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Abstract: Nephrite is a very precious gemstone material. As a non-renewable resource, the discovery
of new nephrite deposits and the study of the genesis of nephrite have aroused great interest. A
new occurrence of nephrite known as Xinyu nephrite was discovered in Xinyu Country, Jiangxi
province, China. Field investigations reveal that nephrite appears in a contact zone between the
Mengshan composite granitic pluton and Permian carbonate rock. The carbonate rock is calcic marble
that underwent diopsidization and tremolitization. Nephrites have a light yellow-green color, weak
greasy luster, are slightly-translucent to translucent, and are fine-grained. Their refractive index (RI)
ranges from 1.60 to 1.61, and their specific gravity (SG) value ranges from 2.90 to 2.91, falling within
the range of nephrites from Xinjiang, China. Their Mohs hardness (Hm) ranges from 5.78 to 5.83.
Petrographic observations and electron probe micro analyzer (EPMA) data indicated that analyzed
nephrites mainly comprise tremolite, with minor diopside, calcite, quartz, and apatite. Tremolite
has a ratio of Mg/(Mg + Fe2+) greater than 0.99. The tremolite grains show microscopic fibrous-
felted and columnar textures. Scanning electron microscope (SEM) images show some tremolite
fibers interwoven in different crystallographic orientations, and some arranged in parallel. Fourier
transform infrared and Raman spectroscopy features reveal the bands of minerals typical for nephrite
composition. The petrographic characteristics and geological background of the Mengshan area
indicate that nephrite formed through a replacement of calcic marble, which differs from the two
known types (D-type: dolomite-related; S-type: serpentinite-related). Mineral replacements were
common in nephrite, including diopside by tremolite, calcite by tremolite, and recrystallization of
coarse by fine tremolite grains. The discovery of Xinyu nephrite occurrence complements the resource
and provides an updated case for the in-depth study of the diversity of nephrite deposits.

Keywords: Xinyu nephrite; tremolite; diopside; genesis; Mengshan area

1. Introduction

Tremolite jade, known as nephrite, is an important jade species used in jewelry since
ancient eras [1], captivating people worldwide. Nephrite primarily consists of tremolite-
actinolite [Ca2(Mg, Fe)5[Si4O11]2(OH)2] minerals of the hornblende group, and often con-
tains calcite, diopside, quartz, apatite, chlorite, epidote, or other minor minerals [2].

Nephrite deposits are common worldwide, such as in China [3], Russia [4], Korea [5,6],
Canada [7,8], and Somaliland in Africa [9], which has important economic implications. In
China, the culture of nephrite has a long history [10,11], and the origin of nephrite is widely
distributed, such as in Xinjiang [12–14], Qinghai [15,16], Dahua, Guangxi [17], Xiuyan,
Liaoning [18,19], Panshi, Jilin [20], Tieli, Heilongjiang [21], etc.

Although nephrites have been reported to be found around the world, resources
are slowly diminishing due to the constant advances in modern mining technology and
increasing demand. The discovery of new sources is extremely important in augmenting
global nephrite reserves.
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Jiangxi province has significant non-metallic mineral resources, such as diopside [22],
and wollastonite with world-class reserves [23]. However, there have been no reports on
the geology of nephrite deposits in the province. Previous studies have identified tremolite
existing in the non-metallic deposits as a minor mineral, with no reports of tremolite
aggregates, or even gem-quality nephrites.

This paper studies the discovery of a gem-quality nephrite jade occurrence from
Xinyu County, Jiangxi Province. We provide comprehensive data on the gemological,
mineralogical, geochemical, and spectral characteristics of Xinyu nephrite, in order to
explore its formation process and its potential resource as a jewelry material.

2. Geological Setting
2.1. Regional Geology

New nephrites reported in this study were collected in the Mengshan area (GPS:
114◦54′–57′ E, 28◦02′–05′ N) of Xinyu County, Jiangxi Province. This area is located in the
eastern segment of the Qinhang Metallogenic belt, which was formed by the collision and
splicing of the two ancient continents, namely the Yangtze and Cathaysia blocks, during
the middle and advanced stage (Figure 1) [24].
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Figure 1. The geological background of the Mengshan area is located in the eastern segment of the
Qinhang Metallogenic belt (modified after [25]).

The strata exposed in the Mengshan and surrounding areas are Carboniferous to
Triassic. Among them, the Carboniferous Huanglong Formation, Permian Qixia Forma-
tion, Permian Leping Formation, and Permian Maokou Formation form a set of carbonate
rock associations. These formations primarily consist of limestone, dolomitic limestone,
dolomite, and carbonaceous rock (Figure 2) [26]. The Mengshan area has favorable condi-
tions for mineralization. The abundance values of tungsten, copper, zinc, molybdenum, tin,
and other metallogenic elements in the formation are higher than those of crustal elements
in the eastern part of China [27]. Therefore, the surroundings of the Mengshan granite
pluton are prone to metasomatism or hydrothermal metamorphism, leading to the dense
distribution of skarn-type deposits in the area [23,28,29].

The rock folds and faults in the Mengshan area are developed, and the tectonic lines
indicate an overall north-eastward spreading, followed by near east-west, north-east, and
north-westward. In particular, folds or fractures in the Carboniferous-Permian strata are
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highly susceptible to fragmentation or interlayer slip by late extrusion. This phenomenon
helps to promote the transport and enrichment of mineralized elements [23].
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2.2. The Mengshan Composite Pluton

Influenced by the tectonic events of the Triassic and Jurassic-Cretaceous, the Mengshan
area underwent multiple phases of magmatism resulting in the formation of the Mengshan
composite pluton was formed as a result [30,31], which covers an area of about 39 km2 [28].

The Mengshan composite pluton consists of Triassic granites (~217 to ~236 Ma) [28]
and Jurassic-Cretaceous dikes (~135 Ma and ~142 Ma) [26,28]. Previous studies [26] divided
the Mengshan Triassic granites into three stages. The first-stage granites constitute the
main body (71%) and can be further subdivided into two phases: the transitional and
marginal phases. The transitional phase consists of medium-grained porphyritic biotite
granite, while the marginal phase consists of fine-grained biotite granite. The second-stage
granites are composed of fine-grained porphyritic biotite granite, and the third stage is
composed of fine-grained granite. Jurassic-Cretaceous igneous rocks, in the form of veins
and dikes, intruded into the Triassic granites and surrounding sedimentary rocks. These
vein rocks mainly consist of granite porphyry and diorite porphyry.

According to the geological background of the Mengshan area mentioned earlier, it can
be concluded that the tectonic conditions create a favorable environment for mineralization,
and the complex magmatic activity supplies mineral-bearing hydrothermal fluids for
contact metasomatism. These factors collectively provide advantageous conditions for the
mineralization of skarn-type tremolite, diopside, wollastonite, etc.
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2.3. Location of Xinyu Nephrite Occurrence

Xinyu nephrite occurs in the southeastern part of the Mengshan composite pluton,
located in the contact zone of the Permian Maokou Formation with the pluton (Figure 2).
Geological information shows that the lower part of the Permian Maokou Formation
is cryptocrystalline limestone, calcareous limestone interbedded with muddy limestone,
and the upper part is dark grey cryptocrystalline structural limestone interbedded with
calcareous mudstone.

3. Samples and Methods
3.1. Samples

In this study, two samples from Xinyu County, Jiangxi Province, were collected and
studied (Figure 3a,b). Polished thin sections (0.25 mm) were made for petrographic observa-
tion and compositional analysis. Thick nephrite polished plates (5 mm) (Figure 3c,d) were
also used for conventional gemological testing and quality evaluation. The new nephrite
jades have a light yellow-green color, showing dense textures and a blocky structure.
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Figure 3. Photograph of the samples collected in Xinyu County, Jiangxi Province. (a) Tough nephrite
sample. It has a light green color, slightly translucent, and fine texture. (b) Tough nephrite sample.
It has a light green color, slightly translucent, and the texture is a little rougher than that of (a).
(c,d) Polished nephrite jade plates were made from the samples collected in Xinyu.

3.2. Analytical Methods

Gemological characteristic tests were conducted at the Gemological Experimental
Teaching Center of China University of Geosciences, Beijing (CUGB). The reflection index
(RI) was measured using the GR-6 refractometer by spot measurements. The specific gravity
(SG) was measured using a high-precision electronic scale using hydrostatic weighing.
Mohs hardness (Hm) was measured using the TH763 digital display microhardness tester,
employing the indentation method. Vickers hardness of the measured points was obtained
from the indentation test, and the formula “Vickers hardness (HV) = 3.25 × (Mohs hardness)
3 (Hm)” was applied to convert the date. To eliminate the accidental error, each of the
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above tests was conducted three times and then their average value was taken as the
reported result.

Petrographic characteristics were observed at the Gemological Experimental Teaching
Center, CUGB. Polished thin sections of the samples were observed using an OLYMPUS
BX5 polarizing microscope to determine mineral assemblage microtexture characteristics
and contact relationships of minerals under transmitted light.

Chemical composition and backscattered electron (BSE) images were obtained at the
Electron Probe Laboratory of the Institute of Science, CUGB, using a Shimadzu EPMA-1600
Electron Probe Microprobe Analyzer (EPMA). Before analysis, samples were coated with
a thin conductive carbon film, approximately 20 nm in thickness. During analysis, the
minerals were analyzed using a beam spot with an accelerating voltage of 15 kV, a current
of 7 nA, and a diameter of 1 µm. Natural minerals and synthetic oxides were used as
standards. Data were corrected online using a modified ZAF (atomic number, absorption,
fluorescence) correction procedure.

The spectroscopic characterization study included Fourier transform infrared spec-
troscopy (FTIR) and Laser Raman spectroscopy, both obtained at the Gemological Exper-
imental Teaching Center of CUGB. FTIR features were obtained using a BrukerTensor27
Fourier transform infrared spectrometer with a scan range of 2000–200 cm−1 and resolution
of 4 cm−1. A total of 32 scans were performed at ~20 ◦C for both the sample and the
background. Testing was performed on a single polished slice using the reflection method.
Laser Raman characterization was performed using a LabRAM HR Evolution micro-Raman
spectroscopy. Experimental settings included a laser emission wavelength of 532 nm, laser
power ranging from 30 mW to 40 mW, a spectral resolution of ≤0.35 cm−1, a scan time of
20 s, and a test range of 100–2000 cm−1.

Microtexture features were obtained at the Scanning Electron Microscope Laboratory
of the Institute of Science, CUGB, using a ZEISS SUPRA55 field emission scanning electron
microscope (SEM). After platinum spray treatment, thick polished plates (5 mm) were
analyzed at an accelerating voltage of 10 kV at ~20 ◦C.

All the research contents and instruments in this research are listed in Table 1.

Table 1. Description of the research contents and instruments in this research.

Research Content Measurement Unit Instrument

Gemological characteristic tests Gemological Experimental Teaching
Center, CUGB

Reflection index: GR-6 Refractometer

Specific gravity: High-precision
electronic scale

Mohs hardness: TH763 digital display
microhardness tester

Petrographic characteristics Gemological Experimental Teaching
Center, CUGB OLYMPUS BX5 polarizing microscope

Chemical composition and backscattered
electron images

Electron Probe Laboratory of the Institute
of Science, CUGB

Shimadzu EPMA-1600 Electron Probe
Microprobe Analyzer

Spectroscopic characterization Gemological Experimental Teaching
Center, CUGB

BrukerTensor27 Fourier transform
infrared spectrometer

LabRAM HR-Evolution micro-Raman
spectroscopy

Microtexture features Scanning Electron Microscope Laboratory
of the Institute of Science, CUGB

Zeiss SUPRA55 field emission scanning
electron microscope

4. Results
4.1. Gemological Properties

Xinyu nephrite jades are mostly slightly-translucent to translucent in light yellow-
green. No white, black, or vivid green type of jade has been found so far.
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Nephrites have a medium-greasy luster and show homogeneous, compact, and fine
textures (Figure 3c,d). Near the surface, there are some whitish substances in the form of
tine lines (Figure 3c,d). Accurate gemological tests yield a reflection index (RI) of 1.60–1.61,
specific gravity (SG) of 2.90–2.91, and Mohs hardness (Hm) of 5.78–5.83 (Table 2). The RI and
SG values are within the range of gemological tests for nephrites from Xinjiang, China [32],
but the Hm value is slightly lower. There are no fluorescence characteristics under the
ultraviolet fluorescent lamp and no significant spectrum under the grid spectroscope. SEM
imaging showed that tremolite grains in jade occur as long fibers, which are ~30 µm in
length and 0.1–0.2 µm in diameter (Figure 4). Some of the fibers are interwoven in different
crystallographic orientations, and some are arranged in parallel. The jades are therefore
thought to be fine and tough and could be defined as gem-quality based on their appearance
and textural characteristics.

Table 2. Gemological Properties of Xinyu Nephrite.

Name Characteristic

Color Light yellow-green
Luster Medium-greasy

Transparency Slightly-translucent to translucent
Refractive Index 1.60–1.61
Specific Gravity 2.90–2.91
Mohs Hardness 5.78–5.83
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4.2. Petrographic Characteristics
4.2.1. Xinyu Nephrite

The nephrite from Xinyu comprises predominantly tremolite (Tr: >98 vol.%), with
other minor minerals including diopside, calcite, quartz, and apatite.

In the samples, two types of tremolite grains were observed. The first type of grains
appeared as microscopic fibrous-felted textures (Figure 5a). Most of these grains were
straight and dense, in a directional parallel arrangement. The outlines and shapes are not
distinguishable, but the grains are tightly bound and evenly distributed. These types of
grains are commonly observed, which is probably the main factor determining the fine and
smooth macroscopic appearance of Xinyu nephrite. The second grains appeared as coarse,
columnar textures (Figure 5b) which are ~500 µm in length and ~115 µm in width. The
core of the coarse grains was often replaced by fine tremolite grains, and the incomplete
replacements resulted in the shape of the original coarse grains being retained.

Fibrous tremolites can be observed at the grain boundaries of other minerals, such as
diopside (Figure 5c) and calcite (Figure 5d), indicating frequent replacement of minerals
by tremolite. The tremolite that replaced the diopside is microscopically crypto-crystalline
and fibrous, with a poorly defined, fibrous-felted texture between grains (Figure 5c). As the
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grain sizes are all relatively small, no obvious mineral–mineral interspersed relationships
are observed. Diopside occurs as discrete rounded grains surrounded by fibrous tremolite
in an isolated, island-like form (Figure 5e,f).

Texture of tremolite replacing calcite often occurs, and replaced calcite grains show re-
placement residual structures (Figure 5d). Apatite grains are extremely small and scattered
in the samples (Figure 5f).
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tremolite grains are fibrous and felted. (b) The tremolite grains are coarse and columnar. (c) Diopside
was replaced by tremolite. (d) Calcite was replaced by tremolite, leaving remnants of the calcite.
(e) A BSE image shows an isolated island diopside being replaced by tremolite. (f) A BSE image of
diopside being replaced by tremolite resulting in hardly intact diopside grains. Apatite can be seen.
(Tr—tremolite; Di—diopside; Cal—calcite; Ap—apatite).

4.2.2. The Carbonate Rock

The carbonate rock is calcic marble that mainly underwent diopsidization and tremoli-
tization (Figure 6a,b). It has a granular texture, and the component minerals are tightly
packed without preferential orientation. Some calcite grains are replaced by fibrous tremo-
lites. Diopside grains can also be seen. A clear transition between the tremolite zone and
the marble zone can be seen in Figure 6c,d. However, this contact line is not straight, and
the minerals close to the line are closely intertwined.
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4.3. Mineral Chemistry

According to calculated ratios of Mg/(Mg + Fe2+), all amphiboles in Xinyu nephrite
are classified as tremolite (Table 3) (Figure 7) [33]. Tremolite is mainly composed of (in
wt.%) SiO2 (57.86–59.02), CaO (12.29–12.67), and MgO (24.88–25.57). The atoms per formula
unit (a.p.f.u.) values for tremolite are as follows: Si = 7.91–7.98, Ca on B site = 1.76–1.85,
(Na + K) on A site ≤0.05. The Mg/(Mg + Fe2+) ratio for tremolite is greater than 0.99.

Table 3. Chemical composition of tremolite in the Xinyu nephrite (wt.%).

Samples XY-2 XY-2 XY-3 XY-3 XY-3

No. 1 2 6 7 8

SiO2 57.86 58.18 58.59 58.40 59.02
TiO2 0.00 0.03 0.01 0.00 0.00
V2O5 0.02 0.00 0.00 0.00 0.00
Al2O3 0.23 0.36 0.27 0.22 0.33
Cr2O3 0.00 0.03 0.02 0.00 0.04
FeO 0.21 0.25 0.26 0.26 0.42
MgO 25.57 25.41 24.95 24.88 24.90
MnO 0.01 0.02 0.05 0.02 0.04
NiO 0.00 0.06 0.03 0.03 0.01
ZnO 0.11 0.00 0.00 0.00 0.00
CaO 12.67 12.29 12.63 12.64 12.37
CoO 0.00 0.00 0.01 0.00 0.00

Na2O 0.09 0.15 0.06 0.07 0.10
K2O 0.01 0.06 0.06 0.03 0.06
SO3 0.00 0.01 0.00 0.00 0.00

P2O5 0.00 0.00 0.01 0.01 0.02
F 0.00 0.00 0.38 0.30 0.33

Total 96.78 96.84 97.16 96.74 97.48
H2Ocalc 2.19 2.20 2.03 2.06 2.06
Totalcalc 98.97 99.04 99.19 98.80 99.54
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Table 3. Cont.

Samples XY-2 XY-2 XY-3 XY-3 XY-3

No. 1 2 6 7 8

Si 7.91 7.94 7.96 7.96 7.98
Al 0.04 0.06 0.04 0.04 0.02

Sum T 7.95 8.00 8.00 8.00 8.00
Al 0.00 0.00 0.00 0.00 0.03
Ti 0.00 0.00 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00

Fe3+ 0.00 0.00 0.00 0.00 0.00
Zn 0.01 0.00 0.00 0.00 0.00
Mg 4.99 5.00 5.00 5.00 4.97
Ni 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.00 0.00 0.00 0.00 0.00
Mn 0.00 0.00 0.00 0.00 0.00

Sum C 5.00 5.00 5.00 5.00 5.00
Mg 0.22 0.17 0.05 0.06 0.05
Ni 0.00 0.01 0.00 0.00 0.00

Fe2+ 0.02 0.03 0.03 0.03 0.05
Mn 0.00 0.00 0.01 0.00 0.00
Ca 1.76 1.79 1.84 1.85 1.79
Na 0.00 0.00 0.02 0.02 0.03

Sum B 2.00 2.00 1.95 1.96 1.92
Ca 0.10 0.01 0.00 0.00 0.00
Na 0.02 0.04 0.00 0.00 0.00
K 0.00 0.01 0.01 0.01 0.01

Sum A 0.12 0.06 0.01 0.01 0.01
F 0.00 0.00 0.16 0.13 0.14

OH 2.00 2.00 1.84 1.87 1.86
Sum W 2.00 2.00 2.00 2.00 2.00

Mg/(Mg + Fe2+) 1.00 0.99 0.99 0.99 0.99
Mineral Tr Tr Tr Tr Tr

Notes: Amphibole formulae were calculated on the basis of 23 oxygens to account for F and Cl replacing O. Fe3+

content was estimated based on the charge balance. Tr—tremolite. Measurements unit: Electron Probe Laboratory
of the Institute of Science, CUGB.
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On the other hand, diopside is composed of (in wt.%) SiO2 (54.91–55.16), CaO
(23.75–24.02), MgO (18.66–18.97), and FeOT (0.36–0.63). Fluorine was detected in some
tremolite. Diopside grains are almost homogeneous and compositionally close to the diop-
side end-member (Table 4) [34]. Apatite in nephrite (Table 4) is composed of (in wt.%) CaO
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(55.91–57.24) and P2O5 (40.21–40.68). Additionally, apatite is fluorine-enriched (0.82–0.84
a.p.f.u. F) and homogeneous. Calcite in nephrite (Table 5) is composed of (in wt.%) CaO
(56.36–58.60) [35].

Table 4. Chemical composition of apatite and calcite in the Xinyu nephrite (wt.%).

Samples XY-2 XY-2 XY-2 XY-3

No. 1 4 3 2

SiO2 54.91 55.16 0.14 0.09
TiO2 0.03 0.01 0.11 0.00

Al2O3 0.13 0.15 0.00 0.00
Cr2O3 0.02 0.01 0.01 0.01
FeO 0.63 0.36 0.07 0.00
MgO 18.66 18.97 0.01 0.02
ZnO 0.03 0.02 0.07 0.00
MnO 0.04 0.04 0.00 0.00
NiO 0.00 0.00 0.07 0.00
CaO 24.02 23.75 57.24 55.91
CuO 0.04 0.00 0.00 0.00
Na2O 0.05 0.13 0.06 0.04
K2O 0.01 0.00 0.02 0.02
P2O5 0.00 0.00 40.21 40.68
SO3 0.01 0.04 0.03 0.01

F 0.00 0.00 3.16 3.21
Cl 0.00 0.00 0.04 0.02

Total 98.59 98.65 99.90 98.70

Si 2.00 2.01 0.01 0.01
Ti 0.00 0.00 0.01 0.00
Al 0.01 0.01 0.00 0.00
Cr 0.00 0.00 0.00 0.00

Fe3+ 0.00 0.00 0.00 0.00
Mg 1.02 1.03 0.00 0.00
Fe2+ 0.02 0.01 0.00 0.00
Zn 0.00 0.00 0.00 0.00
Mn 0.00 0.00 0.00 0.00
Ca 0.94 0.93 5.04 4.95
Cu 0.00 0.00 0.00 0.00
Na 0.00 0.01 0.01 0.01
K 0.00 0.00 0.00 0.00
P 0.00 0.00 2.80 2.84
S 0.00 0.00 0.00 0.00
F 0.00 0.00 0.82 0.84
Cl 0.00 0.00 0.01 0.00

Mineral Di Di Ap Ap
Note: The diopside formulae were calculated on the basis of 6 oxygens and the apatite formulae were calculated on
the basis of 12.5 oxygens, respectively, to account for F and Cl replacing O. Fe3+ content was estimated according
to the charge balance. Di—diopside; Ap—apatite. Measurements unit: Electron Probe Laboratory of the Institute
of Science, CUGB.

Table 5. Chemical composition of calcite in the Xinyu nephrite (wt.%).

Samples XY-2 XY-3 XY-3

No. 1 1 5

SiO2 0.05 0.16 0.02
Al2O3 0.01 0.00 0.01
Cr2O3 0.04 0.00 0.05
ZnO 0.09 0.07 0.00
MnO 0.00 0.05 0.02
NiO 0.00 0.04 0.09
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Table 5. Cont.

Samples XY-2 XY-3 XY-3

No. 1 1 5

MgO 0.15 0.02 0.01
CaO 58.60 56.36 57.21
CoO 0.00 0.07 0.00
CuO 0.04 0.08 0.04
Na2O 0.05 0.05 0.02
SrO 0.00 0.33 0.09
Total 59.02 57.21 57.55

Minerals Cal Cal Cal
Note: Cal—calcite. Measurements unit: Electron Probe Laboratory of the Institute of Science, CUGB.

4.4. Spectral Features

FTIR spectral features of tremolite in Xinyu nephrite are mainly reflected in three
bands: 400~600 cm−1, 600~800 cm−1, and 900~1 200 cm−1 (Figure 8). The absorption
peaks near 416 cm−1, 461 cm−1, 510 cm−1, and 542 cm−1 are attributed to Si-O bending
vibration and M-O (M is Mg, Fe, and other metal cations) lattice vibrations [36,37]. The
absorption peaks at 683 cm−1 and 758 cm−1 correspond to symmetric stretching vibrations
of Si-O-Si bonds. The absorption peaks at 918 cm−1, 996, and 1039 cm−1 are associated
with asymmetric stretching vibrations of O-Si-O and Si-O-Si, as well as O-Si-O symmetric
stretching vibration [37]. In addition, characteristic vibrational absorption peaks of other
minerals were found in some samples, such as the CO3

2− bending vibration of calcite at
876 cm−1; and the Si-O asymmetric stretching vibration of quartz at 1091 cm−1, indicating
the presence of other minerals. The band positions and assignments can be found in Table 6.
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Raman spectral peaks in Xinyu nephrite are observed at 160 cm−1, 179 cm−1, 224 cm−1,
395 cm−1, 674 cm−1, 930 cm−1, and 1 060 cm−1 (Figure 9, Table 7). Among them, the peaks
at 160 cm−1, 179 cm−1, and 224 cm−1 are attributed to the lattice vibration of [SiO4]4−. The
higher intensity of the peak at 674 cm−1 is associated with the symmetric stretching-bending
vibration of Si-O-Si in the tetragonal ring composed of silica-oxygen tetrahedra [38]. The
1060 cm−1 peak is due to the v2 vibration of Si-O. These Raman spectral peaks reveal
typical tremolite characteristics, similar to those of Xinjiang and Qinghai nephrite [14,39].
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Table 6. FTIR band assignment of the Xinyu nephrite.

Wavenumbers (cm−1) Band Assignment Suggested Minerals

1039,996,918 O-Si-O and Si-O-Si asymmetric stretching vibration;
O-Si-O symmetric stretching vibration

Tr758,683 Si-O-Si symmetric stretching vibration

542,510,461,416 Si-O bending vibration and M-O (M is Mg, Fe, and other
metal cations) lattice vibrations

1091 Si-O asymmetric stretching vibration Qtz

876 CO3
2− bending vibration Cal

Notes: Tr—tremolite; Qtz—quartz; Cal—calcite.
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Table 7. Raman spectral peaks of the minerals in Xinyu nephrites.

Characteristic Raman Spectral Peaks Suggested Minerals

160 cm−1, 179 cm−1, 224 cm−1, 395 cm−1, 674 cm−1, 930 cm−1, and 1 060 cm−1 Tr
140 cm−1, 325 cm−1, 357 cm−1, 391 cm−1, 666 cm−1, 1013 cm−1 Di

155 cm−1, 281 cm−1, 712 cm−1, and 1086 cm−1 Cal
426 cm−1, 587 cm−1, and 962 cm−1 Ap

128 cm−1, 205 cm−1, 355 cm−1, and 464 cm−1 Qtz

Notes: Tr—tremolite; Di—diopside; Cal—calcite; Ap—apatite; Qtz—quartz.

Raman spectral features of diopside, calcite, apatite, and quartz were also examined
(Figure 9, Table 7) and the results are consistent with those of EPMA. The Raman spectral
peaks of diopside are mainly located at 140 cm−1, 325 cm−1, 357 cm−1, 391 cm−1, 666 cm−1,
and 1013 cm−1. This is similar to the standard peak of diopside. The 1086 cm−1 peak of
calcite is also indicated in the spectral peak map of diopside. The Raman spectral peaks of
calcite are located at 155 cm−1, 281 cm−1, 712 cm−1, and 1086 cm−1, and the test results do
not show the peak test results of other minerals. The Raman spectral peaks of apatite were
426 cm−1, 587 cm−1, and 962 cm−1, which were compatible with the standard values. The
1085 cm−1 peak of calcite was also indicated in the Raman spectral of apatite. The Raman
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spectral peaks of quartz were located at 128 cm−1, 205 cm−1, 355 cm−1, and 464 cm−1.
In addition to this, small peaks with weaker intensities were also observed: 393 cm−1,
673 cm−1 for tremolite, and 1086 cm−1 for calcite.

5. Discussion
5.1. Mineral Replacement Texture

As indicated by FTIR spectroscopy, Raman spectroscopy, and EPMA, the major miner-
als in Xinyu nephrite are tremolite, whereas the minor minerals include diopside, calcite,
apatite, and quartz. These minerals exhibit mineral replacement texture.

The first and most common case in Xinyu nephrite is the replacement of diopside
by tremolite. Fibrous tremolite grains can be observed growing along the boundary of
the diopside, resulting in irregularly shaped diopside grains with an isolated island dis-
tribution (Figure 5c,e). Idiomorphic diopside grains are rare, only relics of diopside exist
because of the incomplete metasomatism of tremolite replacement. Such replacement of
diopside by tremolite has also been observed in nephrite from Qiemo, Xinjiang [40], Dahua,
Guangxi [17], and Tieli, Heilongjiang [21]. Liu et al. [41] have reported the early formation
of diopside and the replacement of diopside by tremolite.

Under the influence of the external environment, the diopside is metasomatized to
tremolite. This metasomatic process results in the destruction of the diopside and the
formation of uneven grain boundaries as tremolite replaces it (Figure 5e,f). However, due
to incomplete metasomatism, the interior of the diopside was not completely replaced,
retaining some of its original shape and resulting in an island-like appearance. As a result,
the replacement of diopside by tremolite is a kind of common occurrence in nephrite, which
helps to explain the rarity of idiomorphic diopside grains.

The second texture observed in Xinyu nephrite is the replacement of calcite by tremolite
(Figure 5e). Calcite grains were replaced by tremolite both inside and in the surrounding
area. Fibrous tremolite is observed at the edges of calcite, resulting in a replacement
residual texture. The replacement and destruction of calcite grains can be seen in Figure 5e.
Similar textures of calcite replacement have been reported in nephrite from a few other
origins [42–44]. It has been reported [43,44] that calcite could be formed as a reactant during
the diopside replacement process and is subsequently replaced by tremolite. Tremolite
replaced calcite grains along fracture or other weak surfaces, resulting in the destruction of
the original shape of calcite and leaving only part of calcite in a fragmented shape. The
replacement of calcite confirms the existence of multiple phases of magmatic-hydrothermal
events during the formation of nephrite.

The third texture is fine tremolite grains replacing coarse ones. Fine, randomly oriented
tremolite fibers can be seen in the columnar tremolite grains (Figure 5b). The boundaries
and shapes of fine grains cannot be discerned. During multiple mineral metasomatisms,
the texture of tremolite became finer, resulting in a higher-quality of nephrite. This texture
has been observed in various origins of high-quality nephrite [12,44].

Based on the replacement texture described above, the formation of tremolite can
be characterized in three ways: (1) diopside transformation, (2) carbonate mineral trans-
formation, and (3) coarse tremolite transformation. Currently, based on petrographic
observations, the possible formation sequence of minerals in Xinyu nephrite is as follows:
diopside was formed first, followed by coarse-grained tremolite, then fine-grained tremolite
replaced both coarse-grained tremolite and diopside. Calcite, which is a reaction product
of the diopside replacement process process, was also replaced by tremolite in later hy-
drothermal events. Since tremolite is a hydrated silicate mineral, fluid-rock metasomatism
played an important role in its formation, it is inferred that complete metasomatism could
significantly improve the quality of nephrite.

5.2. Preliminary Discussion on the Genesis of Xinyu Nephrite

According to differences in geological background, nephrite deposits are generally re-
ported to be divided into two types. One is related to dolomite (D-type) [2,9,12,21,40,43,45],
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which forms by contact metasomatic replacement of dolomite marble by Si-rich aqueous
fluids during the emplacement of a felsic pluton. The other is related to serpentinite (S-
type) [2,7,46], which forms along fault contacts between serpentinite and mafic to felsic
igneous rock or metagraywacke in obduction settings.

However, Xinyu nephrite is different from these two types. It appears in a contact
zone between the Mengshan composite pluton and Permian carbonate rock. Petrographic
studies suggest that the carbonate rock is a calcic marble that has undergone diopsidization
and tremolitization (Figure 6). No carbonate minerals have been observed in previous
studies of the S-type nephrite. Minor minerals commonly found in S-type nephrites, such as
spinel, chlorite, serpentine, chromite, magnetite [46–48], are not found in Xinyu nephrites.
According to the above characteristics, we can speculate that Xinyu nephrite is not of S-type
genesis. Due to its occurrence, strata is not composed of dolomite or dolomitic marble, but
rather of limestone, which is different from the typical D-type nephrites reported so far. As
the dominant mineral of the limestone is calcite, this atypical D-type genesis nephrite is
essentially a calcite-replacement one, which we name C-type in this investigation.

Actually, C-type nephrites have been reported previously. For example, black nephrite
from Dahua, Guangxi, is located at the boundary zone between diabase and limestone-
bearing siliceous rock [49]; nephrite in Luodian, Guizhou was found to be produced in the
contact metamorphic zone between basic diabase and calcic carbonate rock [50]. Recently,
the white nephrite from the Mida deposit in Qiemo County, Xinjiang, was also reported to
be related to limestone replacement [51]. These nephrites, including Xinyu nephrite, are all
closely related to limestone, not dolomite.

The potential mechanism of Xinyu nephrite is postulated as follows: the intrusion of
the Mengshan composite pluton into silica-calcium-magnesium-rich limestone provided
the mineralization source, with the heat generated by the intruded body of the Mengshan
pluton. These factors facilitate the formation of nephrite. Further research is required to
fully comprehend its mechanism. As a new C-type one, the discovery of Xinyu nephrite
occurrence would call for more attention, and emphasis would be paid on the Ca-skarn
type in looking for new nephrite deposits.

5.3. Gemological Significance

The discovery of new origins is urgent due to the increasing exploitation of nephrite
resources. There have been no reports of any jade appearing in Jiangxi Province, let alone gem-
quality nephrite jade. Thus, our first report in this province has great gemological significance.

The color of Xinyu nephrite is a light yellow-green, which is relatively rare in nephrite
of other regions. Compared with previously reported nephrites from Xinjiang and Qinghai
in China, as well as nephrites from South Korea and Russia [16,44,52,53], it was observed
that Xinyu nephrite also exhibited a relatively uniform color. The uniform and beautiful
color indicates that Xinyu nephrite has a high value as a gemstone.

Gemological tests indicate that Xinyu nephrite exhibits a refractive index of 1.60–1.61,
a relative density of 2.90–2.91, and a Mohs hardness of 5.78–5.83. These results align with
the National Standard of China GB/T 38821-2020 [54]. Generally, the finer the tremolite
grains, the better the quality of nephrite. In Xinyu nephrite, SEM analysis and petrographic
observations have revealed a large number of fibrous tremolite grains with a fine texture.
The texture characteristics of tremolite contribute to the high toughness of Xinyu nephrite,
which makes it show a great greasy luster on the surface.

6. Conclusions

In this study, we reported a new nephrite occurrence in Xinyu County, Jiangxi Province
for the first time. Nephrite exhibits a light yellow-green color, is slightly-translucent to
translucent, and has a medium-greasy luster. It mainly comprises tremolite, with minor
amounts of diopside, calcite, quartz, and apatite. Gemological and spectroscopic studies
show that Xinyu nephrite meets the criteria for gem-quality nephrite.
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Metasomatism in Xinyu nephrite prevails, mainly in the form of diopside, calcite, and
coarse tremolite replacement by fine tremolite. The diopside is encompassed by fibrous
tremolites, forming an island-style microstructure. The replaced calcite shows a residual
texture, and the fine tremolite fibers are randomly oriented and tightly distributed. These
distinct replacement patterns offer valuable insights into the mineralization process of
Xinyu nephrite, meriting further investigation.

Xinyu nephrite occurs in a contact zone between the Mengshan granitic pluton and
Permian limestones. The formation process is related to calcic marble that underwent
diopsidization and tremolitization, which differs from the two classically reported types
(D-type: dolomite-related; S-type: serpentinite-related). As a newly identified C-type
occurrence, the discovery of Xinyu nephrite demands heightened attention, specifically
directing focus towards the Ca-skarn type for the discovery of new nephrite deposits.
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