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Abstract: Accurate short-term electrical load forecasting is crucial for the stable operation of power
systems. Given the nonlinear, periodic, and rapidly changing characteristics of short-term power load
forecasts, this paper introduces a novel forecasting method employing an Extreme Learning Machine
(ELM) enhanced by an improved Dwarf Mongoose Optimization Algorithm (Local escape Dwarf
Mongoose Optimization Algorithm, LDMOA). This method addresses the significant prediction
errors of conventional ELM models and enhances prediction accuracy. The enhancements to the
Dwarf Mongoose Optimization Algorithm include three key modifications: initially, a dynamic
backward learning strategy is integrated at the early stages of the algorithm to augment its global
search capabilities. Subsequently, a cosine algorithm is employed to locate new food sources, thereby
expanding the search scope and avoiding local optima. Lastly, a “madness factor” is added when
identifying new sleeping burrows to further widen the search area and effectively circumvent local
optima. Comparative analyses using benchmark functions demonstrate the improved algorithm’s
superior convergence and stability. In this study, the LDMOA algorithm optimizes the weights
and thresholds of the ELM to establish the LDMOA-ELM prediction model. Experimental forecasts
utilizing data from China’s 2016 “The Electrician Mathematical Contest in Modeling” demonstrate
that the LDMOA-ELM model significantly outperforms the original ELM model in terms of prediction
error and accuracy.

Keywords: electrical load forecasting; machine learning; extreme learning machine; dynamic backward
learning; madness factor operator

1. Introduction

Accurate electric load forecasting is crucial for the planning and reliable economic
operation of power systems. It not only ensures the normal electricity usage of consumers
but also reduces costs and guarantees the safety of power systems [1]. However, challenges
in predicting electric load demand have increased sharply due to factors such as global
climate change, energy supply constraints, increasing numbers of electricity users, and the
integration of new energy device loads into the grid [2].

In the realm of electric load forecasting, researchers have employed time series re-
gression models [3] and fuzzy linear regression models [4] to predict load, focusing on the
temporal characteristics of load data and providing strong interpretability of the models.
However, these methods have limitations in forecasting non-linear load data. In recent
years, with the development of intelligent optimization algorithms, an increasing number
of researchers have started incorporating these algorithms into electric load forecasting.
Han M. C. enhanced the capability and prediction accuracy of capturing characteristics in
load data by optimizing LSTM hyperparameters through a sparrow optimization algorithm
that integrates Cauchy mutation and inverse learning strategies [5]. Zhang Z. C. quantified
the behavior of dragonflies in the dragonfly algorithm to boost the search capability, and
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utilized an adaptive noise complete empirical mode decomposition method for preprocess-
ing raw data, thereby improving the prediction accuracy of SVR in load forecasting [6]. Ge
Q. B. employed K-means clustering to categorize data and then used a combined predictive
algorithm of reinforcement learning and particle swarm optimization along with the least
squares support vector machine to predict different types of data [7]. Fan G. F. developed
a new model combining the random forest model and mean-generating function model,
significantly enhancing the prediction accuracy of peaks and troughs in highly volatile
data [8]. Additionally, Xu R. [9] noted that extreme learning machines offer faster learning
speeds and less human intervention, and are easier to implement. Deng B. [10] argued
that compared to support vector machines, extreme learning machines have milder op-
timization constraints and quicker learning speeds. Some researchers have also applied
optimized ELMs to electric load forecasting. For instance, Wang Tong utilized an improved
artificial hummingbird algorithm for optimizing parameters in Extreme Learning Machines
(ELM), significantly enhancing prediction accuracy [11]. Long Gan and others have used
an improved multiverse algorithm to optimize the input layer weights and thresholds of
ELMs, thereby improving their prediction accuracy [12]. Wang Z-X. employed an adaptive
evolutionary ELM for data prediction, integrating a chaos-adapted whale optimization
algorithm based on a firefly perturbation strategy and a chaotic sparrow search algorithm,
which exhibited outstanding performance [13]. Additionally, Zhang S. proposed an ELM
model under a moth flame optimization algorithm based on Tsne dimensionality reduction
and visualization analysis, which achieved higher prediction accuracy than the original
ELM model [14].

Accurate electric load forecasting can impact related decisions in power systems,
such as generation control, economic dispatch, and maintenance scheduling. Therefore,
to achieve high-precision short-term electric load forecasting, this paper proposes an
ELM prediction model based on the improved Dwarf Mongoose Optimization Algorithm.
Applied to short-term electric load forecasting, experimental results demonstrate that this
model achieves higher accuracy compared to other ELM models.

2. Extreme Learning Machine

The Extreme Learning Machine (ELM) is a type of Single-hidden Layer Feedforward
Neural Network (SLFN) algorithm, introduced by Professor Guang-Bin Huang and oth-
ers based on the theory of the Moore–Penrose pseudoinverse [15]. This algorithm was
developed to address several issues inherent in SLFNs, such as slow learning rates, long
iteration times, and the traditional need to preset learning rates and step sizes. Unlike
conventional neural network learning algorithms, the ELM requires only the appropriate
setting of hidden layer node numbers. It autonomously generates all necessary parameters
for the hidden layer and determines the final output layer weights through the least squares
method. Due to its superior learning and nonlinear approximation capabilities compared
to traditional machine learning algorithms, researchers have applied the ELM across a
broad range of fields, including fault diagnosis [16], load forecasting [17], and feature
recognition [18].

The ELM algorithm operates with a single hidden layer, where each layer from input
to output comprises independent neurons, all interconnected in a fully connected manner.
The network structure of the ELM is illustrated in Figure 1.
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Assuming there are N arbitrary samples (xi, ti), xi =
[

xi1, xi2 . . . , xin]
T ∈ Rn and

ti =
[

ti1, ti2, · · · , tim]
t ∈ Rm . This can be represented by a single hidden layer neural

network with L hidden nodes, as illustrated in Figure 1 and described by Equation (1).

oj =
L

∑
j=1

βig(wi·xi + bi) j = 1, 2, · · · , N (1)

Here, g(x) is the activation function, wi =
[
wi1, wi2, · · · , win]

T are the input weights,
βi =

[
βi1, βi2, · · · , βim]

T ∈ Rm are the output weights, and bi is the bias of the ith hidden
layer unit, with wi·xi being the dot product between them.

Extreme Learning Machines, as a type of single hidden layer neural network, have an
output error that asymptotically approaches zero, as shown in Equation (2).

L

∑
j=1

∣∣∣∣oj − ti
∣∣∣∣ = 0 (2)

Equation (2) can be represented using matrices, as shown in Equation (3):

Hβ = T (3)

Here, H denotes the hidden layer output matrix, β represents the output weights, and
T is the target output. The matrix H can be expressed by Equation (4).

H =

 h1(x1) · · · hL(x1)
...

h1(xD) · · · hL(xD)

, T = [t1, · · · tD] (4)

According to Equation (3), Equation (5) can be derived.

β = HTT (5)

In Equation (5), HT represents the Moore–Penrose pseudoinverse of the matrix H.

3. Dwarf Mongoose Algorithm

The Dwarf Mongoose Algorithm is an intelligent optimization algorithm inspired by
the social behavior of dwarf mongoose groups. This algorithm consists of three parts: the
Alpha Group, the Scout Group, and the Babysitter Group. The Alpha Group produces a
female leader to guide the group in foraging. The Scout Group is responsible for finding
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new locations for sleeping mounds, while the Babysitter Group influences the performance
of the algorithm through its numbers.

3.1. Alpha Group

The population is initialized as shown in Equation (6),

xi,j = uni f rnd(LB, UB, Dim) (6)

where xi,j represents the initial position, LB and UB denote the lower and upper bounds of
the solution space, Dim represents the dimension of decision variables, and uni f rnd is a
uniformly distributed random number.

Furthermore, a female leader emerges within the dwarf mongoose population, as
depicted in Equation (7).

α =
f iti

∑N
i=1 f iti

(7)

Here, f iti represents the fitness value of the ith individual, and N is the number of
individuals in the population. The number of individuals in the Alpha Group is the total
population N minus the number of individuals in the Babysitter Group, i.e., n = N − bs.

The female leader in the Alpha Group guides the other members to the food source
location via calls, as shown in Equation (8):

Xnew = Xi + peep × phi × (Xi − Xk) (8)

Here, Xnew is the new position of the dwarf mongoose, peep is the calling coefficient,
set at peep = 2 in this study, and phi is a uniformly distributed random number within [0,
1]. Xi is the current position of the female leader, and Xk is the position of another random
individual in the Alpha Group distinct from the leader. Subsequently, the new position
Xnew undergoes a fitness evaluation to obtain f iti+1, and the value of the sleeping mound
is determined according to Equation (9).

smi =
f iti+1− f iti

max{| f iti+1, f iti|} (9)

Here, smi represents the value of the sleeping mound, and the average value of the
sleeping mound can be calculated according to Equation (10).

φ = ∑N
i=1 smi

n
(10)

3.2. Scout Group

The primary responsibility of the Scout Group is to locate new positions for sleeping
mounds, as described by the movement formula in Equation (11).

Xi+1 =


xi − CF × phi × r ×

[
xi −

→
M
]

, i f φi+1 > φi

xi + CF × phi × r ×
[

xi −
→
M
]

, else
(11)

Here, r is a random number within [0, 1], CF is a mobility parameter for the dwarf mon-

goose population, and
→
M is the direction vector determining the mongoose’s movement direc-

tion. The formulas for calculating CF and
→
M are given in Equations (12) and (13), respectively.

CF = (1 − Iter
MaxIt

)(2
Iter

MaxIt ) (12)

→
M =

N

∑
i=1

xi × smi
xi

(13)
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Here, Iter is the current iteration number, and MaxIt is the maximum number of itera-
tions. The movement parameter CF linearly decreases as the number of iterations increases.

3.3. Babysitter Group

When the timing parameter is greater than or equal to the exchange parameter, i.e.,
C ≥ L, the Babysitter Group assumes that the Alpha Group’s foraging capability is weak.
At this point, the Babysitter Group will swap roles with the Alpha Group, and the dwarf
mongoose community will begin searching for a new sleeping mound.

4. Enhancements to the Dwarf Mongoose Algorithm

To address the Dwarf Mongoose Algorithm’s tendency to fall into local optima and
its weak global search performance, this paper proposes the incorporation of a reverse
learning strategy to enhance the algorithm’s exploratory capability, thereby improving
its global search performance. Additionally, the inclusion of a craziness operator factor
and the sine–cosine algorithm expands the local search range of the algorithm, helping to
circumvent issues of local optima.

4.1. Dynamic Reverse Learning Strategy

The reverse learning strategy [19] is a common perturbation tactic that expands the
algorithm’s exploration range to find better solutions. In the reversed learning strategy,
the new position generated is symmetrical to the original position at the point Xi+xi

2 . This
measure enhances the exploratory nature of the algorithm, allowing it to search in the
opposite direction for improved population individual positions. Moreover, the new
position is compared with the original in terms of fitness, and the individual with the
optimal fitness is selected as the population individual position. The reverse learning
strategy is depicted in Equation (14).

Xi = LB + UB − xi (14)

In the formula, Xi represents the population individual after reverse learning, with LB
and UB denoting the lower and upper limits of the solution space, and xi indicating the
original position of the individual within the population. To enhance the search for optimal
solutions within the solution space, a random factor is included in the reverse learning
strategy, further diversifying the population within the solution space. The dynamic
reverse learning strategy introduced in the early stages of the algorithm iteration is shown
in Equation (15).

Xi = r × (LB + UB)− xi (15)

Here, r is a random number within (0, 1).

4.2. Sine–Cosine Algorithm

During the search process, the sine–cosine algorithm [20] conducts searches in the
form of sine and cosine waveforms. This method enhances the search capabilities of
the algorithm, enabling it to avoid becoming trapped in local optima. Additionally, the
search process of the algorithm exhibits point symmetry characteristics typical of sine
and cosine functions. While the Alpha Group, led by the female leader, is searching for
new food sources, this process can easily become trapped in local optima. To avoid such
outcomes, this study incorporates the sine–cosine algorithm to expand the search range of
the algorithm. The formula for searching new food sources, updated with the sine–cosine
algorithm, is shown in Equation (16).

Xnew =

{
Xi + phi × r1 × sin(r 2)× (Xi − Xk), i f r < 0.5
Xi + phi × r1 × cos(r 2)× (Xi − Xk), else

(16)



Symmetry 2024, 16, 628 6 of 15

In Equation (16), r and r1 are random numbers within (0, 1), r2 is a random number
within (0, 2π), Xi is the position of the female leader, and Xk is the position of another
individual distinct from the leader.

4.3. Craziness Factor

In the later stages of the algorithm, when dwarf mongoose individuals seek a sleeping
mound, the group tends to converge on this mound, which could lead to local optima. This
paper introduces a craziness operator factor, which perturbs the position of the optimal
individual to prevent the algorithm from becoming trapped in local optima in its later
iterations. The position of the optimal individual after incorporating the craziness operator
factor is illustrated in Equation (17).

Xi = xi × (1 + Pc × xcraze × sign) (17)

In Equation (17), xi represents the original optimal individual position, and Pc and
xcraze are disturbance factors within the craziness operator factor, with xcraze set at 0.0001.
Pc and xcraze are described by Equations (18) and (19), respectively.

Pc =
{

1, c < Pr
0, else

(18)

sign =

{
−1, c > 0.5

1, else
(19)

In the craziness factor, the sign is determined as either 1 or −1 based on the magnitude
of c, exhibiting a kind of symmetry in its values. This method of value assignment can
perturb the algorithm, expanding its search range and helping to avoid local optima. In
Equation (19), c is a random number within (0, 1), and Pr is the preset craziness probability,
set at 0.4 in this study.

4.4. LDMOA Steps and Process

In the enhanced DMOA, the reverse learning strategy is utilized to expand the algo-
rithm’s exploratory capacity and search range, thereby enhancing its global search capa-
bilities. Simultaneously, the introduction of the sine–cosine algorithm and the craziness
operator factor enhance the local search capability of the algorithm, effectively avoiding
situations of local optima. Figure 2 shows the workflow diagram of the LDMOA, and
below is the operational process of the LDMOA.

Step 1: Set the initial parameters of the algorithm, such as population parameters,
dimensions of the solution space and its limits, and maximum iteration parameters, and
utilize the dynamic reverse learning strategy to expand the search range.

Step 2: Select the female leader according to Equation (7) and set the related coef-
ficients. During the process of searching for new food sources by the dwarf mongoose
group, incorporate the sine–cosine algorithm to further expand the search for new food
source positions.

Step 3: The sleeping mound position is influenced by the optimal position; introduce
the craziness operator factor to perturb it, and then determine the sleeping mound position
and calculate its average value.

Step 4: Assess whether C ≥ L; when this condition is met, swap the Alpha Group
and Babysitter Group, and proceed with the formula to search for new sleeping mounds
and forage.

Step 5: Determine whether the algorithm has reached the maximum iteration count; if
not, repeat the above steps, and otherwise output the optimal results.
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4.5. Benchmark Function Testing

To ensure that the enhanced strategy provides positive improvements over the original
Dwarf Mongoose Optimization Algorithm (DMOA), we conducted benchmark function
tests comparing the modified algorithm with the original. The selected benchmark functions
are shown in Table 1.

Functions f1 to f2 are unimodal functions, which test the algorithm’s convergence
capability. Functions f3 to f6 are multimodal functions, evaluating the algorithm’s ability to
escape local optima. Functions f7 to f11 are hybrid functions, and f12 to f15 are composite
functions, with both sets testing the optimization performance in complex scenarios.

The enhanced and original algorithms were tested using the benchmark functions
listed in the table. To ensure the accuracy of the benchmark tests, the algorithms were
configured with parameters as shown in Table 2, including population initialization size
(nPop) and solution space dimensions (Dim). The results are presented in Section 4.6 and
Table 3.
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Table 1. Benchmark function.

Function Function Name Optimal Value

f 1 Shifted and Rotated Bent Cigar Function 100
f 2 Shifted and Rotated Zakharov Function 300
f 3 Shifted and Rotated Rosenbrock’s Function 400

f 4
Shifted and Rotated Lunacek Bi_Rastrigin

Function 700

f 5
Shifted and Rotated Non-Continuous

Rastrigin’s Function 800

f 6 Shifted and Rotated Levy Function 900
f 7 Hybrid Function 2 (N = 3) 1200
f 8 Hybrid Function 3 (N = 3) 1300
f 9 Hybrid Function 4 (N = 4) 1400
f 10 Hybrid Function 6 (N = 4) 1600
f 11 Hybrid Function 6 (N = 5) 1900
f 12 Composition Function 1 (N = 3) 2100
f 13 Composition Function 3 (N = 4) 2300
f 14 Composition Function 5 (N = 5) 2500
f 15 Composition Function 9 (N = 3) 2900

Table 2. Parameter settings.

Algorithm nPop Dim. Number of
Runs

Number of
Iterations

DMOA 50 30 30 500
LDMOA 50 30 30 500

Table 3. Function test result.

Function Algorithm Average Value Standard Deviation

f1
DMOA 2.2380 × 108 1.5191 × 108

LDMOA 4.5751 × 106 4.7176 × 106

f2
DMOA 3.8921 × 105 1.4859 × 105

LDMOA 1.9088 × 105 3.0369 × 104

f3
DMOA 6.4582 × 102 59.71001

LDMOA 4.7798 × 102 25.6402

f4
DMOA 9.8498 × 102 16.6132

LDMOA 8.7634 × 102 16.2196

f5
DMOA 1.050 × 103 15.3858

LDMOA 9.4086 × 102 11.9651

f6
DMOA 4.8974 × 103 1.1978 × 103

LDMOA 2.5027 × 103 5.5686 × 102

f7
DMOA 3.7911 × 108 1.5928 × 108

LDMOA 2.1834 × 107 6.8054 × 106

f8
DMOA 7.4329 × 106 5.6933 × 106

LDMOA 4.0444 × 105 3.4691 × 105

f9
DMOA 2.7983 × 105 1.1979 × 105

LDMOA 2.8142 × 104 1.4802 × 104

f10
DMOA 3.9829 × 103 2.3781 × 102

LDMOA 2.9550 × 103 1.8911 × 102

f11
DMOA 8.9163 × 104 8.4653 × 104

LDMOA 2.5640 × 104 1.8000 × 104

f12
DMOA 2.5562 × 103 18.1339

LDMOA 2.4442 × 103 12.3400

f13
DMOA 2.9142 × 103 17.9570

LDMOA 2.8032 × 103 17.5984

f14
DMOA 2.9628 × 103 20.6205

LDMOA 2.8955 × 103 5.5951

f15
DMOA 5.0032 × 103 1.9213 × 102

LDMOA 3.7782 × 103 1.5826 × 102
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4.6. Results of Benchmark Function Testing

In the benchmark function test results, the mean and standard deviation reflect the
convergence performance and stability of the algorithms, respectively, with the best values
highlighted in bold. The enhanced algorithm shows superior convergence performance
and stability compared to the original algorithm. As demonstrated in Table 3, the enhanced
algorithm outperforms the original in unimodal functions f1 to f2, multimodal functions f3
to f6, hybrid functions f7 to f11, and composite functions f12 to f15. Based on the analyses
in Section 4.5, the enhanced algorithm surpasses the original in convergence, avoiding
local optima, and handling complex optimization problems. Figure 3 includes graphical
representations of some function iterations: (a) unimodal function, (b) multimodal function,
(c) hybrid function, and (d) composite function, all showing improved iterative convergence
results for the enhanced algorithm.
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5. Establishing the LDMOA-ELM Model

In the Extreme Learning Machine (ELM) algorithm, the weights w and biases b signifi-
cantly influence prediction outcomes. Given that these parameters are randomly generated
in ELM, their randomness can significantly affect the model’s prediction accuracy. This
study uses the LDMOA algorithm to optimize the weights w and biases b in the ELM
algorithm, leading to notable improvements in prediction error reduction and accuracy
enhancement. The LDMOA-ELM model development process is outlined as follows:

Step 1: Import original load data, normalize it, and split it into training and test sets.



Symmetry 2024, 16, 628 10 of 15

Step 2: Initialize DMOA parameters and use Equations (15)–(17) to optimize the initial
population, the Alpha Group’s foraging process, and the process of finding new sleeping
mounds, respectively, resulting in the LDMOA.
Step 3: Compute the fitness function, using the MAPE of the ELM training set as the fitness
measure.
Step 4: Exit the loop if the maximum number of iterations is reached or accuracy require-
ments are met; otherwise, repeat Steps 2 and 3.
Step 5: Use the optimized parameters as the input weights and biases for the ELM model,
and then perform numerical predictions and output the model evaluation metrics.

The steps for establishing the LDMOA-ELM model are depicted in Figure 4.
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6. Simulation Experiment

In conducting electric load forecasting experiments for comparison, to ensure the
efficacy of the improved algorithm, this study pits the proposed LDMOA-ELM algorithm
against both the original ELM algorithm and the ELM algorithm optimized by the original
Dwarf Mongoose Algorithm. The parameter settings for both the original and the enhanced
Dwarf Mongoose Algorithms are detailed in Table 4, where nPop is the population initial-
ization size, Dim is the dimension of the solution space, LB is the lower bound, and UB is
the upper bound of the solution space.
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Table 4. Parameter settings.

Algorithm nPop Dim. LB UB Number of
Iterations

DMOA 50 30 −2 2 500
LDMOA 50 30 −2 2 500

6.1. Evaluation Metrics

The electric load forecasting evaluation standards include MAE (Mean Absolute
Error), RMSE (Root Mean Square Error), MSE (Mean Square Error), and R2 (R-Squared,
the coefficient of determination) [21]. The formulas for these metrics are shown in
Equations (20), (21), (22), and (23), respectively.

MSE =
1
n

n

∑
i=1

(
ŷi − yi)

2 (20)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (21)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (22)

R2 = 1 − ∑n
i=1

(
ŷi − yi)

2

∑n
i=1(yi −

_
y)2 (23)

Here, ŷi represents the hourly forecasted electric load;
_
yi is the average of the hourly

electric load data; yi is the actual hourly electric load data; and n is the number of
data points.

In these metrics, MSE and RMSE values are within ‘[0, +∞)’, where a value closer
to 0 indicates perfect model prediction and, conversely, a higher value indicates greater
prediction error. The MAE follows the same range and interpretation. An R2 value closer
to 1 indicates a better fit, whereas a lower value indicates a poorer fit.

6.2. Forecasting Results Comparison

The paper utilizes the standard dataset provided by the 2016 “The Electrician Mathe-
matical Contest in Modeling” in China, with sampling every 15 min, resulting in 96 samples
per day and a total of 35,040 samples. To ensure consistency in experimental results, the
number of hidden nodes in the prediction model is uniformly set to 85, with the sample
configuration using data from the previous seven days to predict the eighth day, set across
100 sample groups. In this paper, we optimized the ELM model for multi-step-ahead
forecasting by dividing 100 sample sets into 99 training sets and one test set. The statistical
data of the three methods’ predictions are shown in Table 5. Section 6.1 demonstrates that
a higher R2 value indicates better prediction results, and smaller values for other metrics
indicate better performance. Here, the LDMOA-ELM model’s MAE, MAPE, MSE, and
RMSE values were 61.62, 0.0080845, 5953.4, and 77.158, respectively, all of which were sig-
nificantly reduced compared to the ELM model. Integrating these five evaluation metrics,
it is evident that the LDMOA-ELM used in this study exhibits superior performance across
all indicators, with a prediction accuracy of 99.80%, which is an improvement of 15% over
the ELM model. This demonstrates that the LDMOA-ELM model achieves lower prediction
errors and higher prediction accuracy. The results indicate that the improved predictive
model enhances the accuracy of forecasts for the experimental data used in this study.
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Table 5. Evaluation metrics.

MAE MAPE MSE RMSE R2

ELM 527.35 0.069746 3.5048 × 105 592.02 0.86538
SSA-ELM 76.713 0.0097348 10,163 100.81 0.99659

DMOA-ELM 72.311 0.009243 9627.1 98.118 0.99689
LDMOA-ELM 61.62 0.0080845 5953.4 77.158 0.99802

As illustrated in Figure 5, LDMOA is more adept at escaping local optima and finding
optimal values compared to the original Dwarf Mongoose Algorithm. Figure 6 shows the
prediction results graph, indicating that the LDMOA-ELM model’s prediction curve best
fits the actual value curve. Figure 7 displays the relative prediction errors, revealing that
the relative error between the predicted values of the LDMOA-ELM model and the actual
values is significantly lower than that of the ELM model. Additionally, by integrating
the statistical data from Table 5, it is evident that the LDMOA-ELM model exhibits lower
prediction errors and improved accuracy compared to the original ELM model. Particularly
in terms of relative prediction errors, as shown in Figure 7, there is a significant difference
between the two, with the LDMOA-ELM model outperforming the original ELM model.
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Figure 8, the prediction evaluation metrics graph, shows that the ELM model
results in the highest error values, while the LDMOA-ELM model yields the smallest
error values. Integrating data from Table 5 and Figures 5–8, it is evident that the
LDMOA-ELM algorithm, in comparison to both the ELM and DMOA-ELM algorithms,
achieves the smallest prediction errors and the highest prediction accuracy, with the
LDMOA-ELM algorithm achieving a prediction accuracy of 99.80%. Figure 9 presents
the statistical graph for the Mean Absolute Percentage Error (MAPE). It is evident that
the original ELM model exhibits significantly higher MAPE values compared to the
LDMOA-ELM model. This demonstrates that the LDMOA-ELM model achieves lower
prediction errors.
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7. Conclusions

In response to the challenges of high randomness and low prediction accuracy in short-
term electric load forecasting, this paper introduces a short-term electric load forecasting
model that utilizes an enhanced Dwarf Mongoose Algorithm-based ELM. Initially, the
Dwarf Mongoose Algorithm was modified by incorporating reverse learning strategies,
sine–cosine strategies, and a craziness operator factor, which improved the algorithm’s
exploratory capabilities, enhanced its global search ability, and enabled it to escape from
local optima more effectively. Subsequently, combining the LDMOA with an Extreme
Learning Machine, this model was applied to forecast the relevant experimental data and
subjected to experimental analysis. The results demonstrate that, compared to the original
ELM and DMOA-ELM models, the LDMOA-ELM model exhibits significantly higher
accuracy in predicting short-term electric loads.

The LDMOA-ELM model proposed in this paper exhibits a Mean Absolute Error
(MAE) of 61.62, which is significantly lower than that of other models, thereby reducing the
prediction error of the Extreme Learning Machine to a certain extent. Although the accuracy
of the LDMOA-ELM model surpasses that of the original ELM model, the improvement in
predictive accuracy is not markedly evident when compared with other models. Future
research should focus on further refining the optimization algorithms and selecting more
appropriate predictive data to verify the accuracy and applicability of the predictive model.
At the same time, subsequent research projects should consider the processing of raw data
and comparisons between different methodologies.

Furthermore, future research in load forecasting could consider incorporating methods
such as Variational Mode Decomposition for preprocessing the raw data and compare it
with other machine learning prediction methods to highlight the advanced nature of the
optimized model. It could also be beneficial to explore the impact of varying the number of
nodes in the prediction algorithm on the precision of the forecasts, aiming to achieve better
load prediction outcomes.
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