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1. Introduction

The function: .
sin x

, x#0
sincx = X 7
1, x=0

has numerous applications in mathematics. The basic approximation of the sinc x function
is given by the well-known Jordan's inequality:

Theorem 1 ([1]). For x &€ (0, g} , it holds that

sin x
x

2
—< <1 (1)

Since then, many authors have worked on extensions and improvements of Jordan’s
inequality [2-22]. In [7], F. Qi, D.-W. Niu and B.-N. Guo conducted elaborate research, thus
summarizing previously discovered improvements and applications of Jordan’s inequality,
along with related problems. Motivated by some of the following results, this paper
provides an additional contribution to this topic.

E. Qi and B.-N. Guo, in the paper [2], provided an enhancement of Jordan’s inequality
through the following assertion:

Theorem 2. Let x € (O, g} . Then, it holds that

mT—2

2 2 n—Zx)Zsmx _
T

a1t .

> %‘F (1 —2x). )

F. Qi then, in the paper [3], provided further improvement of Jordan’s inequality
through the following assertion:
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Theorem 3. Let x € (O, g} . Then, it holds that
2 1 i 2 -2
f+f3<712—4x2)§smx§—+n 3 (7‘(2—4x2). 3)
T X T s

In the paper [4], K. Deng contributed to improvements of Jordan’s inequality by proving
the following;:

Theorem 4. Let x € (o, g} . Then, it holds that

L) m )

Based on the inequality (3), W. D. Jiang and H. Yun provided further extension of
Jordan’s inequality in their paper [5] through the following theorem:

Theorem 5. Let x € (0, g} . Then, it holds that

2 1 inx _2 m-2
St —1et) < T < S TS (- 1ert). 5)

Shortly afterwards, in the paper [6], J.-L. Li and Y.-L. Li provided a more general
statement that encompasses the previous inequalities, (2)-(5), thereby introducing an entire
family of inequalities. Namely, the following theorem holds:

Theorem 6. Let x € (O E} . Then, it holds that

)
2 2 sin x 2 wT—2
ey > > = — 6
n—l—ﬂz(n 2x) > . 77T—|— p= (7t —2x) (6)
2 2 sin x 2 m—2
- + o (" —(2x)") < p < - + pes (m"—(2x)") (forneN,n>2). (7)

Inspired by Theorems 2-6, in this paper, based on the concept of the stratification of
corresponding families of functions from the paper [23], we introduce a new extension of
Jordan’s inequality. Namely, by applying stratification, it is possible to extend the inequal-
ity (7) so that the parameter 1 can be a positive real number. The extension of inequalities
for real parameters has recently been the subject of various studies [24-27]; see also [28-31].
Additionally, we provide the best constants for this type of Jordan’s inequality, as well
as an analysis of the upper and lower bounds and minimax approximations of the sinc x
function based on the inequalities (2)—(5), as well as on the newly obtained inequalities.

2. Preliminaries

Recently, in the paper [23], the authors considered families of functions ¢, (x), where
x € (a,b) CR" and p € R, which are monotonic with respect to the parameter p. In that
paper, such families of functions are referred to as stratified families of functions with
respect to the parameter p. If, for each x € (4,b), it holds that

(Vp1,p2€R+) p1 < p2 == @p,(x) < @p,(x),

then the family of functions ¢, (x) is increasingly stratified with respect to the parameter p.
If, for each x € (a,b), it holds that

(Yp1, p2€RY) p1 < p2 <= ¢p,(x) > ¢p,(x),

then the family of functions ¢, (x) is decreasingly stratified with respect to the parameter p.
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If it is possible to determine a value of the parameter p = py € R™ for which the
infimum of the error
do =d(po) = sup |gp, ()]
x€(ab)
is attained, then the function ¢, (x) is the minimax approximant of the family of functions
¢p(x) on the interval (a,b). Based on the stratifiedness, the parameter value p = po
is unique.

In this paper, we consider the inequalities (2)—(7) by introducing the corresponding
stratified families of functions. When proving inequalities, we will utilize L'Hopital’s rule
for monotonicity, as well as the method for proving MTP (Mixed Trigonometric Polynomial)
inequalities described in the paper [32].

L’Hopital’s rule for monotonicity was described by the author I. Pinelis in the pa-
per [33]; see also [34]. In this paper, we use the following formulation:

Lemma 1. (Monotone form of L’'Hopital’s rule). Let f and g be continuous functions that are
differentiable on (a,b). Suppose f(a+) = g(a+)=0or f(b—) =g(b—) =0, and assume that
g/ (x)#0 forall x € (a,b). If f' /g’ is an increasing (decreasing) function on (a,b), then so is f/g.

The method to prove inequalities of the form f(x) > 0 on the interval (a,b) C R,
where f(x) is an MTP function, as outlined in [32], is based on determining a downward
polynomial approximation P(x) with respect to the observed function f(x). In [32], the
determination of a polynomial P(x) as a polynomial with rational coefficients is considered.
If there exists a polynomial P(x) such that f(x) > P(x) and P(x) > 0 on the interval (a,b),
then f(x) > 0 holds on the interval (a,b). The polynomial P(x) > 0 is determined as a
polynomial with rational coefficients and is examined on the interval (a, b) with rational
endpoints. Then, the proof of the inequality P(x) > 0 is an algorithmically decidable
problem based on Sturm’s theorem; see Theorem 4.2 in [35]. In this paper, the application
of Sturm’s theorem will not be necessary for proving polynomial inequalities.

3. Main Results

In this section, several statements are presented and proven, with a special emphasis
on the connection between Jordan’s inequality and stratification. Particularly, for each
family of functions induced by the aforementioned inequality (7), the best approximations
derived from the minimax approximants are identified in Statements 1 and 2.

Lemma 2. The two-parameter family of functions

sinx 2

-2 —p(nt - 2v)")

X 7T

Ppq(x) =

is individually decreasingly stratified both with respect to the parameter p € R and with respect to
the parameter q € R on the interval (0, 77/2).

Proof. For the first derivative of ¢, 4(x) with respect to p, it holds that

99pq(x) =(2x)1-n1<0

dp

for x€ (0, 71/2) and g € R™. For the first derivative of ¢ ,(x) with respect to g, it holds that

a‘/’gz(x) = p((2x)7In(2x) — 2In(7r)) < 0

forxe(0,7/2)and p,geRT. O
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Based on the inequality (7), we introduce the following stratified families of functions
in the auxiliary statement:

Lemma 3. Let
2 2

n_

Then, it holds:
(i) The family of functions

sinx 2

(PA(q),q(x) = - A(q)(n’q - (2x>q) (8)

X 7T

is decreasingly stratified with respect to the parameter g € R™ on the interval (0, 7t/2).
(ii) The family of functions

sin x

P (®) = 2o — 2 B(g) (w7 — (20)7) ©)

X

is increasingly stratified with respect to the parameter q € R™ on the interval (0, 7t/2).

Proof. (i) Since A(q) = %,

sin x 2x\ 1 2

The first derivative of ¢ 4(,) ,(x) with respect to ¢ is

() _ (2 (2x\7 2
9q T)\ e

a(PA(q),q(x)
9q

on the interval (0, 7t/2) for g€ R", which concludes the proof.

we obtain the one-parameter family of functions:

It is evident that
<0

(ii) Since B(q) = we obtain the one-parameter family of functions:

sinx 2 2 24t1xa

PB(g),q(x) = > m m + Pra (11)

The first derivative of gp,) ,(x) with respect to parameter g is

99p(g),4(x) i+ 211 x1(gIn 24+ gln x —gIn T — 1)
aq qzn’ anq-‘rl

2 [(2x\1 2x\1 7T\
= ——(— ) |In{— —) —1].
=) ((5) + G )
2x\1 . .
Lett = - - We now form the following function:

<(t) zln(t)—i-%—l :(0,1) = R.

dg(t) 1

1
Since =i R < 0for te(0,1), the function g(t) is decreasing on the interval

(0,1). Considering that g(t) is a decreasing function and that g(1) = 0, we conclude that
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g(t) >0
for t€(0,1). Thus, it follows that

99B(g)q(¥)

P >0

on the interval (0, 7t/2) because g(t) > 0 on (0,1). This finishes the proof. [

Statement 1. Let

2
g1 = =175193... and gp=2.

Then, it holds: ]
(1) If g€ (0,q1], then the lower bounds of the function 51;1 ad

are given by

T sinx _ 2 2
_ = q_ )y > = q _ q
€(03) = 5> S+ AW (" - 20") 2 =+ Al (¢ - (%))
and the constant qy is the best possible.
(ii) If g € (91, q2), then the equality

sinx 2

Pa(g)q(¥) = ~ T a A(g) (1 = (2x)7) =0

has a unique solution x(()q), and it holds that

sin x

x€ (O,xéq)) = > % + A(q) (7 — (2x)7)

and
2

T sin x
xe (xé )'E) = —— < + A(q) (7 — (2x)7).

(iii) If g € [q2, +00), then the upper bounds of the function 512 ~ are given by

e(0.3) = TE < 2 A@) (- 20)7) < 2+ Alg) (21— (2)7)

and the constant qy is the best possible.
(iv) Each function from the family ¢ 4y 4(x), for q € (q1,92), has exactly one maximum and
( ) (@)

exactly one minimum at certain points m1 ,my" € (0, 71/2), respectively, on the interval (0, 7t/2).

Additionally, it holds that mg ) ( . The function @ 5(,) ,(x), for q = g1, has exactly one
maximum on (0, 7t/2), and for g = g, has exactly one mmzmum on (0,71/2).

(v) The equality
@Y — ()
"PA(q),q (ml ) ‘ = ‘(PA(q),q (’”2 ) ‘
has the solution q = qq for the parameter q € (g1, q2), which is numerically determined as

go=1.84823....

For value

40 = [P atgo)qo (M) | = | @4(q0).0 (") | = 0.0026604....,

it holds that

do= inf  sup [@ar)q(X)
9€(0,%0) xe 071/2‘ (1 ‘
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Hence, the minimax approximant of the family of functions ¢ (y) 4(x) is
sinx 2
P A(qo)a0(X) = x o A(qo) (™ — (2x)™),
which determines the corresponding (minimax) approximation
SINY 2 4 0.043803... (n1~84823-~ - (2x)1‘84823“'>. (12)
x s
Proof. (i) Let us notice that the assertion is equivalent to ¢ 4, ,(x) > 0 for g < —— and
x€(0,7t/2). Based on (10), it holds that
x(r—2)
n 7t(x — sinx)
Pagq(*) =0 = g=8()=——F—. (13)
In ﬂ

We first prove that the function g(x) is monotonic on the interval (0, 7r/2) using
L'Hoépital’s rule for monotonicity (Lemma 1). Let us form the functions
x(t—2) T
—n T —n 2). h 2-) =
fi(x) n 2(x —sin7) and f,(x) n - on (0,7t/2). Note that f1(/2—) = 0 and
fa(mr/2—) = 0. It holds that

fi(x)  —xcosx+sinx
filx)  x—sinx
. - . —Xcosx +sinx
We now examine the monotonicity of the function h(x) = ———————— on the

X —sinx
interval (0, 7r/2). The first derivative of the function (x) is

xcosx + cosxsinx + xZsinx — sinx — x
(x —sinx)?2

W (x) =
To examine the sign of the function /' (x), let us examine the sign of the MTP function
. 2 . . 1 . 2 . .
hy(x) = xcosx 4+ cosxsinx + x“sinx —sinx — x = xcos x + §s1n2x+x sinx —sinx — x

on the interval (0, 77/2).

We prove that /1 (x) < 0 using the method from the paper [32]. If we approximate the
functions cos x and sin 2x using Maclaurin polynomials of degrees 4 and 9, respectively,
and approximate the function sin x using the Maclaurin polynomial of degree 5 in the
addend x? sin x and using the Maclaurin polynomial of degree 7 in the addend — sin x,
then the function /7 (x) has the upward polynomial approximation

2 9 1 5

P = 735% ~ 200"
on the interval (0, 7t/2). It is evident that P;(x) < 0 on the interval (0, t/2). Thus,
hi(x) <0
on the observed interval. From here, we conclude that
W(x) <0
on the interval (0,77/2). Thus, h(x) = ;1:23
(0, 7t/2). Furthermore, since f1(7r/2—) = 02and f2(mt/2—) = 0, based on L'Hopital’s rule

is a decreasing function on the interval
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for monotonicity, it follows that g(x) = Ax)

fa(x)
(0,71/2).
By applying L'Hopital’s rule, it can be shown that
lim g(x) = 2 .
2

x—F— T—2

is also a decreasing function on the interval

Considering that g(x) is a decreasing function on the interval (0, 71/2), we conclude
that the function ¢ 4,) ,(x), for g = g1 = o does not have a root on the observed inter-

273 (m—2) — 422
7T

val. Since ¢ 4(y,) 4, (77/4) = = 0.0082048. .. > 0, we conclude that

PA(g)q(X) >0

for x € (0, t/2). Additionally, based on the stratification (Lemma 3), it holds that

Pa(9),4(X) > Pa(gy)q (x) >0

forg <

2 5 on the interval (0, 7t/2).
(ii) It is easily seen that xlir(r)lJrgoA(q),q(x) = 0 and xig}}27¢A(q)/q(x) = 0. In part (iv) of

this proof, it will be shown that each function ¢4, 4(x), for q € (q1,92), has exactly one
maximum and exactly one minimum on the interval (0, 71/2), respectively. Hence, the
stated inequalities follow.
(iii) The assertion is equivalent to ¢ () ,(¥) < 0 for g > 2 and x € (0, 7/2). Continu-
ing from part (i) of this proof, using multiple applications of L'Hopital’s rule, it can be
shown that
xg%l+g(x) =2

Considering that g(x) is a decreasing function on the interval (0, 7t/2), we conclude
that the function ¢4, 4(x), for ¢ = g2 = 2, does not have a root on the observed interval.
8v2 237

s

1 = —0.0088386 ... < 0, it holds that

Since @ 4(g,),q,(70/4) =

PA(92)2 (x) <0

for x € (0, t/2). Additionally, based on the stratification (Lemma 3), it holds that

PA(9),(X) < Pa(gy)q(x) <0

for g > 2 on the interval (0, 71/2).
(iv) Let us examine the monotonicity of functions from the family ¢ 4 4(x) for g€ (41, 92)
on (0, 7t/2). The fourth derivative of ¢ 5(,) ,(x) with respect to x is

’Paa(¥) X1 fi(g) + ha(x)

x4 x5 !

where
falg) = 171299(g = 1)(q9 — 2) (9 — 3) (7w — 2)

and
hy(x) = 4x (x2 - 6) cos x + (x4 —12x% + 24) sinx.

Moreover, the function hi4(x) is defined at both endpoints of the interval (0, 77/2),
which we will use in the subsequent proof. The first derivative of the function hy(x) with
respect to x is
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Hy(x) = x*cosx >0

for x € (0, 7r/2). Therefore, the function hy(x) is increasing on the interval (0, 7r/2). Since
h4(0) = 0, it holds that

hy(x) >0
on the interval (0, 7t/2). It is evident that
fa(q) >0
for g€ (q1,492)- Hence, we have
Poawal) (14)
dx*

P Pa(g)q(*)
L&q/ for g € (q1,92), is

increasing on (0, 77/2). The third derivative of ¢ 4(,) ,(x) with respect to x is

on (0,7t/2) for q € (q1,92). Consequently, each function

Poagg(¥)  x11f3(q) + ha(x)

ox3 x4 !

where

f3(g)=n"""299(q —1)(q —2)(m —2) and h3(x)= (—x3 + 6x) cos x + (3x2 - 6) sinx.

It is evident that f3(q) < 0 for g€ (q1,42). It holds that
Wy(x) . xdsinx

. h(x) _
forg€(q1,92)) and xlg&r x4 _xll}gl-‘r (x4)’_xl>r(€1+ 4x3

lim M:—oo (

x—0+ x3719

Hence, we have
. & PA)q (x)
e T {3)

for g€ (q1,42)- It holds that
Ppaiqg(x) (87 —16)g> + (48 — 247)q% + (1671 — 32)q + 12712 — 96

li = =k .
xi%lf 8x3 7-[4 3 (q)

Since k3(q) = %(qu —69+2)(t—2) > 0forqe(q1,42), it follows that k3(g) is an

increasing function for g € (41, 42). Considering that k3(g) is an increasing function and
1270° — 487> — 1677 + 160

that k3(gq1) = Br—2) =0.19968. .. > 0, it can be concluded that
83GI’A( (x)
: 04
R 2
azq)A(q),q(x)

for g € (q1,92). Based on (14)—(16), each function , for g € (91, 92), has exactly

dx?
one minimum on (0, 71/2). The second derivative of ¢ 4(,) ,() with respect to x is

PPai (%) 2T fo(q) + ha(x)

ox? x3 !

where

fo(q) =" 771299(g —1)(m —2) and hy(x) = —2xcosx — (xz - 2) sinx.
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It is evident that f,(q) > 0 for g€ (q1,42). It holds that
. fq) . h(x) . Bh(x) .. —x*cosx 1
lim 229 — Lo (# 1 —1 — lim ¥ 2
i R (forg € (q1,42)) and o0t X o0+ (x3) o0t 32 3
Hence, we have 22 (x)
: PAg)0\Y
| —_— = 17
o0t dx2 Hee A7)

for g€ (q1,42). It holds that

lim PPat)a ) _ (4n—8)¢* + (—4m +8)g —21* + 16

x—T- ox?2 3 = ka(q).

Since ky(q) = %(Zq —1)(r—2) > 0 for g € (q1,42), it follows that ky(g) is an
increasing function for g € (q1,42). Considering that k»(¢) is an increasing function and

22 4+ AT+ 8

that kZ(ql) = 7_[2(7_[_2)

=0.073414... > 0, it can be concluded that

9 4(g),()

0 18
x—5— 0x2 > ( )

azq)A(q),q(x)

ox?2
.. . a(PA(q),q (x )
one minimum on (0, 71/2). Therefore, based on (17) and (18), for functions ——+~"—, for

for g € (q1,92). We have proven that each function , for g€ (g1, 92), has exactly

x
q € (q1,42), there are two possibilities: either they are increasing, or they have exactly one
maximum and exactly one minimum on (0, 71/2), respectively. We will prove that

<0

—TT
=7

0 X d X 0
() tim 0@ o 9Pawa) o (‘Mw)(x)
x—0+ ox x—Z— ox

ox

9P a(q)9 (%)

for g € (91, q2); thus, it will be clear that each function ,for g € (g1, 92), has exactly

one maximum and exactly one minimum on (0, 7t/2), respectively. The first derivative of
PA@9)4 (x) with respect to x is

IPag)(*)  xT1f1(q) + I (x)

dx x2 ’
where
fi(q) = 77 129g(r —2) and hy(x) = xcosx —sinx.
It holds that
. filg) _ Lo hx)
x1_1>r(r)1+ x1=4 =0 (forge(q1,92)) and xlg(r)lJr 2 =0
Hence, we have
d x
lim M -0 (19)
x—0+ ox
for g€ (q1,92). It is easily seen that
0 x —2)—
i 2PA@a ) _ 2(q( 22) 2) _ o 20)
P ox T

for g€ (q1,92). We now examine the sign of the functions ¢4, 4(x), for g € (g1, 92), at the
point x = 7t/4. It holds that
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9PAg)4 279q(4m — 8) +2V2 (1 — 4)
: = =k .
(52w _, -+ 1(9)
_ , —4279(mt—2)(gln2 - 1) _ .

Since k] (q) = - < 0for g€ (q1,q), it follows that kq(g) is a

decreasing function. Considering that ki(g) is a decreasing function and that
37‘[:8 . 4;:10 2

ky(qy) = 2= 27F + Q@12 6)V2 (0053418, < 0, it can be con-

(rt—2)72
cluded that 5
PA@)
— 21
(520 ) _, <o e1)
. agpA(q),q(x) .
for g € (41, 92). Hence, each function o for g € (41, 92), has exactly one maximum

and exactly one minimum on (0, 71/2), respectively. Note that () is a substitution for the
9P ()9 (%X)

ox
for g € (91,92) and (), we can conclude that each function ¢ 4(,) ,(x), for g € (91, 92), has

exactly one maximum and exactly one minimum on (0, 71/2), respectively.
9a)q(Y) PPagg(x) PPagg,(¥)
oxt ox3 oz

conjunction (19)-(21). Additionally, based on the monotonicity of the functions

By analyzing the monotonicity of the functions

IPa(g),9(¥)

,and @4y 4(x) for ¢ = g1 and for ¢ = ¢, in a similar manner, it can be

concluded that the function ¢ 4 ) 4(x), for g = g1, has exactly one maximum on (0, 7/2),
while the function ¢ 4(,) ,(x), for 4 = g2, has exactly one minimum on (0, 7/2).
(v) Note that the infimum of the error d(gq) = SUP.c(0,7/2) |®4(q),4(x)], for g€ (q1,92), exists

and is attained when
"”A(W ("’gq)ﬂ = “PA(q),q (méq)) ‘ (22)

The Equation (22) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter g = qo, which is numerically determined as

go=1.84823...,

which determines the minimax approximant ¢ 4(,)4,(x) of the family of functions
PA®g).q (x) [

Figure 1 illustrates the stratified family of functions ¢ 4,) ,; see (8). Cases for all values
of the parameter g € R are shown, with a special emphasis on the cases with constants
obtained in Statement 1.

A

q=2

|
q = 1.84823...
2
1= T —2 R
\ 1

0.01

Figure 1. Stratified family of functions ¢ 4 ) 4; see (8).
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Statement 2. Let
*12—1*146740 and *i*175193
Then, it holds:

(i) If € (0, q1], then the upper bounds of the function smt

are given by

ve(03) = 5 < 245 (e - 20)") < 2+ B(g) (71 - (2x)7)

and the constant qy is the best possible.
(ii) If g€ (91, q2), then the equality

has a unique solution x(()q), and it holds that

sin x

x€ (0, xéq)) = < % + B(q) (77 — (2x)7)

and

MY 2 1 Blg) (07 - (20)).

(iii) If g € [q2, +00), then the lower bounds of the function s

xe (xé"), g) —

are given by

e (0,7) = ¥ 2 pga) (e — (20)7) > 2 4 Bg) (n ~ (2x)7)

and the constant qy is the best possible.
(iv) Each function from the family @p(y) o(x), for q € (q1,q2], has exactly one maximum at a point

m\?) € (0,71/2) on the interval (0, 77/2).
(v) The equality

‘goB(q),q (0+) ‘ = “PB(q),q (m(q)> ‘

has the solution q = qq for the parameter q € (q1,q2), which is numerically determined as
qo =1.72287....

For value

40 = |@5(40)00 (0] = | @(g000 (") | = 0.00612%6.....,

it holds that

dp = inf su x)|.
O elo) x€(0,7IIT)/2) ’q)B(q)'q( )‘

Hence, the minimax approximant of the family of functions @p ) ,(x) is
sinx 2

2= 2 B(qo) (e - (20)™),

(’)B(ﬂlo)fqo(x) =

which determines the corresponding (minimax) approximation

sin x 2
T

+0.051415. . (7‘[1'72287'" - (2x)1'72287'“>. (23)
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2
Proof. (i) Let us notice that the assertion is equivalent to ¢p(,) ,(x) < 0forg < % —1land

x € (0,71/2). We begin by proving that ¢p(,) ,(x) is a monotonic function on the interval
2

(0,7t/2) for q = LS Through elementary transformations, based on (11), it can be
shown that the following equivalence holds:

zx q+1
XCosx —sinx + ()
T —0

IPp(g),9(¥)
ox N x2
24
oy (24)
In :
7T(—x cosx + sinx)
= g=g(x)= = .
In —
2x
2
It is necessary to prove that g(x) # T 1 for every x € (0, 71/2) in order for the

2
function ¢p,) ,(x) to be monotonic on the interval (0, 77/2) for g = % — 1. We first prove

that the function g(x) is monotonic on the interval (0, 71/2) by applying L’'H6pital’s rule
2x

7T(—x cosx + sinx)
fox) = ln% on (0,71/2). Note that f1(7r/2—) = 0 and f,(7r/2—) = 0. It holds that

for monotonicity (Lemma 1). Let us form the functions f1(x) = In and

fi(x)  xcosx+x?sinx —sinx

f3(x) —Xcos x +sinx

2 . .
. .. . XCosx + x“sinx — sinXx
We now examine the monotonicity of the function h(x) = . on
—XCOSX +sinx

the interval (0, 7t/2). The first derivative of the function h(x) is

—x(x cos xsin x — 2sin? x + x2)
(—xcosx + sin x)?

W (x) =
Let us examine the sign of the MTP function
. 2 2 L 2
hy(x) = xcosxsinx — 2sin” x + x~ = cos2x + Exstx +x -1

on the interval (0, 7t/2). If we approximate the functions cos 2x and sin 2x using Maclaurin
polynomials of degrees 6 and 7, respectively, then the function /; (x) has the downward
polynomial approximation

on the interval (0, 7t/2). It is evident that P;(x) > 0 on the interval (0, t/2). Thus,
hi(x) >0

on the observed interval. From here, we conclude that

W(x) <0

_ B

A
(0, t/2). Furthermore, since f1(r/2—) = 0 and f,(r/2—) = 0, based on L'Hopital’s rule

on the observed interval. Thus, h(x) is a decreasing function on the interval
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for monotonicity, it follows that g(x) = ? Ei; is also a decreasing function on the interval
2
(0, 7t/2). By applying L’'Hopital’s rule, it can be shown that
2
lim g(x) = %—1.

x—5—

2
Hence, g(x) > % — 1 on the interval (0,71/2). Thus, the function @p(,) ,(x), for

2
g=q = % — 1, is monotonic on the interval (0, 71/2). It holds that xl_i}r& PB(g1), () =
4

= —0.070461... < 0and = 0. Therefore, i
and lim g, (x) erefore, ¢p(y) 4, () is an

R li

2 —4 —>17T/ 2
increasing function and negative on (0, 77/2). Considering that ¢p,,) 4, (x) < 0, based on
the stratification (Lemma 3), it holds that

PB(g),q (%) < PB(gy),q,(¥) <O

2
forg < ™ _ 1 on the interval (0,7/2).
(ii) Continuing from the previous part of the proof, (i), using multiple applications of
L’'Hopital’s rule, it can be shown that
li =2.
xi%hg(x)

The function g(x) from (24) determines the values of the parameter g for which the
family of functions ¢p,) ,(x) have extremes or inflection points on the interval (0, 77/2).
Considering that the function g(x) is monotonic on (0, r/2) and that lir(r)l+ g(x) =2and

X—
2
lim g(x) = T 1= q1, every function from the family ¢p,) ,(x) has either exactly
x—7/2— 4 94

2
one extremum or exactly one inflection point on the interval (0, 71/2) for g € (Z -1, 2>

2
and therefore for g € (g1, 42|, where g, = Y since g, < 2. Let us prove that each

function @p(,) ,(x), for q € (91,42), has exactly one maximum on the interval (0, 77/2) by
proving that all these functions are negative in the right neighborhood of zero and positive
and decreasing in the left neighborhood of 77/2.

It holds that
(r—2)q—-2

lim (pB(q),q(x) = -

x—0+

Therefore, there exists a right neighborhood of zero such that

(PB(q),q(x) <0 (25)

for q € (91,42). The Taylor expansion of the family of functions ¢p,) ,(x) around 71/2 is

oual) = TEE A (e 3 o (- 5))

Therefore, there exists a left neighborhood of 7r/2 such that

a(PB(q),q(x)

S <0 (26)

(PB(q),q(x) >0 and

for g € (q1,92). Based on (25) and (26), the functions ¢p(,) ,(x), for g € (q1,92), have exactly
one maximum on the interval (0, 7t/2), and the stated inequalities follow.
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iii) The assertion is equivalent to x) > 0forg > 2 and x € (0,71/2). Let us
q goB(q),q q 5

-2

2
notice that A(q) = B(q) forq = > where A(g) = In Statement 1, it has already

2 .
been proven that ¢ 4y ,(x) = @p(y),(x) > 0forg =gz = ——5on the interval (0, 77/2).

Given that the family of functions ¢p/,) ,(x) is increasingly stratified with respect to the

parameter g based on Lemma 3, for g > o it will also hold that

PB(g),9(X) > PB(g,),4,(x) >0

on the interval (0, 7t/2).

(iv) It has been established in part (ii) of the proof for g € (q1,42). Similarly, the proof
holds for g = ¢.

(v) Note that the infimum of the error d(q) = sup,¢ o /2) |#8(g),4(X)|, for € (q1,92), exists
and is attained when

‘(PB(q),q(OjL)‘ = ’903(51),61 (m(q)) ‘ (27)

Equation (27) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter g = go, which is numerically determined as

qo =1.72287 ...,
which determines the minimax approximant (PB(qo),qO(x) of the family of functions
(/)B(q),q(x)' O

Figure 2 illustrates the stratified family of functions @p,) ,; see (9). Cases for all values

of the parameter g € R are shown, with a special emphasis on the cases with constants
obtained in Statement 2.

4

0.01

q =1.72287...

Figure 2. Stratified family of functions @p,) ,; see (9).

In the style of writing Theorem 6, based on Statements 1 and 2, we present the follow-
ing assertion:

Statement 3. Let x € (0, g} . Then, we have the following:
2
(i) For g1 € <0, % - 1} = (0,1.46740...] and qo € (0, 7_(2_2} = (0,1.75193.. ], it holds that
2 2 sin x 2 T—2
= qm _ n = qa _ q2
T - gprhitl (et = (207) > X = T + 2+l (72 — (2x)%2). (28)
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(ii) For g1 € { , —l—oo) = [1.75193...,400) and gy € 2, +0), it holds that
2 sinx 2 m—2
4= (a7 = i = 42 _ 92
(= @07 S TS S S TEn (- 20R). (9)

Remark 1. The equalities in (28) and (29) clearly hold for x = 1t/2.

Remark 2. Note that the inequalities (28) and (29) reduce to inequalities (6) and (7), respectively,
when q1,q2 € N.

4. Applications

In this section, we present two applications. The first application is about the im-
provements and expansions of Theorems 2-5. The second application refers to obtaining
some approximations of the sinc function based on some upper and lower bounds of this
function and minimax approximants of the corresponding families of functions.

4.1. Improvements of Theorems 2—5

In order to obtain a generalization of all inequalities from Theorems 3—6 for the
stratified family of functions ¢, 4(x) from Lemma 2, we considered the values of the
-2
Wandp:B(q) = prTa)
parameter gq. It is possible to consider the family of functions ¢ 4(x) from Lemma 2 by
fixing either parameter p or g to some real value. For the cases g = 1,9 = 2,4 = 3, and
= 4, by applying Statements 1 and 2, improvements and extensions of Theorems 2-5,
respectively, can be obtained, as will be shown in the following. Particularly, for each family
of functions induced by the considered inequalities, the best approximations derived from
the minimax approximants are identified in Statements 4-7.
In order to improve and extend Theorem 2, we consider the family of functions ¢ 4(x)
for the case g = 1. The family of functions ¢,,1(x) reduces to

parameter p = A(q) = as functions depending on the

sinx 2
L p(r—2x) (30)

Ppa (x) =

and is decreasingly stratified with respect to the parameter p € R™ on the interval (0, 77/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 4. Let

T—2 2
=7 = 0.11566... and py = = 0.20264 ... .
Then, it holds:
(i) If p€ (0, p1], then
xe(o E) = Sinx>g+ (7'(—2x)>g—|— (r —2x)
"2 x P =x P '

(ii) If p € (p1, p2), then the equality

sinx 2
_Z_ —2%) =
p - p(r—2x)=0

(Ppl( )=

has a unique solution x(()p ), and it holds that

sin x 2
) =

xG(O,xép) <E+p(7r—2x)
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and

() T sin x E B
xe(xo ,2> = > 7_[+p(7r 2x).

(iii) If p € [pa, +c0), then

T sinx 2 2
) = = —oa) < = —2x).
xe(0,7) L < S pa(m—2x) S =+ p(m—2x)

(iv) Each function from the family ¢,1(x), for p € (p1, p2], has exactly one maximum at a point
mP) € (0,71/2) on the interval (0, 71/2).
(v) The equality

[ppa(0+)] = | ppa ()]

has the solution p = pq for the parameter p € (p1, p2), which is numerically determined as
po =0.13323....

For value
do = |@py1(04)| = ’(ppo,l (m(”t)))’ = 0.055187...,

it holds that
dy= inf sup |g,q1(x)|.
PE(0,%0) ye(0,7/2) $

Hence, the minimax approximant of the family of functions ¢, 1(x) is

sinx 2

o — po(m —2x),

Ppo1 (x) =
which determines the corresponding (minimax) approximation

sin x

2
A~ 4013823 (71— 22). 31)

Proof. (i) The claim follows directly from Statement 1 and based on the stratification.

Namely, for ¢ = 1, it holds that A(g) = % = p1.
T

(if) Let us examine the monotonicity of functions ¢,,1(x) for p € (p1, p2) on the interval
(0, 7t/2) in a similar manner as in the proof of Statement 1. The second derivative of ¢, 1 (x)
with respect to x is
Pepa(x) _ f(x)
dx? x3 7

where the function f(x) is an MTP function given by

2

f(x) = —2xcosx — x“sinx + 2sinx.

Let us note that
f'(x) = —x%cosx < 0

on the interval (0, 71/2). Thus, the function f(x) is decreasing on the observed interval.
Considering that f(x) is a decreasing function on the interval (0, 7r/2) and that f(0+) =0,
it follows that

for x € (0, 7t/2). Hence,

<0 (32)

for xe€(0,7t/2).
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The Taylor expansion of the family of functions ¢, 1(x) around zero is
Pp1(x) = 1—3—;771 +2px+O<x2>
pl p= :
Therefore, there exists a right neighborhood of zero such that
%) x
¢p1(x) <0 and %() >0 (33)

for p € (p1, p2). The Taylor expansion of the family of functions ¢, 1(x) around 7t/2 is

ppa(x) = (—732 +2p) (x— g) +O(<x— ;)2)

Therefore, there exists a left neighborhood of 7r/2 such that

aq)p,l(x)
(Ppll(x) >0 and T <0 (34)

for pe (p1, p2)-
azﬁop,l (x) 0¢p1 (x)
axz 1 ox
p € (p1, p2) on the interval (0, 7t/2), in a similar manner as in the proof of Statement 1 and
based on (32)(34), it can be concluded that each function ¢, 1 (x), for p € (p1, p2), has exactly
one maximum on the interval (0,77/2). From lim ¢,(x) < 0Oand lim ¢,(x) >0,
x—0+ xX—7/2—

By analyzing the monotonicity of the functions ,and @, 1(x) for

for p € (p1, p2), the corresponding inequalities follow.
(iii) The claim follows directly from Statement 2 and based on the stratification. Namely,

for g = 1, it holds that B(g) = g =P
T

(iv) It has been proven within proof (if).
(v) Note that the infimum of the error d(p) = sup,¢ g /2) |9p,1(x)], for p€ (p1, p2), exists
and is attained when

[9p1(04)] = |gp1 (m)]. (35)

Equation (35) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter p = po, which is numerically determined as

po =0.13323...,

which determines the minimax approximant ¢, 1(x) of the family of functions ¢, 1(x). O

In order to improve and extend Theorem 3, we consider the family of functions ¢ 4(x)
for the case g = 2. The family of functions ¢, »(x) reduces to

_ sinx 2 2 42
(p,,g()C) == p p(n 4x ) (36)

and is decreasingly stratified with respect to the parameter p € R™ on the interval (0, 77/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 5. Let
1 =2
p1=—5=0082251... and p;=—3—=0036818....

Then, it holds:
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(i) If p€ (0, p1], then

xe(O,g) — sizx > %+p1<n2—4x2> >

SEES

+p (7‘(2 - 4x2).
(ii) If p € (p1, p2), then the equality

sinx 2
Ppa(x) = P —;—p(n2—4x2):0

has a unique solution x(()p ), and it holds that

sin x

ve(04)) =

> %—i—p(rﬁ —4x2)

and

xXe (x(()p),g) = sizx < %—I—p(ﬂz—élxz).

(iii) If p € [pa, +c0), then

xe(O,g) = Sizx < %+p2(n2—4x2> < %+p(7‘c2—4x2).

(iv) Each function from the family ¢, 2(x), for p € (p1, p2], has exactly one minimum at a point
m(P) € (0, 7/2) on the interval (0,7/2).
(v) The equality

902005)] =gy (m”)]

has the solution p = py for the parameter p € (p1, p2), which is numerically determined as
po = 0.036014 ... .

For value
4o = |9po2(04)] = |@p2 (™)) | = 0.0079283...,

it holds that

do= inf  sup |@p2(x)|.
pe(of°°>x6(0,7t/2)| : |

Hence, the minimax approximant of the family of functions @, »(x) is

_sinx 2 5 2
(Ppo,2(x) - X - E _pO(ﬂ —4x )/

which determines the corresponding (minimax) approximation

sin x 2

2 2442
: ~7T+O.036014...(7T 4x ) (37)

Proof. (i) The claim follows directly from Statement 2 and based on the stratification.

2
Namely, for ¢ = 2, it holds that B(g) = preres il G0

(ii) Let us examine the monotonicity of functions ¢, (x) for p € (p1, p2) on the interval
(0,7t/2) in a similar manner as in the proof of Statement 1. The third derivative of ¢,2(x)
with respect to x is

Popa(r)  f(x)

axd xt

where the function f(x) is an MTP function given by

f(x) = —x%cos x + 6x cos x + 3x%sinx — 6sin x.
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Let us note that
f'(x) =x3sinx >0

on the interval (0, 71/2). Thus, the function f(x) is increasing on the observed interval.
Considering that f(x) is an increasing function on the interval (0, 7t/2) and that f(0+) = 0,
it follows that

f(x) >0
for x€ (0, 7t/2). Hence,
83¢p,2(x)

oy >0 (38)

for xe€ (0, 7t/2).
The Taylor expansion of the family of functions ¢, > (x) around zero is

Ppa(x) = <1 - % — p7r2> + <—é —|—4p> x>+ O(x4>.

Therefore, there exists a right neighborhood of zero such that

d 92
ppa() >0, 220 g g P02

x o2 Y 39

for p € (p1, p2). The Taylor expansion of the family of functions ¢, (x) around 7r/2 is

Ppa(x) = <—;2 +47rp> (x— g) + (7?3 - % +4p> (x— 72T>2+O<(x— 7;)3>

Therefore, there exists a left neighborhood of 7r/2 such that

9¢p2(x) Ppa(x)
¢p,2(x) <0, T >0 and T >0 (40)
for pe (p1, p2)- , ,
d d d
By analyzing the monotonicity of the functions (Pp'é(x) , (pa,;;(x) , (Ppai(x) ,and

x
¢p2(x) for p € (p1,p2) on the interval (0,7r/2), in a similar manner as in the proof of
Statement 1 and based on (38)—(40), it can be concluded that each function ¢p,2(x), for
p € (p1, p2), has exactly one minimum on the interval (0, 71/2). From lirg+ @p2(x) > 0and
X—

1iII/12 Pp2(x) <0, for p€ (p1, p2), the corresponding inequalities follow.
X—7/)2—

(iii) The claim follows directly from Statement 1 and based on the stratification. Namely,
. T—2

for g = 2, it holds that A(g) = —arT = P2

(iv) It has been proven within proof (if).

(v) Note that the infimum of the error d(p) = sup,c (g /2 |¢p2(x)], for p€ (p1, p2), exists

and is attained when
|9p2(04)] = |gpa (m™)]. (41)

Equation (41) can be numerically solved using the computer algebra system Maple,
thus yielding the value of the parameter p = pg, which is numerically determined as

po = 0.036014. . .,

which determines the minimax approximant ¢ >(x) of the family of functions ¢, (x). O
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In order to improve and extend Theorem 4, we consider the family of functions ¢ 4(x)
for the case g = 3. The family of functions ¢, 3(x) reduces to

sinx 2

Ppalx) = =5 =~ —p(n® 82 (42)

and is decreasingly stratified with respect to the parameter p € R™ on the interval (0, 77/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 6. Let
2 T—2

m=za= 0.0068439... and p; = =0.011719....
Then, it holds:

(1) If p€ (0, p1], then

T sinx _ 2 3 3 2 3 3

Z z _ > = _

x6(0,2)2> . >7_[+p1(7r 8x)_n+p(7r Sx).
(ii) If p€ (p1, p2), then the equality
_sinx 2 3 3\
Pp3(x) = p —E—p<7'[ —Sx)—O

has a unique solution x(()p ), and it holds that

xe(O,x((]p)) — Si%x>%+p(n3—8x3)
and .
xe(xép),g) == Slzx<%+p<7'c3—8x3>.

(iii) If p € [p2, +o0), then

xe(O,g) — sizx < %+p2(n3’—8x3> < %+p(7z3—8x3).

(iv) Each function from the family ¢, 3(x), for p € (p1, p2l, has exactly one minimum at a point
mP) € (0,71/2) on the interval (0, 71/2).
(v) The equality

[9pa(0+)] = | ppa ()]

has the solution p = py for the parameter p € (p1, p2), which is numerically determined as
po = 0.010441. .. .
For value
do = |9poa(0)] = | poa (m™))| = 0039635,

it holds that

do= inf sup |@p3(x)|.
pe(of‘x’)xe(o,n/Z)‘ g’ |

Hence, the minimax approximant of the family of functions ¢y 3(x) is

sinx 2
Ppoa(x) = 5 = = = po (0~ 82%),
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which determines the corresponding (minimax) approximation
inx 2
TS x4 0010841 . (70— 8). 43)

Proof. It is analogous to the proof of Statement 5. [J

In order to improve and extend Theorem 5, we consider the family of functions ¢ 4(x)
for the case g = 4. The family of functions ¢, 4(x) reduces to

_sinx 2 4 4
Ppalx) = == =~ —p(n* —16¢*) (44)
and is decreasingly stratified with respect to the parameter p € R* on the interval (0, 77/2),
as proven in Lemma 2. For this family, the following statement holds:

Statement 7. Let

1 T—2
P=55= 0.0016338... and pp = 5= 0.0037304 ... .

Then, it holds:
(i) If p€ (0, p1], then

xE(O,g) = Sh;x > %+p1<n4—16x4) >

SEE

+ p(r(4 - 16x4>.

(ii) If p € (p1, p2), then the equality

sinx 2

Ppalx) = = —;—p(n4—16x4):0

has a unique solution x(()p ), and it holds that

sin x

xE(O,x(()p)) == > %+p<7‘(4—16x4)

and

() T sinx _ 2 4 a4
xe(w’,7) = < S+ p(rt—16xt).
(iii) If p € [p2, +0), then

xe(O,g) = sizx < %+p2<7t4—16x4) < %+p(n4—16x4>.

(iv) Each function from the family ¢, 4(x), for p € (p1, p2], has exactly one minimum at a point
mP) € (0,71/2) on the interval (0, 71/2).
(v) The equality

[9pa0+)] = | gpa ()]

has the solution p = py for the parameter p € (p1, p2), which is numerically determined as
po = 0.0031146... .

For value
do = |9poa(04)] = |@poa (m))| = 0.059981...,

it holds that

do= inf sup |@pa(x)|.
p€(0,00) x€(0,7/2) ‘ : ‘
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Hence, the minimax approximant of the family of functions ¢, 4(x) is

o Sinx 2 4 4
(ppoA(x)— p» - po(rf 16x ),

which determines the corresponding (minimax) approximation

sin x 2

~Z 4 0.0031146(7I4 _ 16x4). (45)
X 7T

Proof. It is analogous to the proof of Statement 5. [J
Figure 3 illustrates the stratified families of functions ¢, 1(x), ¢p2(x), ¢p3(x), and
@pa(x); see (30), (36), (42) and (44), respectively. For each family, cases for all values of the

parameter p € R are shown. Particularly, cases with constants obtained in Statements 4-7,
some of which are also obtained in Theorems 2-5, are singled out.

i
p= p
01 T—2
p=—;
> 001} p=0.036014...
’ 0 T—2 B
p = 0.13323... p="
(a) ¢p,1(x), see (30) (b) p2(x), see (36)
2 1
P =5 P=om
0.1
0.1
p=0.010441... p = 0.0031146...
0 1 0 1
T—2 _w—2
P="r P="r
() ¢p;3(x), see (42) (d) ¢pa(x), see (44)

Figure 3. Stratified families of functions (a) ¢,,1(x), (b) ¢p2(x), (¢) ¢p3(x), and (d) ¢p4(x) -

4.2. Approximations of the Sinc Function

In this subsection, we provide some approximations of the sinc function and analyze the
maximum approximation errors. The previously obtained upper and lower bounds of the
sinc function can be used to derive some approximations of this function. Furthermore, more
optimal approximations can be obtained through the corresponding minimax approximants.
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In Table 1, we present some upper bounds of the sinc function derived from
Theorems 2-5, that is, Statements 4-7 and Statements 1 and 2. It is noteworthy that
the upper bound from Theorem 3 (the best upper bound from Statement 5) is identical to

the best upper bound from Statement 1.

Table 1. Upper bounds of the sinc x function on the interval (0, 77/2).

Maximum Deviation
from the Sinc x Function
on the Interval (0, 77/2)

Upper Bound
of the Sinc x Function
on the Interval (0, 7t/2)
2 m—4

i 2
sinx 2 2 (0 oy 2 —027323...
x T &
sinx 2  m-—2
2L T2 (2 a?) 0.011612...
x s T
sinx 2 m—-2, 4 3
Y 2 TR (- n) 0.065358.....
sinx 2  m-—2
= —— (- 16x*) 0.10245.. ..
x T
. 2 2 2 2 _ —n?
sinxy _ 2 72(717—1 —(2x) 1) w = 0.070461. ..
x T (ﬁ—l)ﬂ% -4
1

In Table 2, we present some lower bounds of the sinc function derived from
Theorems 2-5, that is, Statements 4-7 and Statements 1 and 2. It is noteworthy that the best
lower bound from Statement 1 is identical to the best lower bound from Statement 2.

Table 2. Lower bounds of the sinc x function on the interval (0, 77/2).

Maximum Deviation
from the Sinc x Function
on the Interval (0, 7/2)

Lower Bound
of the Sinc x Function
on the Interval (0, 7t/2)

2 T2 sin x
e 0.082395....
7T 7T X
2 1 i -3
S -a?) < B2 =2~ 0.045070....
7T 7T X 7T
2 2 3 3 sin x 3m—8
. o
2 L (et < S T3 020422
T 2r x
2 T—2 2 2 sin x
— T2 — m—2
e (n72 - 2v72) < p 0.0085153...

In Table 3, we present some minimax approximations of the sinc function derived
from the minimax approximants of the families ¢,1(x), 9;2(x), 9p3(x), 9pa(x), P 4(g),4(x),
and ¢ B(q).q (x), respectively. These families are considered in Statements 4, 5, 6, and 7 with
the aim of improving Theorems 2, 3, 4, and 5, respectively, and in Statements 1 and 2.
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Table 3. Minimax approximations of the sinc x function on the interval (0, 77/2).

Minimax Approximation Maximum Deviation
of the Sinc x Function from the Sinc x Function
on the Interval (0, 77/2) on the Interval (0, 7/2)
i 2
Y 2 4013323, (7 — 2x) 0.055187....
X 7T
i 2
51;”‘ ~ = +0036014... (7 — 42) 0.0079283....
i 2
s‘;‘x ~ = +0010441.. (70— 82°) 0.039635....
i 2
EaLLIPY = £0.0031146.... (* — 16x*) 0.059981 ...
i 2
Y~ 2 40043803 .. (n1-84823~~ - (2x)1'84823"') 0.0026604 . ..
X 7T
i 2
s“;x ~ 40051415 (n1-72287~~ - (2x)1'72287"') 0.0061296. ..

5. Conclusions

In this paper, two double Jordan-type inequalities have been obtained, thereby en-
compassing the inequalities established in papers [2-6]. These inequalities were explored
in the context of stratified families of functions, which is a concept introduced in recent
research [23]. The introduction of stratified families of functions enables the derivation of
known results for specific parameter choices, including the analysis of parameter values
previously unknown in the Theory of Analytic Inequalities. Furthermore, we identify
parameter values within each examined family of functions for which the function, as a
member of that family, exhibits some optimal properties (minimax approximant). Based on
these minimax approximants and functions representing the upper and lower bounds of
the sinc function, we provided some approximations of the sinc function. Additionally, we
analyzed the errors associated with all mentioned approximations.

It is crucial to emphasize that the minimax approximant of the stratified family of
functions is the function for which the minimal error in approximations is obtained within
the given family of functions. Therefore, identifying those parameter values is significant
in the Approximation Theory.

By considering the stratified family of functions individually with respect to two
parameters, we were able to analyze Jordan-type inequalities in a unified manner, thereby
resulting in both previously established and novel findings. Future research endeavors will
focus on extending this approach even further.
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