergence to potentially better global minima as the model can anticipate and
correct its path during optimization. Thirdly, by incorporating entropy weight adjust-
ments into the learning rate, the BGE-Adam optimizer introduces randomness into the
optimization process, encouraging the algorithm to explore new regions in the parameter
space rather than merely fluctuating around the current minimum. The concept of entropy,
borrowed from thermodynamics, symbolizes a measure of disorder; hence, its adjustment
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introduces a form of ’controlled chaos’, which can be particularly effective in avoiding local
minima and increasing the likelihood of discovering superior global minima. This feature
is invaluable when dealing with complex and high-dimensional problems, as it expands the
robustness of the optimization process against becoming trapped in suboptimal solutions.

To validate the performance of the BGE-Adam optimization algorithm, we conducted
comparative experiments with several existing optimizers: SGD, Adam, Adadelta, NAdam,
Adagrad, and Adamax. Through testing these optimization algorithms on different datasets,
we found that the BGE-Adam optimization algorithm outperforms the others in both
accuracy and loss reduction, the experimental results are compared as shown in Table 4.

Table 4. Comparison of experimental results.

Dataset Optimization Algorithm Accuracy Loss

Adam 99.23% 0.04474
Adadelta 83.70% 0.4897
Adamax 98.84% 0.0629

MNIST Adagrad 89.09% 0.4041
Nadam 99.30% 0.03188
SGD 97.11% 0.1095
BGE-Adam 99.34% 0.0756

Table 4. Cont.

Dataset Optimization Algorithm Accuracy Loss

Adam 70.11% 1.195
Adadelta 27.37% 1.951
Adamax 55.45% 1.693

CIFAR10 Adagrad 29.58% 1.974
Nadam 68.95% 2.439
SGD 48.66% 1.478
BGE-Adam 71.4% 1.458

Adam 67.66% 3.481
Adadelta 60.85% 2.629
Adamax 66.81% 2.657

Medical Adagrad 67.23% 2.401
Nadam 67.66% 2.363
SGD 68.09% 3.681
BGE-Adam 69.36% 2.852

4.3. Experimental Setup

(1) Optimization Algorithms: Comparative experiments were conducted between the
BGE-Adam optimization algorithm and six existing optimization algorithms: SGD,
Adam, Adadelta, Adamax, Adagrad, and NAdam.

(2) Dataset Selection: Ten sets of comparative experiments were conducted on the seven
optimization algorithms on the traditional datasets, MNIST, CIFAR10, and a medical
image dataset for gastrointestinal disease diagnostics. The average of the results from
the ten comparative experiments was taken as the final experimental outcome.

(3) Network Model Selection: The comparative experiments in this study utilize the
PyTorch deep learning architecture, selecting the lightweight neural network Mo-
bileNetV2 for comparison experiments. To evaluate the performance of optimizers
more fairly, the BGE-Adam optimization algorithm and the six other optimizers in
the comparison all employ the same network model architecture.

(4) Hyperparameter Initialization: In addition to the inherent parameters within the
optimizers, the same initial hyperparameters, including learning rate and weight
decay, are set for each optimizer. The batch size used in the experiments is determined
to be 128, and the number of training iterations is set to 100.

(5) Model Training: Each optimizer is used to train the model for 50 epochs separately to
ensure the repeatability of the experimental results.
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4.4. Experimental Implementation

Determination of Hyperparameter Learning Rate lr: Before conducting the compar-
ative experiment of optimization algorithms, the BGE-Adam optimization algorithm is
tested using different learning rates. The experimental results are shown in Figure 1.

The BGE-Adam optimization algorithm was tested with three different learning rates
(1 × 10−1 , 1 × 10−2, 1 × 10−3, 1 × 10−4, and 1 × 10−5) on the CIFAR10 dataset, with the
number of iterations (epochs) set to 20. The left (a) shows the accuracy when tested on the
validation set. When the learning rate (lr) is set to 1 × 10−3, the accuracy is the highest,
indicating the best performance. The right (b) shows the loss values, and again, when the lr
is set to 1 × 10−3, the loss values are the smallest, indicating the best performance. When
the lr is set to 1 × 10−4, the accuracy is low and the loss values are high, indicating the
worst performance. Based on the experimental results, an initial learning rate of 1 × 10−3

was finally determined to be the best choice.
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Figure 1. Comparison of training results with different learning rates for BGE-Adam settings.
(a) Comparison of accuracy values for different learning rates; (b) Comparison of loss values for
different learning rates.

Figure 2 shows the training comparison results of the seven optimization algorithms in
the comparison on the Medical gastrointestinal disease diagnosis medical dataset. Figure 3
compares the training results of the seven optimization algorithms on the MNIST dataset.
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Figure 2. Comparison between different optimization algorithms on the Medical Gastrointestinal
Condition Diagnosis dataset. (a) Accuracy on validation set; (b) Loss value on validation set.

Based on the experimental results shown in Figure 4, it can be observed that as
the number of training iterations increases, the Adam-based Adadelta algorithm, when
applied to the CIFAR10 dataset, converges slower, achieves lower accuracy, and exhibits
poorer performance compared to the other optimization algorithms. Additionally, the BGE-
Adam optimization algorithm demonstrates higher accuracy right from the beginning
of the training, significantly outperforming other optimization algorithms in the early
stages of training. With increasing iterations, the accuracy of BGE-Adam continues to
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stabilize and improve, eventually converging with an advantage over other improved
optimization algorithms, particularly showing better convergence and accuracy than the
Adam optimization algorithm. The superior performance of BGE-Adam can be attributed
to a key feature of the algorithm: the dynamic adjustment of the first- and second-order
momentum factors (β1 and β2). This adjustment is dependent on the rate of change
of the gradient, allowing the algorithm to flexibly adjust the step size according to the
historical trend in gradient changes. This helps in adjusting the intensity of the learning
rate at different stages of model training, such as the initial phase and the convergence
phase, thereby achieving faster convergence and higher accuracy on the CIFAR-10 dataset.
Furthermore, BGE-Adam also employs a gradient prediction model to forecast the next
gradient, which may enhance the efficiency of gradient descent. By considering information
from past gradients to predict the direction and magnitude of the next gradient, the gradient
prediction model may make BGE-Adam’s search in the parameter space more precise.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

A
C
C

epoch

 Adadelta
 Adagrad
 Adamax
 NAdam
 SGD
 Adam
 BGE-Adam

(a)

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

L
o
s
s

epoch

 Adadelta
 Adagrad
 Adamax
 NAdam
 SGD
 Adam
 BGE-Adam

(b)

Figure 3. Comparison of different optimization algorithms on MNIST dataset. (a) Accuracy on
validation set; (b) Loss value on validation set.
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Figure 4. Comparison of accuracy of different optimization algorithms on CIFAR10 dataset.

Figure 5 demonstrates that during the early stages of training, the BGE-Adam optimiza-
tion algorithm converges significantly faster than the other algorithms. The Adam-based
Adadelta optimization algorithm exhibits significantly higher loss values compared to the
other optimization algorithms, indicating larger losses. The Adam, Nadam, and BGE-Adam
algorithms all converge relatively quickly. By the 40th iteration, the BGE-Adam algorithm
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achieves the minimum loss value, which is significantly lower than that of the other six op-
timization algorithms at the same iteration, resulting in the best convergence performance.
The reason for this phenomenon may be that BGE-Adam incorporates entropy weights
(entropy weight) into parameter updates, which adds randomness to the update steps.
This randomness can help the algorithm bypass local minima and explore more regions
of the loss function, ultimately finding a better global optimal solution. As the number of
iterations increases and approaches the later stages, the loss value of BGE-Adam tends to
stabilize. In terms of the final convergence results, BGE-Adam’s loss value is lower than
the minimum loss values achieved by SGD (Stochastic Gradient Descent) and Adamax,
indicating better convergence compared to other algorithms. This suggests that BGE-Adam
is effective in minimizing the loss function and achieving better optimization outcomes.
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Figure 5. Comparison of loss values of different optimiaation algorithms on CIFAR10 dataset.

The graph in Figure 6 compares the training time and GPU utilization of the seven
optimization algorithms in the comparison on the CIFAR10 dataset. The BGE-Adam opti-
mization algorithm stands out for having a significantly lower GPU utilization rate than
the other six algorithms. This is achieved by adaptively adjusting the exponential decay
rates of the first- and second-order moment estimates based on the rate of change of the
gradient. This allows BGE-Adam to reduce the frequency of parameter updates without
compromising performance. Furthermore, by incorporating historical gradient information
to estimate the future direction of gradients, BGE-Adam may optimize the training pro-
cess, making the algorithm more precise and efficient during gradient updates. This can
potentially reduce unnecessary computations and parameter adjustments, thereby decreas-
ing the computational load on the GPU. However, as the number of iterations increases,
BGE-Adam may occasionally update the parameters more conservatively to ensure more
stable convergence to the global optimum, while this can enhance the final performance of
the model, it may also result in a slight increase in training time. In summary, BGE-Adam
offers a balance between performance and computational efficiency by adaptively adjusting
the decay rates of moment estimates and incorporating historical gradient information.
This can lead to lower GPU utilization and a more efficient training process. The trade-off
is that the algorithm may require more cautious parameter updates, which can slightly
increase training time but potentially improve the final performance of the model.

Overall, in the experiments on the CIFAR10 dataset, the BGE-Adam algorithm demon-
strated superior performance compared to the other six optimization methods in the com-
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parison. In particular, when compared to the widely used Adam algorithm, BGE-Adam
shows not only a significant improvement in accuracy but also a more stable convergence.
This experimental result further confirms the unique advantages of BGE-Adam among
many optimization algorithms. It is particularly noteworthy that BGE-Adam exhibits excep-
tional strength in addressing issues related to learning rate sensitivity and enhancing the
generalization capability of the model. These characteristics make BGE-Adam a powerful
choice for optimization in scenarios where controlling the learning rate and improving the
model’s ability to generalize are critical.

Figure 6. GPU occupancy for the seven algorithms in the comparison.

The research findings from this study showcase the exceptional performance of the
BGE-Adam algorithm in addressing critical optimization issues during deep learning
training. Compared to the traditional Adam algorithm, BGE-Adam is more efficient in
adjusting the learning rate and avoiding the fluctuations and instability that may occur
during training. This ensures the robustness of the model throughout the training pro-
cess. More impressively, BGE-Adam has an enhanced ability to generalize and adapt
to new data through its improved optimization mechanism. It exhibits stronger gener-
alization capabilities, which is a significant advantage in the field of machine learning.
Extensive testing on the CIFAR10, MNIST datasets, and Medical diagnostic datasets has
demonstrated that BGE-Adam can consistently maintain its superiority under different
environments and conditions. These results are not only valuable for researchers aiming for
high training efficiency and model accuracy but also for practitioners in the field of machine
learning, providing insights and inspiration for real-world applications. The robustness,
stability, and generalization capabilities of BGE-Adam make it a promising candidate for
optimization in deep learning tasks, where consistent and high-quality model performance
is crucial.

Based on the data presented in Table 2, it is evident from the comparative studies
conducted on three different datasets that BGE-Adam exhibits superior performance in
terms of accuracy. Whether on the handwritten digit dataset MNIST, the image recognition
dataset CIFAR-10, or the medical gastrointestinal disease diagnosis dataset, BGE-Adam
demonstrates outstanding overall performance. This clearly demonstrates the algorithm’s
broad applicability across different types of datasets, along with its remarkable general-
ization capability and robustness. The BGE-Adam algorithm performs excellently across
various types of image datasets, including grayscale and color images. In particular, af-
ter 100 training iterations, the algorithm demonstrates rapid convergence and stability,
surpassing other comparative optimization algorithms, especially when compared to the
standard Adam algorithm, with significantly higher accuracy. This indicates the superior
performance of BGE-Adam in enhancing stability and escaping local optima. This perfor-
mance of the algorithm not only highlights its outstanding generalization performance
but also reinforces its applicability across different datasets and tasks. Further research
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indicates that BGE-Adam exhibits superior performance whether applied to fully connected
neural networks or convolutional neural networks, further demonstrating that its benefits
are not limited to specific network structures. In experiments, the BGE-Adam algorithm
demonstrates its multifaceted advantages, especially in terms of its generalization ability
and rapid convergence, which are crucial characteristics. The BGE-Adam optimization
algorithm achieves an accuracy of 71.4% on the CIFAR-10 test dataset, surpassing the 70.6%
accuracy of the Adam algorithm. On the Medical test dataset, the accuracy is 69.36%, higher
than Adam’s 67.66%. On the MNIST dataset, the accuracy of the BGE-Adam algorithm
is 99.34%, surpassing the 99.23% of the Adam optimization algorithm. The BGE-Adam
optimization algorithm achieves the best accuracy on three datasets and different network
structures and reaches the minimum loss value during training, which experimentally
reinforces the potential of BGE-Adam as an algorithm for improving the performance and
generalization power of deep learning models [25].

5. Conclusions

The BGE-Adam optimization algorithm, based on the standard Adam algorithm, not
only delivers higher accuracy but also demonstrates improved adaptability and robustness,
especially in high-noise environments such as medical datasets.As depicted in Figure 1,
the algorithm performs optimally with a learning rate set to 1 × 10−3. It exhibits faster
convergence rates, greater stability, and enhanced robustness across multiple datasets. Ex-
tensive experimental comparisons of seven optimization algorithms, namely, Adam, SGD,
Adadelta, Adamax, NAdam, Adagrad, and BGE-Adam, were conducted on the CIFAR-10
and MNIST and a medical image diagnosis datasets. The results, illustrated in Figures 2–4,
indicate that the BGE-Adam optimization algorithm surpasses the other algorithms in
the comparison in terms of accuracy. Figure 5 demonstrates that BGE-Adam converges
significantly faster in terms of the loss values on the CIFAR-10 dataset. Specifically, BGE-
Adam displays expedited convergence and heightened accuracy, which is particularly vital
for tasks requiring iterative training of large neural networks. The algorithm’s improved
stability reduces fluctuations during parameter updates throughout training, aiding in
more robust convergence of the models. Its outstanding robustness is manifested in higher
accuracy across various datasets, especially in high-noise datasets such as medical images,
showcasing its formidable adaptability to outliers and input noise, while pursuing high
precision, BGE-Adam has consistently outperformed other optimizers in various test sets,
affirming the efficacy of integrated and innovative techniques in the realm of optimization
algorithms. This provides new avenues for the future development of deep learning models
from a fresh perspective.

The BGE-Adam algorithm addresses the problem of the Adam optimization algorithm
becoming trapped in local optima in certain cases; BGE-Adam’s design considers enhancing
global search capability by avoiding suboptimal solutions through more efficient gradient
utilization strategies. Meanwhile, the Adam algorithm may exhibit slow startup phenom-
ena in the initial training phase; BGE-Adam accelerates the model’s learning speed in the
early stages of training by dynamically adjusting optimization parameters. Sometimes,
Adam performs poorly in convergence on specific tasks or data; the improvement mecha-
nism adopted by BGE-Adam aims to provide more consistent convergence behavior and
reduce performance fluctuations on specific types of datasets. We believe that BGE-Adam
has the potential to be further validated and applied in various deep learning applications
such as visual recognition and complex medical image analysis due to its outstanding
performance. However, the improved BGE-Adam optimization algorithm also has some
limitations. The current BGE-Adam optimization algorithm does not support sparse gra-
dients, which limits its application in processing large-scale sparse datasets commonly
used in natural language processing and recommendation systems. Future research can
further explore BGE-Adam’s performance on a wider range of datasets and different model
architectures, as well as its efficacy and feasibility in practical applications. Additionally,
how to more effectively utilize the innovative techniques within BGE-Adam to adapt to the



Symmetry 2024, 16, 623 15 of 16

increasing complexity and diversity of deep learning models remains a worthy subject for
further investigation.

Author Contributions: Conceptualization and methodology and writing—original draft preparation,
J.W.; software and project administration and resources, Y.S., L.X.; data curation, H.Y.; investigation,
Q.Z. formal analysis, Q.Z.; resources, Q.Z., L.Z. and L.X.; writing—review and editing and supervision
and formal analysis, H.S., L.X., Q.Z.; supervision, L.Z.; funding acquisition, L.X., Q.Z. and L.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Liaoning Provincial Department of Education’s
Higher Education Foundation Research Project (General Project), Shenyang University of Technology,
Project number: LJKZ0159; the Liaoning Provincial Department of Education Science “14th Five-Year
Plan”, Research on the Construction of New Technologies of Artificial Intelligence and High-Quality
Education Service Supply System, 2023–2025. Project number: JG22DB488; the Ministry of Education’s
“Chunhui Plan”, Research on Optimization Model and Algorithm of Microgrid Energy Scheduling
Based on Biological Behavior, Project number: 202200209; the Liaoning Provincial Department of
Education’s Basic Research Project “Training and Application of Vertical Field Multi-Mode Deep
Neural Network Model”, Project number: JYTMS20231160; and the Shenyang Science and Technology
Plan “Special Mission for Leech Breeding and Traditional Chinese Medicine Planting in Dengshibao
Town, Faku County”, Project No. 22-319-2-26.

Data Availability Statement: The location of the Python code used in this paper is https://github.
com/wangjiantao1/BGE-Adam/tree/master(accessed on 29 March 2024). The website for the stan-
dard dataset CIFAR10 dataset is https://www.kaggle.com/datasets/gazu468/cifar10-classification-
image (accessed on 1 May 2022). The website for the medical datasets is https://doi.org/10.1038/s4
1597-020-00622-y (accessed on 28 August 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anjum, M.; Shahab, S. Improving Autonomous Vehicle Controls and Quality Using Natural Language Processing-Based Input

Recognition Model. Sustainability 2023, 15, 5749. [CrossRef]
2. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
3. Kashyap, R. A survey of deep learning optimizers–First and second order methods. arXiv 2023, arXiv:2211.15596.
4. Zhang, Z.; Ma, L.; Li, Z.; Wu, C. Normalized Direction-preserving Adam. arXiv 2018, arXiv:1709.04546.
5. Reyad, M.; Sarhan, A.; Arafa, M. A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl. 2023,

35, 17095–17112. [CrossRef]
6. Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.; Dvornek, N.; Papademetris, X.; Duncan, J.S. Adabelief optimizer: Adapting stepsizes

by the belief in observed gradients. In Proceedings of the Advances in Neural Information Processing Systems, NeurIPS, Online,
6–12 December 2020.

7. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.
Res. 2011, 12, 2121–2159.

8. Yao, Z.; Gholami, A.; Shen, S.; Mustafa, M.; Keutzer, K.; Mahoney, M. ADAHESSIAN: An Adaptive Second Order Optimizer for
Machine Learning. Proc. Aaai Conf. Artif. Intell. 2021, 35, 10665–10673. [CrossRef]

9. Luo, L.; Xiong, Y.; Liu, Y.; Sun, X. Adaptive Gradient Methods with Dynamic Bound of Learning Rate. arXiv 2019, arXiv:1902.09843.
10. Gill, K.; Sharma, A.; Anand, V.; Gupta, R. Brain Tumor Detection using VGG19 model on Adadelta and SGD Optimizer. In

Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, India, 1–3 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1407–1412.

11. Wang, J.; Cao, Z. Chinese text sentiment analysis using LSTM network based on L2 and Nadam. In Proceedings of the 2017 IEEE
17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1891–1895.

12. Zhang, Q.; Zhang, Y.; Shao, Y.; Liu, M.; Li, J.; Yuan, J.; Wang, R. Boosting Adversarial Attacks with Nadam Optimizer. Electronics
2023, 12, 1464. [CrossRef]

13. Landro, N.; Gallo, I.; La Grassa, R. Mixing ADAM and SGD: A Combined Optimization Method. arXiv 2020, arXiv:2011.08042.
14. Woodworth, B.; Patel, K.; Stich, S.; Dai, Z.; Bullins, B.; Mcmahan, B.; Shamir, O.; Srebro, N. Is Local SGD Better than Minibatch

SGD? In Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020; PMLR; 2020; pp. 10334–
10343.

15. Yi, D.; Ahn, J.; Ji, S. An Effective Optimization Method for Machine Learning Based on ADAM. Appl. Sci. 2020, 10, 1073.
[CrossRef]

https://github.com/wangjiantao1/BGE-Adam/tree/master 
https://github.com/wangjiantao1/BGE-Adam/tree/master 
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image 
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image 
https://doi.org/10.1038/s41597-020-00622-y 
https://doi.org/10.1038/s41597-020-00622-y 
http://doi.org/10.3390/su15075749
http://dx.doi.org/10.1007/s00521-023-08568-z
http://dx.doi.org/10.1609/aaai.v35i12.17275
http://dx.doi.org/10.3390/electronics12061464
http://dx.doi.org/10.3390/app10031073


Symmetry 2024, 16, 623 16 of 16

16. Zhang, C.; Shao, Y.; Sun, H.; Xing, L.; Zhao, Q.; Zhang, L. The WuC-Adam algorithm based on joint improvement of Warmup
and cosine annealing algorithms. Math. Biosci. Eng. 2024, 21, 1270–1285. [CrossRef] [PubMed]

17. Chen, X.; Liu, S.; Sun, R.; Hong, M. On the Convergence of A Class of Adam-type Algorithms for Non-Convex Optimization.
arXiv 2018, arXiv:1808.02941.

18. Reddi, S.J.; Kale, S.; Kumar, S. On the Convergence of Adam and Beyond. In Proceedings of the International Conference on
Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

19. Jimenez Rezende, D.; Mohamed, S. Variational information maximisation for intrinsically motivated reinforcement learning. In
Proceedings of the Advances in Neural Information Processing Systems, NeurIPS, Montreal, QC, Canada, 7–12 December 2015.

20. Lhermitte, E.; Hilal, M.; Furlong, R.; O’Brien, V.; Humeau-Heurtier, A. Deep Learning and Entropy-Based Texture Features for
Color Image Classification. Entropy 2022, 24, 1577. [CrossRef] [PubMed]

21. Chinea Manrique de Lara, A. On the theory of deep learning: A theoretical physics perspective (Part I). Phys. A Stat. Mech. Its
Appl. 2023, 632, 129308. [CrossRef]

22. Shao, Y.; Zhang, C.; Xing, L.; Sun, H.; Zhao, Q.; Zhang, L. A new dust detection method for photovoltaic panel surface based on
Pytorch and its economic benefit analysis. Energy AI 2024, 16, 100349. [CrossRef]

23. Khanday, O.M.; Dadvandipour, S.; Lone, M.A. Effect of filter sizes on image classification in CNN: A case study on CFIR10 and
Fashion-MNIST datasets. IAES Int. J. Artif. Intell. (IJ-AI) 2021, 10, 872. [CrossRef]

24. Sutton, R.T.; Zaïane, O.R.; Goebel, R.; Baumgart, D.C. Artificial intelligence enabled automated diagnosis and grading of
ulcerative colitis endoscopy images. Sci. Rep. 2022, 12, 2748. [CrossRef] [PubMed]

25. Shao, Y.; Fan, S.; Sun, H.; Tan, Z.; Cai, Y.; Zhang, C.; Zhang, L. Multi-Scale Lightweight Neural Network for Steel Surface Defect
Detection. Coatings 2023, 13, 1202. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3934/mbe.2024054
http://www.ncbi.nlm.nih.gov/pubmed/38303464
http://dx.doi.org/10.3390/e24111577
http://www.ncbi.nlm.nih.gov/pubmed/36359667
http://dx.doi.org/10.1016/j.physa.2023.129308
http://dx.doi.org/10.1016/j.egyai.2024.100349
http://dx.doi.org/10.11591/ijai.v10.i4.pp872-878
http://dx.doi.org/10.1038/s41598-022-06726-2
http://www.ncbi.nlm.nih.gov/pubmed/35177717
http://dx.doi.org/10.3390/coatings13071202

	Introduction
	Related Work
	Design of the BGE-Adam Algorithm
	Dynamically Adjusted -Parameter Mechanisms
	Gradient Prediction Model
	Entropy Weights
	BGE-Adam Algorithm

	Experimental Results and Analyses
	Experiment Environment and Configuration
	Experimental Results and Analysis
	Experimental Setup
	Experimental Implementation

	Conclusions
	References

