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Abstract: Transformations are much used to connect complicated nonlinear differential equations to
simple equations with known exact solutions. Two examples of this are the Hopf–Cole transformation
and the simple equations method. In this article, we follow an idea that is opposite to the idea of
Hopf and Cole: we use transformations in order to transform simpler linear or nonlinear differential
equations (with known solutions) to more complicated nonlinear differential equations. In such
a way, we can obtain numerous exact solutions of nonlinear differential equations. We apply this
methodology to the classical parabolic differential equation (the wave equation), to the classical
hyperbolic differential equation (the heat equation), and to the classical elliptic differential equation
(Laplace equation). In addition, we use the methodology to obtain exact solutions of nonlinear
ordinary differential equations by means of the solutions of linear differential equations and by
means of the solutions of the nonlinear differential equations of Bernoulli and Riccati. Finally, we
demonstrate the capacity of the methodology to lead to exact solutions of nonlinear partial differential
equations on the basis of known solutions of other nonlinear partial differential equations. As an
example of this, we use the Korteweg–de Vries equation and its solutions. Traveling wave solutions
of nonlinear differential equations are of special interest in this article. We demonstrate the existence
of the following phenomena described by some of the obtained solutions: (i) occurrence of the
solitary wave–solitary antiwave from the solution, which is zero at the initial moment (analogy of an
occurrence of particle and antiparticle from the vacuum); (ii) splitting of a nonlinear solitary wave
into two solitary waves (analogy of splitting of a particle into two particles); (iii) soliton behavior of
some of the obtained waves; (iv) existence of solitons which move with the same velocity despite the
different shape and amplitude of the solitons.

Keywords: method of transformations; wave equation; heat equation; Riccati equation; Bernoulli
equation; solitons

MSC: 35A22; 34A25

1. Introduction

Many complex systems can be modeled using nonlinear differential equations [1–18].
The obtaining of the exact solutions of these equations is important because the exact
solutions allow us to understand better the role of the parameters of the model for (i) the
evolution of the studied phenomenon, and (ii) the regimes of the functioning of the studied
system. In addition, the exact solutions can be used for verification of the computer
programs designed to study complicated situations in the studied systems.

There are various methods for obtaining exact solutions of nonlinear differential equa-
tions. Some of these methods such as the inverse scattering transform method or the
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method of Hirota are very famous [19–33]. Such methodologies often use transforma-
tions and lead to numerous exact solutions of various nonlinear equations, and especially
interesting are the localized solutions such as solitons [34–48]. The methodology which
is discussed below is inspired by our work on the simple equations method (SEsM) for
obtaining exact solutions of nonlinear differential equations [49–57]. An important step in
the SEsM is the transformation, which has the goal to remove the nonlinearity or to reduce
the nonlinearity to a more tractable kind of nonlinearity (such as, for example, polynomial
nonlinearity). This step was inspired by the successful attempt of Hopf and Cole [58,59],
who managed to remove the nonlinearity of the Bürgers equation by means of appropriate
transformation and the nonlinear Bürgers equation was reduced to the linear heat equation.

The idea of Hopf and Cole was to transform a nonlinear differential equation into
a linear differential equation with a known solution. The opposite idea is to transform
a linear differential equation with a known solution to a nonlinear differential equation.
This idea will be followed below in the text. Thus, we will start from a linear differential
equation with known solution. We will apply a transformation which transforms the linear
differential equation to a nonlinear differential equation. The same transformation will
transform the solution of the linear differential equation to a solution of the nonlinear
differential equation.

We start from a linear differential equation L̂(u) = 0 (below, L̂ and N̂ denotes a linear
or nonlinear differential operator) and perform a transformation T in order to transform
this equation into a nonlinear differential equation N̂(φ) = 0

L̂(u) = 0
T=u(φ)7−−−−→ N̂(φ) = 0. (1)

Then, we can use the solution of the linear differential equation in order to obtain
solutions of the nonlinear differential equation. We note that different transformations T
can transform the linear equation into different nonlinear equations. This will be the subject
of the discussion below.

We can extend this idea as follows. Above, we start from a linear differential equation
with a known solution. We can also start from a nonlinear differential equation with a
known solution. An appropriate transformation will transform this equation to another
nonlinear differential equation. Thus, we can obtain an exact solution to the resulting
nonlinear differential equation.

N̂1(u) = 0
T=u(φ)7−−−−→ N̂2(φ) = 0. (2)

In general, we assume that the transformation is

T = u
(

φ,
∂φ

∂x
,

∂φ

∂t
,

∂2φ

∂x2 ,
∂2φ

∂t2 ,
∂2φ

∂x∂t
, . . .

)
. (3)

Below, we discuss several specific cases of this transformation. For these special cases,
we can easily calculate φ(u). In such a way, we obtain exact analytical solutions of the
corresponding nonlinear differential equations.

The idea is extremely simple. Nevertheless, we show that it can lead to very interesting
results. The rest of the text is organized as follows. In Section 2, we discuss several nonlinear
equations and their solitons, which are obtained by transformation of the simple classical
parabolic differential equation (the wave equation), the classical hyperbolic differential
equation (the heat equation), and the classical elliptic differential equation (Laplace equa-
tion). We focus our attention on the wave equation and show that the nonlinear equations
which can be obtained on the basis of the linear wave equation can describe interesting
phenomena such as (i) occurrence of the solitary wave–solitary antiwave from solution,
which is zero at the initial moment (analogy of occurrence of particle and antiparticle from
the vacuum); (ii) splitting of a nonlinear solitary wave into two solitary waves (analogy of
splitting of a particle into two particles); (iii) soliton behavior of some of the obtained waves;
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(iv) the existence of solitons which move at the same velocity despite different shapes and
amplitudes of the solitons. In Section 3, we discuss equations and their solutions obtained
by transformations from several simple linear ordinary differential equations, as well as
by transformations of the differential equations of Bernoulli and Riccati. In Section 4, we
show that the application of the methodology to nonlinear partial differential equations
also leads to interesting results. We apply transformations to the Kortwerg–de Vries equa-
tion and obtain other nonlinear partial differential equations which possess multisoliton
solutions. Several concluding remarks are summarized in Section 5. Appendix A contains
the solutions of the linear partial differential equations which are used in the main text.

2. Transformations of Linear Equations and Exact Solutions to the Corresponding
Nonlinear Equations
2.1. Transformations for the Wave Equation

Let us consider the linear wave Equation (A1). The solutions of this equation used in
this text are presented in Appendix A. The simplest specific case of the transformation for
u is

u = u(φ). (4)

The wave equation becomes

du
dφ

∂2φ

∂t2 − c2 du
dφ

∂2φ

∂x2 +
d2u
dφ2

(
∂φ

∂t

)2
− c2 d2u

dφ2

(
∂φ

∂x

)2
= 0. (5)

In order to specify (5), we have to specify the form of the transformation (4).

Proposition 1. The equation

∂2φ

∂t2 − c2 ∂2φ

∂x2 +

(
∂φ

∂t

)2
− c2

(
∂φ

∂x

)2
= 0, (6)

has the solutions

φ(x, t) = ln

{
F(x + ct) + G(x− ct)

}
, (7)

where F and G are arbitrary C2-functions, and −∞ ≤ a < x < b ≤ +∞, and t > 0. Another
solution is

φ(x, t) = ln

{
f (x + ct) + f (x− ct)

2
+

1
2c

x+ct∫
x−ct

ds g(s)

}
, (8)

for the conditions

φ(x, 0) = ln[ f (x)],
∂ exp(φ)

∂t
(x, 0) = g(x), −∞ < x < ∞, t > 0, (9)

and the solution

φ(x, t) = ln

{
∞

∑
n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)}
,

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
, (10)
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for the case 0 < x < L and initial and boundary conditions

φ(x, 0) = ln[ f (x)],
∂ exp(φ)

∂t
(x, 0) = g(x), 0 ≤ x ≤ L

∂ exp(φ)
∂x

(0, t) =
∂ exp(φ)

∂x
(L, t) = 0, t ≥ 0. (11)

Proof. Let us consider the linear wave Equation (A1). We performed the transformation

u = exp(φ). (12)

The transformation (12) transforms Equation (A1) to Equation (6). Equation (A1) has
the solutions (A2), (A4) and (A6). Thus, Equation (6) has the solutions (7), (8) and (10).

We note that a C2-function is a function which has two continuous derivatives.

Proposition 2. The equation

φ
∂2φ

∂t2 − c2φ
∂2φ

∂x2 + (α− 1)
(

∂φ

∂t

)2
− c2(α− 1)

(
∂φ

∂x

)2
= 0, (13)

has the solutions

φ(x, t) =

{
F(x + ct) + G(x− ct)

}1/α

, (14)

where F and G are arbitrary C2-functions, and −∞ ≤ a < x < b ≤ +∞, and t > 0. Another
solution is

φ(x, t) =

{
f (x + ct) + f (x− ct)

2
+

1
2c

x+ct∫
x−ct

ds g(s)

}1/α

, (15)

for the conditions

φ(x, 0) = [ f (x)]1/α,
∂(φα)

∂t
(x, 0) = g(x), −∞ < x < ∞, t > 0 (16)

and the solution

φ(x, t) =

{
∞

∑
n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)}1/α

,

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
, (17)

for the case 0 < x < L and initial and boundary conditions

φ(x, 0) = [ f (x)]1/α,
∂(φα)

∂t
(x, 0) = g(x), 0 ≤ x ≤ L

∂(φα)

∂x
(0, t) =

∂(φα)

∂x
(L, t) = 0, t ≥ 0. (18)

Proof. Let us consider the linear wave Equation (A1). We performed the transformation

u = φα, α 6= 1. (19)
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The transformation (19) transforms Equation (A1) to Equation (13). Equation (A1)
has the solutions (A2), (A4) and (A6). Thus, Equation (13) has the solutions (14), (15)
and (17).

An example of solution (14) is presented in Figure 1. We observe that the transforma-
tion can change the form and the orientation of the solution.

-20 -10 0 10 20
x

-2

-1

0

1

2

3

4

φ

Figure 1. Illustration of solution (14) of Equation (13). Solid line: corresponding solution of the linear
wave equation. The parameters of the solution are F = 1/ cosh2(x + ct); G = −2/ cosh(x− ct);
c = 2.0; t = 3.5. Dashed line: solution (14). α = 1/2.

Figures 2 and 3 illustrate two interesting phenomena connected to some of the obtained
solutions to the nonlinear differential equation. Figure 2 illustrates the occurrence of a
wave and an antiwave from φ = 0 at t = 0. This phenomenon is similar to the arising of a
particle and antiparticle from the vacuum. Note that despite the fact that φ = 0 at t = 0,
the corresponding solution of (14) has an internal structure.

-20 -10 0 10 20
-1

-0.5

0

0.5

1

-20 -10 0 10 20
-1

-0.5

0

0.5

1

φ

-20 -10 0 10 20
x

-1

-0.5

0

0.5

1

(a)

(b)

(c)

Figure 2. Illustration of the wave–antiwave phenomenon connected to solution (14) to the nonlinear
partial differential Equation (13). The parameters of the solution are F = 1/ cosh2(x + ct); G =

−1/ cosh2(x− ct); c = 2.0; α = 1/3. (a) t = 0. (b) t = 2. (c) t = 4.
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Figure 3 illustrates the phenomenon of a splitting of a nonlinear wave. This phe-
nomenon is similar to the phenomenon of the splitting of a particle into two other particles.
Note the nonlinearity of the superposition of the two waves in Figure 3.

-20 -10 0 10 20
0

2

4

6

8

-20 -10 0 10 20
0

0.5

1

1.5

2

φ

-20 -10 0 10 20
x

0

0.5

1

1.5

2

(a)

(b)

(c)

Figure 3. Illustration of the wave splitting phenomenon connected to solution (14) to the nonlin-
ear partial differential Equation (13). The parameters of the solution are F = 1/ cosh2(x + ct);
G = −1/ cosh2(x− ct); c = 2.0; α = 1/3. (a) t = 0. (b) t = 2. (c) t = 4.

Proposition 3. The equation

−φ
∂2φ

∂t2 + c2φ
∂2φ

∂x2 +

(
∂φ

∂t

)2
− c2

(
∂φ

∂x

)2
= 0, (20)

has the solutions

φ(x, t) = exp

{
F(x + ct) + G(x− ct)

}
, (21)

where F and G are arbitrary C2-functions, and −∞ ≤ a < x < b ≤ +∞, and t > 0. Another
solution is

φ(x, t) = exp

{
f (x + ct) + f (x− ct)

2
+

1
2c

x+ct∫
x−ct

ds g(s)

}
, (22)

for the conditions

φ(x, 0) = exp[ f (x)],
∂ ln(φ)

∂t
(x, 0) = g(x), −∞ < x < ∞, t > 0, (23)

and the solution

φ(x, t) = exp

{
∞

∑
n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)}
,

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
, (24)
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for the case 0 < x < L and initial and boundary conditions

φ(x, 0) = exp[ f (x)],
∂ ln(φ)

∂t
(x, 0) = g(x), 0 ≤ x ≤ L

∂ ln(φ)
∂x

(0, t) =
∂ln(φ)

∂x
(L, t) = 0, t ≥ 0. (25)

Proof. Let us consider the linear wave Equation (A1). We performed the transformation

u = ln(φ). (26)

The transformation (19) transforms Equation (A1) to Equation (20). Equation (A1)
has the solutions (A2), (A4) and (A6). Thus, Equation (13) has the solutions (21), (22)
and (24).

Figure 4 illustrates a solution of (20). Note that the transformation transforms the
solution of the wave equation to a solution in which waves have non-negative values.

-20 -10 0 10 20
x

-2

-1

0

1

2

3

φ

Figure 4. Illustration of solution (21) of Equation (20). Solid line: corresponding solution of the linear
wave equation. The parameters of the solution are F = 1/ cosh2(x + ct); G = −2/ cosh(x− ct);
c = 2.0; t = 3.5. Dashed line: solution (21).

Figure 5 illustrates the typical characteristics of soliton behavior for some of the
obtained solutions. Figure 5a–c present a collision of two solitary waves which are described
by a solution of Equation (20). We see that the form of the solitary waves after the collision
is the same as their form before the collision. Figure 5b presents an interesting moment of
the collision which is dominated by the wave of smaller amplitude. We note that for the
classical solitons, the amplitude of the soliton is a function of its velocity. Figure 5 shows
another kind of soliton. These solitons have different amplitudes but nevertheless travel
with the same velocity. This property is quite interesting.

The soliton properties of solution (21) to Equation (20) are also illustrated in Figure 6.
We observe the collision of the two solitons. The solitons merge into a single solitary wave
and then split again. The forms of the solitons do not change. Note, that the velocities of
these solitons are the same despite the differences in their profiles.
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-20 -10 0 10 20
0

0.5
1
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2.5
3

-20 -10 0 10 20
0

0.5

1

1.5

2

φ
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0.5
1

1.5
2

2.5
3

(a)

(b)

(c)

Figure 5. Illustration of the soliton properties of the waves connected to solution (21) of Equation (20).
The parameters of the solution are F = 1/ cosh2(x + ct); G = −2/ cosh(x− ct); c = 2.0. (a) t = −2.5.
(b) t = 0.3. (c) t = 3.5.

-2

-1

 0

 1

 2

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1
 2
 3
 4

t

x

φ

Figure 6. Illustration of the soliton properties of the waves connected to solution (21) to Equation (20).
The parameters of the solution are F = 0.7/ cosh2(x + ct); G = 0.8/ cosh(x− ct); c = 2.0.

Let us now consider a more complicated transformation: u = u(φ, φx).

Proposition 4. The equation

c2φ
∂3φ

∂x3 − φ
∂3φ

∂x∂t2 + 3c2 ∂φ

∂x
∂2φ

∂x2 −
∂φ

∂x
∂φ

∂t2 − 2
∂φ

∂t
∂2φ

∂x∂t
= 0, (27)
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has the solutions

φ(x, t) = 21/2

{ ∫
dx[F(x + ct) + G(x− ct)]

}1/2

, (28)

where F and G are arbitrary C2-functions, and −∞ ≤ a < x < b ≤ +∞, and t > 0. Another
solution is

φ(x, t) = 21/2

{ ∫
dx

[
f (x + ct) + f (x− ct)

2
+

1
2c

x+ct∫
x−ct

ds g(s)

]}1/2

, (29)

for the conditions

φ(x, 0)
∂φ

∂x
(x, 0) = f (x),

∂

∂t

[
φ

∂φ

∂x

]
(x, 0) = g(x), −∞ < x < ∞, t > 0, (30)

and the solution

φ(x, t) = 21/2

{ ∫
dx

[
∞

∑
n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)]}1/2

,

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
, (31)

for the case 0 < x < L and initial and boundary conditions

φ(x, 0) = 21/2[
∫

dx f (x)]1/2,
∂

∂t

[
φ

∂φ

∂x

]
(x, 0) = g(x), 0 ≤ x ≤ L

∂

∂x

[
φ

∂φ

∂x

]
(0, t) =

∂

∂x

[
φ

∂φ

∂x

]
(L, t) = 0, t ≥ 0. (32)

Proof. Let us consider the linear wave Equation (A1). We performed the transformation

u = φ
∂φ

∂x
. (33)

The transformation (33) transforms Equation (A1) to Equation (27). Equation (A7)
has the solutions (A2), (A4) and (A6). Thus, Equation (27) has the solutions (28), (29)
and (31).

Note that (33) leads to φ = 21/2(
∫

dx u)1/2.

Proposition 5. The equation

(c2 − 1)
∂3φ

∂x3 + 3c2 ∂φ

∂x
∂2φ

∂x2 − 3
∂φ

∂t
∂2φ

∂t2 + c2
(

∂φ

∂x

)3
−
(

∂φ

∂t

)3
= 0, (34)

has the solutions

φ(x, t) = ln

{ ∫
dx[F(x + ct) + G(x− ct)]

}
, (35)
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where F and G are arbitrary C2-functions, and −∞ ≤ a < x < b ≤ +∞, and t > 0. Another
solution is

φ(x, t) = ln

{ ∫
dx

[
f (x + ct) + f (x− ct)

2
+

1
2c

x+ct∫
x−ct

ds g(s)

]}
, (36)

for the conditions

exp[φ(x, 0)]
∂φ

∂x
(x, 0) = f (x),

∂

∂t

[
exp(φ)

∂φ

∂x

]
(x, 0) = g(x), −∞ < x < ∞, t > 0, (37)

and the solution

φ(x, t) = ln

{ ∫
dx

[
∞

∑
n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)]}
,

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
, (38)

for the case 0 < x < L and initial and boundary conditions

φ(x, 0) = ln[
∫

dx f (x)],
∂

∂t

[
φ

∂φ

∂x

]
(x, 0) = g(x), 0 ≤ x ≤ L

∂

∂x

[
φ

∂φ

∂x

]
(0, t) =

∂

∂x

[
φ

∂φ

∂x

]
(L, t) = 0, t ≥ 0. (39)

Proof. Let us consider the linear wave Equation (A1). We performed the transformation

u = exp(φ)
∂φ

∂x
. (40)

The transformation (40) transforms Equation (A1) to Equation (34). Equation (A7)
has the solutions (A2), (A4) and (A6). Thus, Equation (34) has the solutions (35), (36)
and (38).

Note that (40) leads to φ = ln(
∫

dx u).

Proposition 6. The equation

2φ

[
c2
(

∂2φ

∂x2

)2

−
(

∂2φ

∂x∂t

)2]
+

(
∂φ

∂x

)2[
c2 ∂2φ

∂x2 −
∂2φ

∂t2

]
−

2
∂φ

∂x

(
c2 ∂φ

∂x
∂2φ

∂x2 −
∂φ

∂t
∂2φ

∂x∂t

)
− φ

∂φ

∂x

(
c2 ∂3φ

∂x3 −
∂φ

∂x∂t2

)
= 0, (41)

has the solutions

φ(x, t) = exp

{ ∫
dx

1
[F(x + ct) + G(x− ct)]

}
, (42)

where F and G are arbitrary C2-functions, and −∞ ≤ a < x < b ≤ +∞, and t > 0. Another
solution is

φ(x, t) = exp

{ ∫
dx

1[
f (x+ct)+ f (x−ct)

2 + 1
2c

x+ct∫
x−ct

ds g(s)

]}, (43)
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for the conditions

φ(x, 0)]
∂φ

∂x
(x, 0) = f (x),

∂

∂t

[
φ

∂φ

∂x

]
(x, 0) = g(x), −∞ < x < ∞, t > 0, (44)

and the solution

φ(x, t) = exp

{ ∫
dx

1[
∞
∑

n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)]},

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
, (45)

for the case 0 < x < L and initial and boundary conditions

φ(x, 0) = exp
[∫

dx
1

f (x)

]
,

∂

∂t

[
φ

/
∂φ

∂x

]
(x, 0) = g(x), 0 ≤ x ≤ L

∂

∂x

[
φ

/
∂φ

∂x

]
(0, t) =

∂

∂x

[
φ

/
∂φ

∂x

]
(L, t) = 0, t ≥ 0. (46)

Proof. Let us consider the linear wave Equation (A1). We performed the transformation

u = φ

/
∂φ

∂x
. (47)

The transformation (47) transforms Equation (A1) to Equation (41). Equation (A7)
has the solutions (A2), (A4) and (A6). Thus, Equation (41) has the solutions (42), (43)
and (45).

Note that (47) leads to φ = exp(
∫

dx (1/u)).

2.2. Transformations for the Heat Equation

The solutions of the linear heat Equation (A7) are presented in the Appendix A.

Proposition 7. The equation

∂φ

∂t
− a2

(
∂φ

∂x

)2
− a2 ∂2φ

∂x2 = 0, (48)

has the solutions

φ(x, t) = ln

(
1

2a
√

πt

)
+ ln

{ +∞∫
−∞

dξ f (ξ) exp
[
− (ξ − x)2

4at2

]}
, (49)

for the case −∞ < x < ∞ and for the initial condition φ(x, 0) = ln[ f (x)], and the solution

φ(x, t) = ln

{
A +

B− A
L

+
∞

∑
n=1

an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)

an = − 2
nπ

[A + (−1)n+1B] +
2
L

L∫
0

dx f (x) sin

(
nπx

L

)}
, (50)
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for the case 0 < x < L and initial and boundary conditions φ(x, 0) = ln[ f (x)] and φ(0, t) =
ln(A), φ(L, t) = ln(B).

Proof. Let us consider the linear heat Equation (A7). We use the transformation

u = exp(φ). (51)

The transformation (12) transforms Equation (A7) to Equation (48). Equation (A7) has
the solutions (A8) and (A9). Thus, Equation (48) has the solutions (49) and (50).

We can make the transformation more complicated. This more complicated trans-
formation will transform the linear heat equation into a nonlinear Burgers equation. The
transformation is the inverse transformation of the Hopf–Cole transformation.

Proposition 8. The equation
∂φ

∂t
+ φ

∂φ

∂x
+ a2 ∂2φ

∂x2 = 0, (52)

has the solutions

φ(x, t) = −2a2

∂
∂x

+∞∫
−∞

dξ f (ξ) exp
[
− (ξ−x)2

4at2

]
+∞∫
−∞

dξ f (ξ) exp
[
− (ξ−x)2

4at2

] , (53)

for the case −∞ < x < ∞ and for the initial condition φ(x, 0) = −2 a2

f
d f
dx , and the solution

φ(x, t) = −2a2

∞
∑

n=1

nπan
L exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)

A + B−A
L +

∞
∑

n=1
an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

) , (54)

for the case 0 < x < L and initial and boundary conditions φ(x, 0) = −2 a2

f
d f
dx and φ(0, t) = 0,

φ(L, t) = 0.

Proof. Let us consider Equation (A7). We apply the transformation

u = exp
(
− 1

2a2

∫
dx φ(x, t)

)
. (55)

The transformation transforms (A7) to Equation (52). Thus, Equation (52) has solu-
tions (53) and (54).

We note that the transformation (55) leads to

φ = −2a2 1
u

∂u
∂x

, (56)

which is the Hopf–Cole transformation.

Proposition 9. The equation

φ
∂φ

∂t
+ φ3 ∂φ

∂x
+ a2

(
∂φ

∂x

)2
+ a2φ

∂2φ

∂x2 = 0, (57)
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has the solutions

φ(x, t) = φ(x, t) =

2a2

∂
∂x

+∞∫
−∞

dξ f (ξ) exp
[
− (ξ−x)2

4at2

]
+∞∫
−∞

dξ f (ξ) exp
[
− (ξ−x)2

4at2

]


1/2

, (58)

for the case −∞ < x < ∞ and for the initial condition φ(x, 0) =
[
2a2 1

f (x)
d f
dx

]1/2
, and the solution

φ(x, t) = φ(x, t) =


2a2

∞
∑

n=1

nπan
L exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)

A + B−A
L +

∞
∑

n=1
an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)


1/2

, (59)

for the case 0 < x < L and initial and boundary conditions φ(x, 0) =
[
2a2 1

f (x)
d f
dx

]1/2
and

φ(0, t) = 0, φ(L, t) = 0.

Proof. Let us consider Equation (A7). Equation (57) has the solution

φ =

(
2a2 1

u
∂u
∂x

)1/2
, (60)

and, thus, we arrive at the solutions (58) and (59).

Proposition 10. The equation

(α− 1)a2
(

∂φ

∂x

)2
− aφ

∂2φ

∂x2 − φ
∂φ

∂t
= 0, (61)

has the solutions

φ(x, t) =

{
1

2a
√

πt

+∞∫
−∞

dξ f (ξ) exp
[
− (ξ − x)2

4at2

]}1/α

, (62)

for the case −∞ < x < ∞ and for the initial condition φ(x, 0) = [ f (x)]1/α, and the solution

φ(x, t) =

{
A +

B− A
L

+
∞

∑
n=1

an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)

an = − 2
nπ

[A + (−1)n+1B] +
2
L

L∫
0

dx f (x) sin

(
nπx

L

)}1/α

, (63)

for the case 0 < x < L and initial and boundary conditions φ(x, 0) = [ f (x)]1/α and φ(0, t) = A1/α,
φ(L, t) = B1/α.

Proof. Let us consider the linear heat Equation (A7). We use the transformation

u = φα, α 6= 1. (64)

The transformation (64) transforms Equation (A7) to Equation (61). Equation (A7) has
the solutions (A8) and (A9). Thus, Equation (61) has the solutions (62) and (63).
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Proposition 11. The equation

a2 ∂3φ

∂x3 + 2aφ
∂φ

∂x
∂2φ

∂x2 + α2 ∂φ

∂x

(
∂φ

∂x

)2
+ a2 ∂φ

∂x
− φ

(
∂φ

∂t

)2
− φ

∂2φ

∂t
= 0, (65)

has the solutions

φ(x, t) = 21/2

{ ∫
dx

{
1

2a
√

πt

+∞∫
−∞

dξ f (ξ) exp
[
− (ξ − x)2

4at2

]}}1/2

, (66)

for the case −∞ < x < ∞ and for the initial condition φ(x, 0) = 21/2[
∫

dx f (x)]1/2, and
the solution

φ(x, t) = 21/2

{ ∫
dx

{
A +

B− A
L

+
∞

∑
n=1

an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)}}1/2

an = − 2
nπ

[A + (−1)n+1B] +
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, (67)

for the case 0 < x < L and initial and boundary conditions φ(x, 0) = 21/2[
∫

dx f (x)]1/2 and
φ(0, t) = 21/2[

∫
dxA]1/2, φ(L, t) = 21/2(

∫
dxB)1/2.

Proof. Let us consider the linear heat Equation (A7). We use the transformation

u = φ
∂φ

∂x
. (68)

The transformation (68) transforms Equation (A7) to Equation (65). Equation (A7) has
the solutions (A8) and (A9). Thus, Equation (65) has the solutions (66) and (67).

Proposition 12. The equation

a2
(

∂φ

∂x

)3
+ 2a2φ

∂2φ

∂x2 + a2 ∂φ

∂x
∂2φ

∂x2 + a2 ∂3φ

∂x3 −
∂φ

∂x
∂φ

∂t
− ∂2φ

∂x∂t
= 0, (69)

has the solutions

φ(x, t) = ln

{ ∫
dx

{
1

2a
√

πt

+∞∫
−∞

dξ f (ξ) exp
[
− (ξ − x)2

4at2

]}}
, (70)

for the case −∞ < x < ∞ and for the initial condition φ(x, 0) = [
∫

dx f (x)], and the solution

φ(x, t) =
∫

dx

{
A +

B− A
L

+
∞

∑
n=1

an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)}

an = − 2
nπ

[A + (−1)n+1B] +
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, (71)

for the case 0 < x < L and initial and boundary conditions φ(x, 0) =
∫

dx f (x)] and
φ(0, t) = 21/2[

∫
dxA]1/2, φ(L, t) = 21/2(

∫
dxB)1/2.

Proof. Let us consider the linear heat Equation (A7). We use the transformation

u = exp(φ)
∂φ

∂x
. (72)
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The transformation (72) transforms Equation (A7) to Equation (69). Equation (A7) has
the solutions (A8) and (A9). Thus, Equation (69) has the solutions (70) and (71).

2.3. Transformation for the Laplace Equation

The used solution of the Laplace Equation (A10) is given in Appendix A.

Proposition 13. The equation(
∂φ

∂x

)2
+

(
∂φ

∂y

)2
+

∂2φ

∂x2 +
∂2φ

∂y2 = 0, (73)

for the case of the rectangle domain a < x < b, c < x < d and boundary conditions φ(a, y) =
ln[ f (y)]; φ(b, y) = ln[g(y)]; φ(x, c) = ln[h(c)]; φ(x, d) = ln[k(x)], has the solution

φ = ln(u1 + u2); u1 = ∑
n

Xn(x)Yn(y); u2 = ∑
m

Zm(x)Vm(y). (74)

Proof. Let us consider the linear Laplace Equation (A10) We make the transformation

u = exp(φ). (75)

The transformation (75) transforms Equation (A10) to Equation (73). Equation (A10)
has the solution (A11) Thus, Equation (73) has the solutions (74).

Proposition 14. The equation

φ
∂3φ

∂x3 + 3
∂φ

∂x
∂2φ

∂x2 +
∂φ

∂x
∂2φ

∂y2 + 2
∂φ

∂y
∂2φ

∂x∂y
+ φ

∂3φ

∂x∂y2 = 0, (76)

for the case of the rectangle domain a < x < b, c < x < d and boundary conditions φ(a, y) =
21/2{

∫
dx[ f (y)]}1/2; φ(b, y) = 21/2{

∫
dx[g(y)]}1/2; φ(x, c) = 21/2{

∫
dx[h(c)]}1/2;

φ(x, d) = 21/2{
∫

dx[k(x)]}1/2, has the solution

φ = 21/2
{∫

dx(u1 + u2)

}1/2
; u1 = ∑

n
Xn(x)Yn(y); u2 = ∑

m
Zm(x)Vm(y). (77)

Proof. Let us consider the linear Laplace Equation (A10). We use the transformation

u = φ
∂φ

∂x
. (78)

The transformation (78) transforms Equation (A10) to Equation (76). Equation (A10)
has the solution (A11) Thus, Equation (76) has the solution (77).

Proposition 15. The equation

(α− 1)

[(
∂φ

∂x

)2
+

(
∂φ

∂y

)2
]
+ φ

(
∂2φ

∂x2 +
∂2φ

∂y2

)
= 0, (79)

for the case of the rectangle domain a < x < b, c < x < d and boundary conditions φ(a, y) =
[ f (y)]1/α; φ(b, y) = [g(y)]1/α; φ(x, c) = [h(c)]1/α; φ(x, d) = [k(x)]1/α, has the solution The
solution is

φ = (u1 + u2)
1/α; u1 = ∑

n
Xn(x)Yn(y); u2 = ∑

m
Zm(x)Vm(y). (80)
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Proof. Let us consider the linear Laplace Equation (A10). We make the transformation

u = φα, α 6= 1, (81)

where α = const. The transformation (81) transforms Equation (A10) to Equation (79).
Equation (A10) has the solution (A11) Thus, Equation (79) has the solution (80).

3. Transformations of Linear and Nonlinear Ordinary Differential Equations

The main idea above was to start from linear partial differential equations and by means
of appropriate transformations to obtain solutions of nonlinear differential equations.

We can start from linear ordinary differential equations and obtain solutions of non-
linear ordinary differential equations. Let us consider, for example, the linear ordinary
differential equation

du
dx

+ p(x)u = q(x). (82)

The solution of this equation is

u(x) = exp
(
−
∫

dx p(x)
)[

C +
∫

dx q(x) exp
(∫

dx p(x)
)]

. (83)

C in (83) is a constant of integration. The Cauchy problem u(x0) = u0 for (82) has
the solution

u(x) = exp

− x∫
x0

dy p(y)

u0 +

x∫
x0

dy q(x) exp

 x∫
x0

dy p(y)

. (84)

Proposition 16. The nonlinear differential equation

φ
d2φ

dx2 +

(
∂φ

∂x

)2
+ p(x)φ

dφ

dx
= q(x), (85)

has the solution

φ = 21/2
{∫

dx
{

exp
(
−
∫

dx p(x)
)[

C +
∫

dx q(x) exp
(∫

dx p(x)
)]}}1/2

. (86)

The Cauchy problem u(x0) = u0 for (85) has the solution

u(x) = 21/2

exp

− x∫
x0

dy p(y)

u0 +

x∫
x0

dy q(x) exp

 x∫
x0

dy p(y)


1/2

. (87)

Proof. Let us apply the transformation

u = φ(x)
dφ

dx
. (88)

(88) transforms (82) to (85) and the solutions (83) and (84) are transformed to (86) and (87).

Proposition 17. Let us consider the equation

d2φ

dx2 +

(
dφ

dx

)2
+ p(x)

dφ

dx
− q(x) exp(−φ) = 0. (89)
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The solution of (89) is

φ(x) = ln
{∫

dx
{

exp
(
−
∫

dx p(x)
)[

C +
∫

dx q(x) exp
(∫

dx p(x)
)]}}

. (90)

The Cauchy problem u(x0) = u0 for (89) has the solution

u(x) = ln


∫

dx


− x∫

x0

dy p(y)

u0 +

x∫
x0

dy q(x) exp

 x∫
x0

dy p(y)


. (91)

Proof. Let us now apply the transformation

u = exp(φ)
dφ

dx
. (92)

The transformation (92) transforms (82) to (89). The solutions (83) and (84) are trans-
formed to (90) and (91).

Our last example here will be connected to the equation

d2u
dx2 + a

du
dx

+ bu = 0. (93)

The solution of (93) depends on the characteristic numbers λ1,2 = − a
2 ∓

√
a2

4 − b. The
solution is

u = C1 exp(λ1x) + C2 exp(λ2x), λ1 6= λ2, (94)

and
u = (C1 + C2x) exp(λx), λ1 = λ2 = λ. (95)

C1,2 are constants. Let us apply the transformation u = φα. Equation (93) is trans-
formed to

α(α− 1)
(

dφ

dx

)2
+ αφ

d2φ

dx2 + αaφ
dφ

dx
+ bφ = 0. (96)

The solutions of (96) are

φ = [C1 exp(λ1x) + C2 exp(λ2x)]1/α, λ1 6= λ2, (97)

and
φ = [(C1 + C2x) exp(λx)]1/α, λ1 = λ2 = λ. (98)

Proposition 18. Let us consider the equation

d3φ

dx3 + 3
dφ

dx
d2φ

dx2 +

(
dφ

dx

)3
+ a

d2φ

dx2 + a
(

dφ

dx

)2
+ b exp(φ)

dφ

dx
= 0. (99)

(99) has the solutions

φ = ln{
∫

dx[C1 exp(λ1x) + C2 exp(λ2x)]}, λ1 6= λ2, (100)

and
φ = ln{

∫
dx[(C1 + C2x) exp(λx)]}, λ1 = λ2. (101)

Proof. We apply the transformation u = exp(φ) dφ
dx to (93). Equation (93) is transformed to

Equation (96) and solutions (97) and (98) are transformed to (100) and (101).
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Proposition 19. The equation

d2φ

dx2 +

(
dφ

dx

)2
+ a

dφ

dx
+ b exp(φ) = 0, (102)

has the solutions
φ = ln[C1 exp(λ1x) + C2 exp(λ2x)], λ1 6= λ2, (103)

and
φ = ln[(C1 + C2x) exp(λx)], λ1 = λ2 = λ. (104)

Proof. We make the transformation u = exp(φ). Equation (93) is transformed to (102).
Solutions (97) and (98) are transformed to solutions (103) and (104).

We can start from nonlinear ordinary differential equations and we can obtain solutions
of other nonlinear differential equations. Let us consider as examples the equations of
Bernoulli and Riccati. The equation of Bernoulli

dφ

dx
+ p(x)φ = q(x)φm, m 6= 0, m 6= 1, (105)

is an example of a nonlinear equation which can be obtained from a linear equation by
means of a transformation. The linear equation is

du
dx

+ (1−m)p(x)u = (1−m)q(x), (106)

and the transformation is u = φ1−m. The solution of the linear equation is

u(x) = exp
[
−(1−m)

∫
dxp(x)

]{
C + (1−m)

∫
dx q(x) exp

[
(1−m)

∫
dx p(x)

]}
. (107)

Thus, the solution of the Bernoulli equation is

φ =

{
exp

[
−(1−m)

∫
dx p(x)

]{
C + (1−m)

∫
dx q(x) exp

[
(1−m)

∫
dx p(x)

]}}1/(1−m)

. (108)

Proposition 20. The equation

dψ

dx
+ p(x)− q(x) exp[(m− 1)ψ] = 0, (109)

has the solution

ψ = ln

{{
exp

[
−(1−m)

∫
dx p(x)

]{
C + (1−m)×

∫
dx q(x) exp

[
(1−m)

∫
dx p(x)

]}}1/(1−m)}
. (110)

Proof. Let us apply the transformation φ = exp(ψ). This transformation transforms the
equation of Bernoulli (105) to Equation (109) and solution (108) is transformed to (110).

Proposition 21. The equation(
dψ

dx

)2
+

d2ψ

dx2 + p(x)
dψ

dx
− q(x) exp[(m− 1)ψ]

(
dψ

dx

)m
= 0, (111)
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has the solution

ψ = ln

{ ∫
dx

{{
exp

[
−(1−m)

∫
dx p(x)

]{
C + (1−m)×

∫
dx q(x) exp

[
(1−m)

∫
dx p(x)

]}}1/(1−m)}}
. (112)

Proof. Let us apply the transformation φ = exp(ψ) dψ
dx . This transformation transforms the

equation of Bernoulli (105) to Equation (111) and solution (108) is transformed to (112).

Next, we discuss the equation of Riccati. We shall consider the specific case of the
Riccati equation, which has the constant coefficients

du
dx

= α2u2 + α1u + α0. (113)

The general solution of this equation is

u(t) = − α1

2α2
− θ

2α2
tanh

[
θ(x + C)

2

]
+

D

cosh2
[

θ(x+C)
2

]{
E− 2α2D

θ tanh
[

θ(x+C)
2

]} , (114)

where θ2 = α2
1 − 4α0α2, and C, D, E are constants.

Proposition 22. The equation

dφ

dx
= a2 exp(φ) + a1 + a0 exp(−φ), (115)

has the solution

φ = ln

{
− α1

2α2
− θ

2α2
tanh

[
θ(x + C)

2

]
+

D

cosh2
[

θ(x+C)
2

]{
E− 2α2D

θ tanh
[

θ(x+C)
2

]}}. (116)

Note the following specific cases of (115). Let a2 = a0 = a/2. Then, we obtain the
equation

∂ψ

∂x
= a1 + a cosh(ψ). (117)

Let a2 − a0 = a/2. Then, we obtain the equation

∂ψ

∂x
= a1 + a sinh(ψ). (118)

Proof. Let us apply the transformation φ = exp(ψ). This transformation transforms the
equation of Riccati (113) to Equation (115) and solution (114) is transformed to (116).

Proposition 23. The equation

d2ψ

dx2 +

(
dψ

dx

)2
= a2 exp(ψ)

(
dψ

dx

)2
+ a1

dψ

dx
+ a0 exp(−ψ), (119)

has the solution

φ = ln

{ ∫
dx

{
− α1

2α2
− θ

2α2
tanh

[
θ(x + C)

2

]
+

D

cosh2
[

θ(x+C)
2

]{
E− 2α2D

θ tanh
[

θ(x+C)
2

]}}}. (120)
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Proof. Let us apply the transformation φ = exp(ψ) dψ
dx . This transformation transforms the

equation of Riccati (113) to Equation (119) and solution (114) is transformed to (120).

Proposition 24. The equation

α
dφ

dx
= a2φα+1 + a1ψ + a0φ1−α, (121)

has the solution

φ =

{
− α1

2α2
− θ

2α2
tanh

[
θ(x + C)

2

]
+

D

cosh2
[

θ(x+C)
2

]{
E− 2α2D

θ tanh
[

θ(x+C)
2

]}}1/α

. (122)

Proof. Let us apply the transformation φ = ψα (α 6= 1). This transformation transforms the
equation of Riccati (113) to Equation (121) and solution (114) is transformed to (122).

4. Transformations of Nonlinear Partial Differential Equations

We can also start from nonlinear partial differential equations and we can obtain
solutions of other nonlinear partial differential equations by applying appropriate transfor-
mations. Here, we consider as an example the Korteweg–de Vries equation

∂u
∂t

+
∂3u
∂x3 − 6u

∂u
∂x

= 0. (123)

The single soliton solution of (123) is given by

u(x, t) = − c
2

sech2
[√

c
2

(x− ct)
]

, (124)

where c is the velocity of the wave. The N-soliton solution of (123) is given by

u(x, t) = −2
∂2

∂x2 ln det[A(x, t)], (125)

where the matrix Anm is

Anm(x, t) = δnm +
βn exp(8ξ3

nt) exp[−(ξn + ξm)x]
ξn + ξn

.

Above, the parameters ξ1 ≥ xi2 ≥ . . . ,≥ ξN > 0 and the parameters βi , i = 1, . . . , N
are nonzero ones.

The bisoliton solution of the Korteweg–de Vries equation which satisfies the initial
condition u(x, 0) = −6sech2(x) is

u(x, t) = −12
3 + 4 cosh(8t− 2x) + cosh(64t− 4x)
[cosh(36t− 3x) + 3 cosh(28t− x)]2

. (126)

Proposition 25. The equation

α2φ2 ∂3φ

∂x3 + 3α(α− 1)φ
∂φ

∂x
∂2φ

∂x2 + α(α− 1)(α− 2)
(

∂φ

∂x

)3
+ αφ2 ∂φ

∂t
− 6φα+2 ∂φ

∂x
= 0, (127)

has the solutions

φ(x, t) =
{
− c

2
sech2

[√
c

2
(x− ct)

]}1/α

, (128)
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and

φ(x, t) =
{
−2

∂2

∂x2 ln det[A(x, t)]
}1/α

, (129)

and

u(x, t) =
{
−12

3 + 4 cosh(8t− 2x) + cosh(64t− 4x)
[cosh(36t− 3x) + 3 cosh(28t− x)]2

}1/α

. (130)

Proof. We apply the transformation u = φα (α = const and α 6= 1) to Equation (123).
The transformation transforms (123) to (127). The solutions (124), (125) and (126) are
transformed to (128), (129) and (130).

Figure 7 shows the bisoliton solution of Equation (127).
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Figure 7. The bisoliton solution to Equation (127). (a) The bisoliton solution of the Korteweg–de
Vries equation. (b) The corresponding bisoliton solution of (127). The parameters of the solution are
c = 2.0, α = 1/2.

The soliton properties of the solution (130) are illustrated in Figure 8. We observe the
motion of two solitons having different velocities. The larger (and the faster) soliton moves
through the smaller soliton and continues to travel without change in its form. The smaller
soliton also does not change its form.

Proposition 26. The equation

∂φ

∂t
+

(
∂φ

∂x

)3
+ 3

∂φ

∂x
+

∂3φ

∂x3 − 6 exp(φ)
∂φ

∂x
= 0, (131)

has the solutions

φ(x, t) = ln
{
− c

2
sech2

[√
c

2
(x− ct)

]}
, (132)

and

φ(x, t) = ln
{
−2

∂2

∂x2 ln det[A(x, t)]
}

, (133)

and

u(x, t) = ln
{
−12

3 + 4 cosh(8t− 2x) + cosh(64t− 4x)
[cosh(36t− 3x) + 3 cosh(28t− x)]2

}
. (134)
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Proof. We apply the transformation u = exp(φ) to Equation (123). The transformation
transforms (123) to (131). The solutions (124), (125) and (126) are transformed to (132), (133)
and (134).
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Figure 8. Illustration of the soliton properties of the waves connected to the bisoliton solution of (127).
The parameters of the solution are c = 3.2, α = 1/2.

Proposition 27. The equation

φ2 ∂φ

∂t
+ φ2 ∂3φ

∂x3 − 3φ
∂φ

∂x
∂3φ

∂x3 + 2
(

∂φ

∂x

)3
− 6 ln(φ)φ

(
∂φ

∂x

)2
= 0, (135)

has the solutions

φ(x, t) = exp
{
− c

2
sech2

[√
c

2
(x− ct)

]}
, (136)

and

φ(x, t) = exp
{
−2

∂2

∂x2 ln det[A(x, t)]
}

, (137)

and

φ(x, t) = exp
{
−12

3 + 4 cosh(8t− 2x) + cosh(64t− 4x)
[cosh(36t− 3x) + 3 cosh(28t− x)]2

}
. (138)

Proof. We apply the transformation u = ln(φ) to Equation (123). The transformation
transforms (123) to (135). The solutions (124), (125) and (126) are transformed to (136), (137)
and (138).

Figure 9 illustrates the soliton and the bisoliton solution to Equation (135).



Axioms 2023, 12, 1106 23 of 28

-20 -10 0 10 20

0

0.2
0.4
0.6
0.8

φ

-20 -10 0 10 20
x

0

0.2
0.4
0.6
0.8

(a)

(b)

Figure 9. The soliton and the bisoliton solution to Equation (135). (a) The soliton solution. (b) The
corresponding bisoliton solution of (135).

5. Concluding Remarks

Transformations are very useful for obtaining exact solutions of nonlinear differential
equations. As examples, we mention the Bäcklund transformation [60–71] and the trans-
formation of Darboux [72–79]. The transformation of Bäcklund allows us to obtain new
exact solutions of appropriate equation if we know an exact solution of this equation. The
Darboux transformation is a simultaneous mapping between solutions and coefficients to a
pair of equations (or systems of equations) of the same form. The methodology proposed
in this article allows us to obtain exact solutions to nonlinear differential equations if we
know exact solutions of different (linear or nonlinear) differential equations.

In this article, we study the possibility of obtaining exact solutions to nonlinear
differential equations by means of transformations applied to more simple (linear or
nonlinear) differential equations. The idea of this method of transformations is very simple:
a transformation transforms a linear or nonlinear differential equation with a known
solution to a more complicated nonlinear differential equation. The same transformation
transforms the known solution of the more simple equation to an exact solution to the
corresponding nonlinear equation. A similar idea, for example, is used in the simple
equations method (SEsM). There, we have a simple equation which usually is a nonlinear
differential equation with a known solution. By means of this solution, we construct a
solution of a more complicated nonlinear differential equation. This construction can be
thought of as a transformation which transforms the solution of the simple equation to the
solution of the more complicated equation.

In this article, we demonstrate the result of the application of very simple transfor-
mations on several linear and nonlinear differential equations. We obtain solutions of
nonlinear differential equations which are connected to interesting phenomena: (a) occur-
rence of a solitary wave–solitary antiwave from a state which is equal to 0 at the moment
t = 0; (b) splitting of solitary wave of two solitary waves; (c) solitons which have different
amplitude and the same velocity. We stress result (c). Usually, solitons of different heights
have different velocities. This can be observed in Figure 8. There, the larger (and the
faster) soliton passes through the smaller (and the slower) soliton and continues to travel
without change in its form. Figure 6 shows that we can have two solitons of different forms
which travel with the same velocity. We observe the collision of these solitons and after the
collision they travel further without change in their form. Such a possible class of solitons
is very interesting.
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One limitation of the discussed methodology is that it needs an equation with a known
exact solution in order to obtain exact solutions of other equations. This limitation is the
same as in the case of other transformation methodologies such as, for example, the method-
ology based on the Bäcklund transformation. Another limitation of the methodology is
that we need to know not only the transformation u = u(φ, . . . ), but also the explicit form
of the inverse transformation φ = φ(u, . . . ) in order to construct the exact solution of the
equation for φ.

The methodology reported in this article can be applied to various problems. First of
all, one can study additional equations. Just one example is the class of equations connected
to the nonlinear Schrödinger equation. Let us consider the equation [80]

i
∂u
∂t

+
∂2u
∂x2 + κ | u |2 u = 0, (139)

where κ is a parameter. This equation has the multisoliton solutions

| u(x, t) |2= (2κ)1/2 d2

dx2 ln det || BB∗ + 1 || . (140)

The notation ∗ means complex conjugation. The matrix B from (140) is

Bjk =
(cjc∗k )

1/2

ζ j − ζ∗k
exp[i(ζ j − ζ∗k )x]; cj(t) = cj(0) exp(4iζ2t). (141)

In (141) ζ = λp
1−p2 , where p is determined from κ = 2

1−p2 , ζi are the eigenvalues of

problem (8) from [80] and λ is the eigenvalue from (7) of [80], where L̂ is operator (5)
from [80].

The transformation u = u(φ) transforms the nonlinear Schrödinger equation to

i
du
dφ

∂φ

∂t
+

d2u
dφ2

(
∂φ

∂x

)2
+

du
dφ

∂2φ

∂x2 + κ | u2 | u = 0. (142)

Let us specify the form of the transformation to u = φα, where α is a constant and
α 6= 1. Equation (142) is reduced to

iαφ
∂φ

∂t
+ α(α− 1)

(
∂φ

∂x

)2
+ αφ

∂2φ

∂x2 + κφ2 | φ |2α= 0. (143)

The multisoliton solution of (143) is φ = u1/α, where u is given by (140).
Another possible direction for the extension of the reported research is to apply more

complicated transformations and this will lead to exact solutions of even more complicated
nonlinear differential equations. Moreover, the stability of the obtained solutions can be
studied as in [80]. The results of such kinds of research will be reported elsewhere.

Funding: This research was partially supported by the project BG05 M2OP001-1.001-0008 “National
Center for Mechatronics and Clean Technologies”, funded by the Operating Program “Science and
Education for Intelligent Growth” of Republic of Bulgaria.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Linear Differential Equations and Their Solutions Used in the Main Text

In the main text, we discuss the following linear differential equations and their
solutions.

1. The hyperbolic equation

c2 ∂2u
∂x2 −

∂2u
∂t2 = 0, (A1)
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where −∞ ≤ a < x < b ≤ +∞, and t > 0. This is the (1 + 1)-D wave equation. We consider
the general solution

u(x, t) = F(x + ct) + G(x− ct), (A2)

where F and G are arbitrary C2-functions. In addition, we consider the Cauchy problem

u(x, 0) = f (x),
∂u
∂t

(x, 0) = g(x), −∞ < x < ∞, t > 0. (A3)

The solution of this problem is given by d’Alembert’s formula

u(x, t) =
f (x + ct) + f (x− ct)

2
+

1
2c

x+ct∫
x−ct

ds g(s). (A4)

Finally, we will use the solution for the case 0 < x < L and initial and boundary
conditions

u(x, 0) = f (x),
∂u
∂t

(x, 0) = g(x), 0 ≤ x ≤ L,

∂u
∂x

(0, t) =
∂u
∂x

(L, t) = 0, t ≥ 0. (A5)

The solution in this case is

u(x, t) =
∞

∑
n=1

[
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)]
sin

(
nπx

L

)
,

an =
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
, bn =

2
nπc

L∫
0

dx g(x) sin

(
nπx

L

)
. (A6)

2. The parabolic equation

a2 ∂2u
∂x2 −

∂u
∂t

= 0. (A7)

This is the (1 + 1)-D heat equation. For the case −∞ < x < ∞ and for the initial
condition u(x, 0) = f (x), solution is given by the integral of Poisson

u(x, t) =
1

2a
√

πt

+∞∫
−∞

dξ f (ξ) exp
[
− (ξ − x)2

4at2

]
. (A8)

For the case 0 < x < L and initial and boundary conditions u(x, 0) = f (x) and
u(0, t) = A, u(L, t) = B, the solution is

u(x, t) = A +
B− A

L
+

∞

∑
n=1

an exp

(
− π2a2n2

L2 t

)
sin

(
nπx

L

)
,

an = − 2
nπ

[A + (−1)n+1B] +
2
L

L∫
0

dx f (x) sin

(
nπx

L

)
. (A9)

3. The elliptic equation
∂2u
∂x2 +

∂2u
∂y2 = 0. (A10)
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This is the 2D Laplace equation. Here, we consider only the solution for the case
of the rectangle domain a < x < b, c < x < d and boundary conditions u(a, y) = f (y);
u(b, y) = g(y); u(x, c) = h(c); u(x, d) = k(x). The solution is

u = u1 + u2; u1 = ∑
n

Xn(x)Yn(y); u2 = ∑
m

Zm(x)Vm(y), (A11)

where the boundary conditions for u1,2 are u1(a, y) = f (y), u1(b, y) = g(y), u1(x, c) =
0, u − 1(x, d) = 0; u2(a, y) = 0, u2(b, y) = 0, u2(x, c) = h(x), u2(x, d) = k(x), where
Xn, Yn, Zm, Vm are solutions of the equations

d2X
dx
− λ1X(x) = 0, a < x < b,

d2Y
dy
− λ2Y(y) = 0, c < y < d,

d2Z
dx
− λ3Z(x) = 0, a < x < b, (A12)

d2V
dy
− λ4V(y) = 0, c < y < d.
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