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Abstract: Throughout this study, we discuss the subordinate Pompeiu–Hausdorff metric (SPHM) in
subordinate semimetric spaces. Moreover, we present a well-behaved quasi-contraction (WBQC) to
solve quasi-contraction (QC) problems in subordinate semimetric spaces under some local constraints.
Furthermore, we provide examples to support our conclusion.
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1. Introduction

Assume (Γ, Ψ) is a metric space. A function T : Γ → Γ is said to be quasi-contraction
(QC) if there is a constant α ∈ (0, 1) such that for each ω, ν ∈ Γ,

Ψ(Tω, Tν) ≤ α max{Ψ(ω, ν), Ψ(ω, Tω), Ψ(ν, Tν), Ψ(ω, Tν), Ψ(ν, Tω)}.

Ćirić [1] was the first to introduce and study this concept as one of the most basic
contractive type functions. The recognized Ćirić’s theorem indicates that a QC T has a
unique fixed point on a complete metric space Γ.

Let (Γ, Ψ) be a complete distance space and let T : Γ → Pcb(Γ) be a set-valued
quasi-contraction (SVQC) for 1

2 < α < 1. Is there a fixed point for T?
Following the method of Pourrazi, Khojasteh, Javahernia, and Khandani [2], we will

try to solve this problem in a subordinate semimetric space setting.
In 2018, Villa-Morlales [3] presented subordinate semi-metric spaces that include a

wide range of distance spaces, such as a JS-metric spaces, standard metric spaces, b-metric
spaces, dislocated metric spaces, and modular spaces [3,4]. Looking over the literature that
includes a subordinate semimetric space, we can see that the Hausdorff metric, which is
created by a subordinate semimetric space, still needs to be examined. We were prompted
to propose the SVQC and solve the above problem in these structures.

1.1. Semimetric Spaces

Definition 1. Let Γ be a nonempty set and Ψ : Γ × Γ → [0,+∞] be a nonnegative and symmetric
function which vanishes exactly on the diagonal of Γ × Γ. Thus (Γ, Ψ) is called a semimetric space.

Definition 2. Let (Γ, Ψ) be a semimetric space and let {ωn} be a sequence in Γ and ω ∈ Γ. Then,

(i) {ωn} is convergent to ω if lim
n→∞

Ψ(ω, ωn) = 0.

(ii) {ωn} is a Cauchy sequence if lim
n,m→∞

Ψ(ωn, ωm) = 0.

(iii) The pair (Γ, Ψ) is complete if every Cauchy sequence in Γ is convergent.
(iv) For every ϵ > 0, a ball is defined as B(ω0, ϵ) = {ω ∈ Γ | Ψ(ω0, ω) < ϵ}.
(v) A diameter of a set ∆ ⊂ Γ, is δ(∆) = sup{Ψ(µ, ν) | µ, ν ∈ ∆}.
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(vi) A set ∆ ⊂ Γ is bounded if δ(∆) < ∞.

With these notations, we have two ways to define a topology on Γ:

(1) The neighborhood topology: Let ∆ ⊆ Γ. An element ν ∈ ∆ is called an interior point
of ∆ if there exists ϵ > 0, such that B(ν, ϵ) ⊆ ∆. Let ∆◦ be the set of all interior points
of ∆. A set ∆ ⊆ Γ is open if ∆◦ = ∆.

(2) The sequential topology: Let ∆ ⊆ Γ be a nonempty set and ω ∈ Γ be a point. We say ω
is a closure point of ∆ if there exists a sequence {ωn} ⊂ ∆ such that lim

n→∞
Ψ(ωn, ω) = 0.

Let ∆ be the set of closure points of ∆. Then a set ∆ is closed if ∆ = ∆.

Note that in metric spaces, the complement of every sequentially closed set is topolog-
ically open. On the other hand, in semimetric spaces, this property may not hold in general.
The two topologies may not be the same. The limit of a sequence is not necessarily unique;
a convergent sequence is not necessarily a Cauchy sequence.

Definition 3. Let (Γ, Ψ) be a semimetric space. We say that Φ : [0, ∞]× [0, ∞] → [0, ∞] is a
triangle function for Ψ, if Φ is symmetric and monotone increasing in both of its arguments such
that Φ(0, 0) = 0 and for all ω, ν, µ ∈ Γ, Ψ(ω, ν) ≤ Φ(Ψ(ω, µ), Ψ(µ, ν)).

It turns out that every semimetric space has an optimal (with respect to the pointwise
ordering) triangle function which is called the basic triangle function. A semimetric space
is called normal if its basic triangle function is real-valued and is called regular if its basic
triangle function is continuous at (0, 0).

In [5,6], the authors proved the following Theorems:

Theorem 1. A semimetric space (Γ, Ψ) is regular if and only lim
ϵ→0

sup
ν∈Γ

B(ν, ϵ) = 0. Further-

more, in a regular semimetric space, convergent sequences have a unique limit and possess the
Cauchy property.

Theorem 2. Let (Γ, Ψ) be a semimetric space. Let ∆ ⊆ Γ be a closed set and {ωn} be a sequence in
∆ such that lim

n→∞
Ψ(ωn, ω) = 0 for some ω ∈ Γ, then ω ∈ ∆. If the semimetric space is also regular,

then, for every ϵ > 0, there exists r > 0, such that, for all ω ∈ Γ, the inclusion B(ω, r) ⊆ B(ω, ϵ)◦.
holds; consequently, the topology is Hausdorff.

One of the main results of [7] characterizes regular semimetric spaces in term of
uniform equivalence.

We say that the semimetrics Ψ and Υ on Γ are uniformly equivalent if id : (Γ, Ψ) →
(Γ, Υ) is uniformly bi-continuous. That is,

(i) for all ϵ > 0 there exists δ > 0 such that if Ψ(ω, ν) < δ ⇒ Υ(ω, ν) < ϵ; and
(ii) for all ϵ > 0 there exists δ > 0 such that if Υ(ω, ν) < δ ⇒ Ψ(ω, ν) < ϵ;

The fundamental result goes as follows.

Theorem 3. A semimetric space is regular if and only if it is uniformly equivalent to a metric.

Thus in regular semimetric spaces the neighborhood and sequential topologies co-
incide and Hausdorff property holds. We will consider regular semimetric spaces on
our study.

1.2. Subordinate Semimetric Spaces

Definition 4 ([3]). Ψ is said to be a subordinate semimetric on Γ if it meets the following conditions:
for every (ρ, µ) ∈ Γ2,

(D1) If Ψ(ρ, µ) = 0 then ρ = µ,
(D2) Ψ(ρ, µ) = Ψ(µ, ρ).
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(D3) There is a function ξ : [0, ∞] → [0, ∞] satisfies

(i) ξ is non-decreasing;
(ii) lim

ρ→0
ξ(ρ) = 0;

such that for every (ρ, µ) ∈ Γ2, with ρ ̸= µ, and for any infinite Cauchy sequence {ρn} in Γ
that converges to ρ we have

Ψ(ρ, µ) ≤ ξ(lim sup
n→∞

Γ(ρn, µ)).

The space (Γ, Ψ) is called subordinate to ξ or (Γ, Ψ) is a subordinate semimetric space.

In this paper, we introduce Well-Behaved Quasi-Contraction (WBQC) set-valued map-
ping (SVM) in subordinate semi-metric space and obtained at least one fixed point when
α ∈ (0, 1). Finally, we provide significant examples. Inspired by the characterization of
completeness of b-metric spaces in [8]. Villa-Morlales in [3] characterize when a subordinate
semimetric space is complete.

2. Subordinate Pompeiu Hausdorff Metric Spaces

Assume (Γ, ϱ) is a metric space, and the set of all nonempty, bounded, and closed
subsets of Γ denoted by Pcb(Γ). Assume T : Γ → Pcb(Γ) is an SVM on Γ. An element ρ ∈ Γ
is said to be a fixed point of T if ρ ∈ Tρ. Consider F (T) = {ρ ∈ Γ : ρ ∈ Tρ}. We say that a
point ρ ∈ Γ is a strict fixed point of T, if Tρ = {ρ}. The family of all strict fixed points of T
are denoted by SF (T) = {ρ ∈ Γ : Tρ = {ρ}}. Then, we have SF (T) ⊆ F (T).

For further knowledge of the development of fixed point theory in the family of
set-valued mappings (SVMs), we recommend [9]. Assume H is the Pompeiu–Hausdorff
metric (PHM) [10] on Pcb(Γ) produced by ϱ, as,

H(A, B) = max{sup
ρ∈B

ϱ∗(ρ, A), sup
ρ∈A

ϱ∗(ρ, B)}, A, B ∈ Pcb(Γ)

such that, ϱ∗(ρ, A) = inf{Ψ(ρ, µ) : µ ∈ A}.

Definition 5 ([2]). Let (Γ, Ψ) be a subordinate semimetric space. Let HΨ be defined by

HΨ(A, B) = max{sup
ρ∈B

Ψ∗(ρ, A), sup
ρ∈A

Ψ∗(ρ, B)}, A, B ∈ Pcb(Γ)

in which, Ψ∗(ρ, A) = inf{Ψ(ρ, µ) : µ ∈ A}.
It is important to note whether HΨ is subordinate semimetric on the set Pcb(Γ) or not. The

next result demonstrates that (Pcb(Γ),HΨ) is a subordinate semimetric space.

Following [2], a condition is added to subordinate semimetric spaces in this section,
which allows us to loosen the triangle inequality and provide several additional fixed point
results on the family of SVMs. Assume Ψ is a subordinate semimetric space that meets the
following condition: For every sequence {ρn}, {µn}

lim
n→∞

Ψ(ρn, µn) = 0 implies lim sup
n→∞

Ψ∗(ρn, A) = lim sup
n→∞

Ψ∗(µn, A). (1)

Below we give two examples for which (1) holds and another one for which (1) does
not hold.

Example 1. Let Γ = [0, 1]. Let Ψ : Γ × Γ → [0, ∞] given by

Ψ(ω, ν) = Ψ(ν, ω) =


n2, if (ω, ν) =

(
1
n , 0

)
, n ∈ N;

n, if (ω, ν) =
(

r
n(r+1) , 0

)
, n, r ∈ N;

(ω − ν)2, otherewise.
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Let m ∈ N.
Note that lim

n→∞
Ψ
(

1
m , n

m(n+1)

)
= lim

n→∞

(
1
m − n

m(n+1)

)2
= 0, and lim

n,r→∞
Ψ
(

n
m(n+1) , r

m(r+1)

)
=

lim
n,r→∞

(
n

m(n+1) −
r

m(r+1)

)2
= 0.

Thus the sequence
{

n
m(n+1)

}
n∈N

is an infinite Cauchy sequence that is convergent to 1
m . Now,

suppose there is c > 0 such that

m2 = Ψ
(

1
m

, 0
)
≤ lim sup

n→∞
Ψ
(

n
m(n + 1)

, 0
)
= cm,

then c ≥ m for all m ∈ N. Hence (Γ, Ψ) is not RS space.

Note that (Γ, Ψ) is subordinate semimetric to ξ(t) =
{

t, 0 ≤ t ≤ 1;
t4, t > 1.

Let {ρn = 1
n}, {µn = sin

(
1
n

)
} ⊂ Γ. Let ∆ = {0} ⊂ Γ.

Note that

lim
n→∞

Ψ(ρn, µn) = lim
n→∞

Ψ(
1
n

, sin
(

1
n

)
) = lim

n→∞
(

1
n
− sin

(
1
n

)
)2 = 0.

Now, Ψ∗(ρn, A) = inf{Ψ( 1
n , 0)} = Ψ( 1

n , 0) = n2, hence lim sup
n→∞

Ψ∗(ρn, ∆) = ∞.

Also, Ψ∗(µn, ∆) = inf{Ψ(sin
(

1
n

)
, 0)} = Ψ(sin

(
1
n

)
, 0) = sin2

(
1
n

)
, hence

lim sup
n→∞

Ψ∗(µn, ∆) = 0.

Thus the condition (1) does not hold.

Example 2. Let Γ = [0, 1]. Let Ψ : Γ × Γ → [0, ∞] given by

Ψ(ω, ν) = Ψ(ν, ω) =

{
2, if (ω, ν) = (1, 0);
|ω − ν|, otherewise.

Note that (Γ, Ψ) is subordinate semimetric to ξ(t) = 2t.
Let {ρn}, {µn} ⊂ Γ. Let ∆ ⊂ Γ. Assume that

lim
n→∞

Ψ(ρn, µn) = lim
n→∞

|ρn − µn| = 0.

Now, for κ ∈ ∆, since ||ρn − κ| − |µn − κ|| ≤ |ρn − µn|, then

lim sup
n→∞

Ψ∗(ρn, ∆) = lim sup
n→∞

Ψ∗(µn, ∆).

Thus the condition (1) holds.

In the remainder of this paper, we will investigate subordinate semimetric spaces that
satisfy (1). Throughout this paper, the following lemma is important.

Lemma 1. Assume (Γ, Ψ) is a subordinate semimetric space that satisfies (1) and {ρn} ⊆ Γ is a
sequence that is convergent to ρ ∈ Γ. Then, for every µ ∈ Γ we obtain

lim sup
n→∞

Ψ(ρn, µ) = Ψ(ρ, µ).

Proof. Using the hypothesis, (Γ, Ψ) meets the condition (1) and lim
n→∞

Ψ(ρn, ρ) = 0. Taking

into account {µn = ρ} for each n ∈ N and A = {µ} in (1), we can deduce that

lim sup
n→∞

Ψ(ρn, µ) = lim sup
n→∞

Ψ(µn, µ) = Ψ(ρ, µ).
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The addition of property (1) to subordinate semimetric space makes the process of
reaching the limit more natural.

Lemma 2. Let (Γ, Ψ) be a subordinate semimetric space to ξ , and let ξ be continuous. Then
(Pcb(Γ),HΨ), is a subordinate semimetric space.

Proof. We must prove that the requirements in Definition 1 are met. Starting with (D1),
assume that the subsets A, B ∈ Pcb(Γ) with HΨ(A, B) = 0. Thus,

sup
ρ∈A

Ψ∗(ρ, B) = sup
ρ∈B

Ψ∗(ρ, A) = 0.

Let ρ ∈ A be arbitrary, hence Ψ∗(ρ, B) = 0. Then, for every n ∈ N there is a convergent
sequence {bn} in B which is convergent to ρ. Therefore, ρ ∈ B̄ = B. As a result, A ⊆ B.
Using the similar argument in the other case, we have A = B. Hence, (D1) is proved. (D2)
is clear to see. To show (D3), we have to prove that there exists a function ξ : [0, ∞] → [0, ∞]
with (i) ξ is non-decreasing; (ii) lim

ρ→0
ξ(ρ) = 0, such that for (A, B) ∈ Pcb(Γ)× Pcb(Γ); A ̸= B

and the infinite Cauchy sequence {An} which is convergent to A, thus

HΨ(A, B) ≤ ξ(lim sup
n→∞

HΨ(An, B)).

Assume that ρ ∈ B, µ ∈ A are arbitrary. As lim
n→∞

HΨ(An, A) = 0, then for every n ∈ N,

there is kn > 0 such that for every n ≥ kn we obtain

HΨ(An, A) <
1
n

. (2)

For a fixed and arbitrary n, using the concept of HΨ, for any ϵ > 0, then there is µϵ ∈ An
such that,

Ψ(µ, µϵ) < HΨ(An, A) + ϵ. (3)

Using both (2) and (3), we deduce that for every n ≥ kn,

Ψ(µ, µϵ) <
1
n
+ ϵ.

As a consequence, we can select a subsequence {µm} ⊆ An such that {µm} is an infinite
Cauchy sequence that converges to µ. As (Γ, Ψ) is a subordinate semimetric space, so by
(D3), there exists a function ξ : [0, ∞] → [0, ∞] where ξ is non-decreasing; lim

ρ→0
ξ(ρ) = 0, and

Ψ(ρ, µ) ≤ ξ(lim sup
m→∞

Ψ(ρ, µm)).

Then, we obtain
Ψ∗(ρ, A) ≤ Ψ(ρ, µ) ≤ ξ(lim sup

m→∞
Ψ(ρ, µm)),

Also, since
lim sup

m→∞
Ψ(ρ, µm) = inf

k≥1
(sup

m≥k
Ψ(ρ, µm))

and
inf
k≥1

(sup
m≥k

Ψ(ρ, µm)) ≤ sup
m≥k

Ψ(ρ, µm)

and ξ is nondecreasing, apply ξ to both sides of the above inequalities, we have

ξ(lim sup
m→∞

Ψ(ρ, µm)) = ξ(inf(sup Ψ(ρ, µm)))
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and
ξ( inf

k≥1
(sup

m≥k
Ψ(ρ, µn))) ≤ ξ(sup

m≥k
Ψ(ρ, µm)).

Now, we have

Ψ∗(ρ, A) ≤ ξ( inf
k≥1

(sup
m≥k

Ψ(ρ, µm))) ≤ ξ(sup
m≥k

Ψ(ρ, µm)). (4)

For every k ∈ N, there is mk ≥ k > 0 with

sup
m≥k

(Ψ(ρ, µm)) < Ψ(ρ, µmk ) + ϵ. (5)

since ξ is non-decreasing, apply ξ to (5) to obtain

ξ(sup(Ψ(ρ, µm)) < ξ(Ψ(ρ, µmk ) + ϵ), (6)

When (4) and (5) are combined, one can deduce that

Ψ∗(ρ, A) ≤ ξ(Ψ(ρ, µmk ) + 2ϵ ≤ ξ(Ψ∗(ρ, An) + ϵ) ≤ ξ(sup
ρ∈B

Ψ∗(ρ, An) + ϵ)),

since ξ is non-decreasing and Ψ∗(ρ, An) + ϵ ≤ sup(Ψ∗(ρ, An) + ϵ).
When ϵ approaches zero, using the continuity of ξ the following results can be obtained:

Ψ∗(ρ, A) ≤ ξ(sup
ρ∈B

Ψ∗(ρ, An)).

Hence,
sup
ρ∈B

Ψ∗(ρ, A) ≤ ξ(sup
ρ∈B

Ψ∗(ρ, An)). (7)

Applying lim sup to (7), we obtain

lim sup
n→∞

(sup
ρ∈B

Ψ∗(ρ, A)) ≤ lim sup
n→∞

ξ((sup
ρ∈B

Ψ∗(ρ, An));

also, using the continuity of ξ, we have

sup
ρ∈B

Ψ∗(ρ, A) ≤ ξ(lim sup
n→∞

sup
ρ∈B

Ψ∗(ρ, An)). (8)

Using the concept of HΨ and by (8), we obtain

HΨ(A, B) ≤ ξ(lim sup
n→∞

HΨ(An, B)).

Thus, (D3) is satisfied.

Lemma 3. Let (Γ, Ψ) be a subordinate semimetric space that meets (1), and assume {ρn} is a
sequence that is Ψ-convergent to ρ. Hence

lim sup
n→∞

Ψ∗(ρn, A) = Ψ∗(ρ, A), for every A ⊆ Γ.

Proof. It is obvious because of the new condition (1) and the convergence of ρn to ρ
in (Γ, Ψ).
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3. Main Results

We provide our fundamental result in this section. The following notation is required
throughout this study. For every {ρn} ⊂ Γ define

δ(Ψ, T, ρn) = sup{Ψ(ρi+1, ρj+1) : ρi+1 ∈ Tρi, ρj+1 ∈ Tρj and i, j ≥ n}.

Theorem 4. Assume (Γ, Ψ) is a complete subordinate semimetric space and assume T : Γ → Pcb(Γ)
is an SVM. Assume that there is α ∈ [0, 1] such that for every ρ, µ ∈ Γ

HΨ(Tρ, Tµ) ≤ αΨ(ρ, µ).

If there exists ρ0 ∈ Γ with δ(Ψ, T, ρ0) < ∞, then T possesses a fixed point.

Proof. Assume ρ0 is an arbitrary element in Γ and ρ1 ∈ Tρ0. If ρ1 = ρ0, then ρ0 is the fixed
point of T. Now let ρ0 ̸= ρ1. Hence, for ϵ = ( 1√

α
− 1)HΨ(ρ1, ρ0), there is ρ2 ∈ Tρ1 with

Ψ(ρ1, ρ2) < HΨ(Tρ1, Tρ0) + ϵ =
1√
α
HΨ(Tρ1, Tρ0) ≤

√
αΨ(ρ1, ρ0).

Hence, for any given ρn ∈ Tρn−1, there exist ρn+1 ∈ Tρn such that

Ψ(ρn+1, ρn) ≤
√

αΨ(ρn, ρn−1).

Thus, taking β =
√

α, one can deduce that

Ψ(ρn+1, ρn) ≤ βΨ(ρn, ρn−1) ≤ β2Ψ(ρn−1, ρn−2)

≤ . . . ≤ βnΨ(ρ0, ρ1) ≤ βnδ(Ψ, T, ρ0). (9)

As δ(Ψ, T, ρ0) < ∞ and β ∈ (0, 1) it provides that

lim
n→∞

Ψ(ρn+1, ρn) = 0.

Regarding (9), we have
δ(Ψ, T, ρn) ≤ βnδ(Ψ, T, ρ0).

Then, for every n, m ∈ N, we obtain

Ψ(ρn, ρn+m) ≤ δ(Ψ, T, ρn) ≤ βnδ(Ψ, T, ρ0).

Hence
lim

n,m→∞
Ψ(ρn, ρn+m) = 0.

Thus, {ρn} is a Cauchy sequence and since Γ is complete, it is convergent to some σ ∈ Γ.
Now we prove that σ ∈ Tσ.

lim sup
n→∞

Ψ∗(ρn+1, Tσ) ≤ lim sup
n→∞

HΨ(Tρn, Tσ) ≤ lim sup
n→∞

αΨ(ρn, σ) = 0.

Therefore, lim sup
n→∞

Ψ∗(ρn+1, Tσ) = 0. Using Lemma (3), we obtain

Ψ∗(σ, Tσ) = lim sup
n→∞

Ψ∗(ρn+1, Tσ) = 0.

Thus, it implies σ ∈ Tσ which completes the proof .
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4. Well-Behaved Quasi-Contraction

Let (Γ, ϱ) be a metric space. An SVM T : Γ → Pcb(Γ) is called QC if there is some
0 < α < 1 with

H(Tρ, Tµ) ≤ α max{ϱ(ρ, µ), ϱ(ρ, Tρ), ϱ(µ, Tµ), ϱ(ρ, Tµ), ϱ(µ, Tρ)}

for every ρ, µ ∈ Γ.
Let (Γ, ϱ) be a complete distance space and let T : Γ → Pcb(Γ) be an SVQC for

1
2 < α < 1. Is there a fixed point for T? We provide an answer to this above problem in
subordinate semimetric spaces under some local constraint.

Definition 6. Assume (Γ, Ψ) is a subordinate semimetric space and T : Γ → Pcb(Γ) is an SVM.
A sequence {ρn} is said to be an iterative sequence based on ρ0 if ρ0 ∈ Γ and for all n ∈ N,
ρn ∈ Tρn−1.

Definition 7. Assume (Γ, Ψ) is a subordinate semimetric space and assume T : Γ → Pcb(Γ) is a
SVM. For every ρ, µ ∈ Γ let

NΨ(ρ, µ) = max{Ψ(ρ, µ), Ψ∗(ρ, Tρ), Ψ∗(µ, Tµ), Ψ∗(ρ, Tµ), Ψ∗(µ, Tρ)},

T is called a WBQC if there is α ∈ (0, 1) with

HΨ(Tρ, Tµ) ≤ αNΨ(ρ, µ).

Also, for every iterative sequence {ρn} with ρn ̸= ρn−1, there is a sequence {sn} where sn ≥ 1
for all n such that

(i) Ψ∗(ρn−1, Tρn) ≤ snΨ(ρn−1, ρn),
(ii) lim sup

n→∞
sn < 1√

α
.

Below is an example of a non well-behaved quasi contraction map.

Example 3. Let Γ = [0, 1]. Let Ψ : Γ × Γ → [0, ∞] be given by Ψ(ω, ν) = |ω − ν|p, where p is a
positive real number not equal to 1.

Then (Γ, Ψ) is subordinate semimetric space to ξ(t) = tp, t ∈ [0, ∞].
Let T : Γ → Pcb(Γ) given by Tω = {ω

2 }
Let ω, ν ∈ Γ. Then Tω = {ω

2 } and Tν = { ν
2}.

Ψ∗(
ω

2
, Tν) = Ψ(

ω

2
,

ν

2
) =

|ω − ν|p
2p ,

Ψ∗(
ν

2
, Tω) = Ψ(

ω

2
,

ν

2
) =

|ω − ν|p
2p ,

HΨ(Tω, Tν) =
|ω − ν|p

2p =
1
2p Ψ(ω, ν)

≤ 1
2p NΨ(ω, µ).

Now, let α = 1
2p . Then α ∈ (0, 1).

Let ρ0 = 1 ∈ Γ, ρ1 ∈ Tρ0 = T1 = 1
2 , ρ2 ∈ Tρ1 = T 1

2 = 1
4 = 1

22 , and ρn = 1
2n . Now,

{ρn = 1
2n } is an iterative sequence such that ρn = 1

2n ̸= 1
2n−1 = ρn−1. Suppose there exists a

sequence {sn} ⊂ [1, ∞) such that Ψ∗(ρn−1, Tρn) ≤ snΨ(ρn−1, ρn) and lim sup
n→∞

√
αsn < 1. Now,
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Ψ∗(ρn−1, Tρn) = Ψ∗( 1
2n−1 , 1

2n+1 ) = Ψ( 1
2n−1 , 1

2n+1 ) =
∣∣∣ 1

2n−1 − 1
2n+1

∣∣∣p
= 3p

2p(n+1) = 3p

2p2pn . Also,

Ψ(ρn−1, ρn) = Ψ( 1
2n−1 , 1

2n ) =
∣∣∣ 1

2n−1 − 1
2n

∣∣∣p
= 1

2pn . Note that
√

α =
√

1
2p = 1√

2
p . Hence

3p

2p2pn = Ψ∗(ρn−1, Tρn) ≤ snΨ(ρn−1, ρn) = sn
1

2pn .

Thus 3p

2p ≤ sn ⇔ 3p
√

2
p = 3p

2p
√

α ≤
√

αsn.

Therefore
(

3√
2

)p
≤ lim sup

n→∞

√
αsn < 1.

Thus, p ln
(

3√
2

)
< ln 1 = 0. There is a contradiction, since p > 0 and ln

(
3√
2

)
≈ 0.75 > 0.

Hence T is not well-behaved quasi-contraction.

Theorem 5. Assume (Γ, Ψ) is a complete subordinate semimetric space and assume T : Γ → Pcb(Γ)
is a WBQC. Furthermore, assume that there is ρ0 ∈ Γ with δ(Ψ, T, ρ0) < ∞. Then T possesses at
least one fixed point in Γ.

Proof. Assume ρ0 ∈ Γ is an arbitrary element and ρ1 ∈ Tρ0. If ρ1 = ρ0 then ρ0 is a fixed
point of T. Then assume that ρ0 ̸= ρ1. Then, for ϵ = ( 1√

α
− 1)HΨ(Tρ1, Tρ0), there exists

ρ2 ∈ Tρ1 such that

Ψ(ρ1, ρ2) < HΨ(Tρ1, Tρ0) + ϵ =
1√
α
HΨ(Tρ1, Tρ0) ≤

√
αNΨ(ρ1, ρ0).

Therefore, for a given ρn ∈ Tρn−1, there exist ρn+1 ∈ Tρn such that

Ψ(ρn+1, ρn) ≤
√

αNΨ(ρn, ρn−1).

Using (i) and (ii) in Definition (7), one can also deduce that

Ψ(ρn+1, ρn) ≤
√

αNΨ(ρn, ρn−1)

≤
√

α max{Ψ(ρn, ρn−1), Ψ(ρn, ρn+1), Ψ∗(ρn−1, Tρn)}
≤

√
α max{Ψ(ρn, ρn−1), Ψ(ρn, ρn+1), snΨ(ρn−1, ρn)}

=
√

αsnΨ(ρn, ρn−1) ≤ (
√

αsn)
2Ψ(ρn−1, ρn−2)

≤ . . . ≤ (
√

αsn)
nΨ(ρ1, ρ0) ≤ (

√
αsn)

nδ(Ψ, T, ρ0). (10)

As δ(Ψ, T, ρ0) < ∞,
√

α ∈ (0, 1), then using (ii) of Definition (7), we obtain

lim sup
n→∞

n
√
(
√

αsn)n = lim sup
n→∞

√
αsn < 1.

Then ∑∞
n=1(

√
αsn)n < ∞. Hence, lim

n→∞
(
√

αsn)n = 0. Therefore, we obtain

lim
n→∞

Ψ(ρn, ρn+1) = 0.

Using (10), it leads to
δ(Ψ, T, ρn) ≤ (

√
αsn)

nδ(Ψ, T, ρ0).

Then, for every n, m ∈ N we obtain

Ψ(ρn, ρn+m) ≤ δ(Ψ, T, ρn) ≤ (
√

αsn)
nδ(Ψ, T, ρ0).

Therefore,
lim

n,m→∞
Ψ(ρn, ρn+m) = 0.
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Thus, {ρn} is a Cauchy sequence. Hence it converges by completeness of Γ to some σ ∈ Γ.
Next, we prove that σ ∈ Tσ. Suppose that Ψ∗(σ, Tσ) > 0, so

Ψ∗(ρn+1, Tσ) ≤ HΨ(Tρn, Tσ)

≤ αNΨ(ρn, σ)

= α max{Ψ(ρn, σ), Ψ∗(ρn, Tρn), Ψ∗(σ, Tσ), Ψ∗(ρn, Tσ), Ψ∗(σ, Tρn)}
≤ α max{Ψ(ρn, σ), Ψ(ρn, ρn+1), Ψ∗(σ, Tσ), Ψ∗(ρn, Tσ), Ψ(σ, ρn+1)}. (11)

Using Lemma (3) and applying the limit supremum to (11), it is easy to deduce that

Ψ∗(σ, Tσ) = lim sup
n→∞

Ψ∗(ρn+1, Tσ) ≤ lim sup
n→∞

αNΨ(ρn, σ) ≤ αΨ∗(σ, Tσ) = 0.

Then, it leads to α > 1 and this is a contradiction. Thus, σ ∈ Tσ = Tσ and this implies that
σ ∈ Γ is a fixed point of a function T.

Theorem 6. Assume (Γ, ϱ) is a complete metric space. For 0 < α < 1 assume that T : Γ → Pcb(Γ)
meets the following:

H(Tρ, Tµ) ≤ α max{ϱ(ρ, µ), ϱ(ρ, Tρ), ϱ(µ, Tµ), ϱ(ρ, Tµ), ϱ(µ, Tρ)} for all ρ, µ ∈ Γ.

Furthermore, assume for every iterative sequence {ρn} with ρn ̸= ρn−1, there is a sequence {sn},
where sn ≥ 1 for all n such that

(i) ϱ(ρn−1, Tρ) ≤ snϱ(ρn−1, ρn),
(ii) lim sup

n→∞
sn < 1√

α
.

Then T possesses at least one fixed point in Γ.

Proof. From Theorem (5) and by the completeness of subordinate semimetric space (Γ, ϱ),
and T is WBQC, the desired result can be concluded.

The next examples demonstrate that the set of WBQCs is nonempty and Theorem (5)
is meaningful.

Example 4. Let ξ : [0, ∞) → [0, ∞) be defined as ξ(ω) = ω
1
2 , Given q0 ∈ (0, 1) there is

t0 = (
q0

2
)2 ∈ (0, 1) such that ξ(t0) ≥

t0

q0
.

Let us consider the set Γ = {0}⋃
N and let Ψ : Γ × Γ → [0, ∞) defined by

Ψ(ρ, µ) = Ψ(µ, ρ) =

{
tmin{ρ,µ}
0 , if (ρ, µ) ∈ N×N;

ξ(tµ
0 ), othrwise.

By example (8) in [1], (Γ, Ψ) is subordinate semimetric with ξ = ω
1
2 .

Define T : Γ → Pcb(Γ) by T0 = {0, 1} and let Tρ = {ρ+ 1} for ρ ≥ 1, we want to show that

HΨ(Tρ, Tµ) ≤ αNΨ(ρ, µ).

Let ρ, µ ≥ 1 and without loss of generality we can suppose that ρ > µ. Then,

HΨ(Tρ, Tµ) = max{ sup
ω∈Tµ

Ψ∗(ω, Tρ), sup
ω∈Tρ

Ψ∗(ω, Tµ)},

in which, Ψ∗(ω, Tρ) = inf{Ψ(ω, ν) : ν ∈ Tρ} and Ψ∗(ω, Tµ) = inf{Ψ(ω, ν) : ν ∈ Tµ}.
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Now ,

Ψ∗(ω, Tρ) = inf{Ψ(ω, ν) : ν ∈ Tρ}
= Ψ(ω, ρ + 1)

Ψ∗(ω, Tµ) = inf{Ψ(ω, µ) : µ ∈ Tµ}
= Ψ(ω, µ + 1).

Then,
HΨ(Tρ, Tµ) = max{ sup

ω∈Tµ

Ψ(ω, ρ + 1), sup
ω∈Tρ

Ψ(ω, µ + 1)}.

Since ρ ≥ µ, ρ, µ ≥ 1, then

HΨ(Tρ, Tµ) = max{tmin{µ+1,ρ+1}
0 , tmin{ρ+1,µ+1}

0 },

= max{tµ+1
0 , tµ+1

0 }

= tµ+1
0 .

Thus,
HΨ(Tρ, Tµ) = tµ+1

0 .

On the other hand,

HΨ(Tρ, T0) = max{ sup
ω∈T0

Ψ∗(ω, Tρ), sup
ω∈Tρ

Ψ∗(ω, T0)},

where

Ψ∗(ω, Tρ) = inf{Ψ(ω, ρ) : ρ ∈ Tρ ; ω ∈ {0, 1}}
= inf{Ψ(0, ρ + 1), Ψ(1, ρ + 1)}

= inf{ξ(tρ+1
0 ), tmin{ρ+1,1}

0 }

= inf{ξ(tρ+1
0 ), t0}

= inf{(t
ρ+1

2
0 ), t0} = t

ρ+1
2

0 .

So, sup
ω∈T0

Ψ∗(ω, Tρ) = sup
ω∈T0

{inf{t
ρ+1

2
0 , t0}} = t

ρ+1
2

0 .

Further,

Ψ∗(ω, T0) = inf{Ψ(ω, ρ) : ρ ∈ T0 = {0, 1}}
= inf{Ψ(ω, 0), Ψ(ω, 1)}
= inf{Ψ(ρ + 1, 0), Ψ(ρ + 1, 1)}

= inf{ξ(tρ+1
0 ), tmin{ρ+1,1}

0 }

= inf{ξ(tρ+1
0 ), t1

0}

= inf{ξ(tρ+1
0 ), t0}

= inf{t
ρ+1

2
0 , t0} = t

ρ+1
2

0 .

So, sup
ω∈Tρ

Ψ∗(ω, T0) = sup
ω∈Tρ

{inf{t
ρ+1

2
0 , t0}} = t

ρ+1
2

0 .

Hence,

HΨ(Tρ, T0) = max{t
ρ+1

2
0 , t

ρ+1
2

0 }.
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Therefore,

HΨ(Tρ, T0) = t
ρ+1

2
0 , where ρ ≥ 1.

Now,
NΨ(ρ, µ) = max{Ψ(ρ, µ), Ψ∗(ρ, Tρ), Ψ∗(µ, Tµ), Ψ∗(ρ, Tµ), Ψ∗(µ, Tρ)}.

Note that
Ψ(ρ, µ) = tmin{ρ,µ}

0 = tµ
0 , as ρ ≥ µ.

So,

Ψ∗(ρ, Tρ) = inf{Ψ(ρ, ν) : ν ∈ Tρ }

= inf{tmin{ρ,ρ+1}
0 }

= inf{tρ
0} = tρ

0.

Also, Ψ∗(µ, Tµ) = inf{Ψ(µ, ν) : ν ∈ Tµ}

= inf{tmin{µ,µ+1}
0 }

= inf{tµ
0} = tµ

0

and Ψ∗(ρ, Tµ) = inf{Ψ(ρ, ν) : ν ∈ Tµ}

= inf{tmin{ρ,µ+1}
0 }.

If ρ ≤ µ + 1 ⇒ ρ = µ + 1, then

Ψ∗(ρ, Tµ) = inf{tµ+1
0 } = tµ+1

0 .

If ρ ≥ µ + 1, then

Ψ∗(ρ, Tµ) = inf{tµ+1
0 }

= tµ+1
0 and ,

Ψ∗(µ, Tρ) = inf{Ψ(µ, ν) : ν ∈ Tρ}

= inf{tmin{µ,ρ+1}
0 }

= inf {tµ
0}

= tµ
0 as ρ ≥ µ.

Then,

NΨ(ρ, µ) = max{tµ
0 , tρ

0, tµ
0 , tµ+1

0 , tµ
0}

NΨ(ρ, µ) = max{tµ
0 , tρ

0, tµ+1
0 } = tµ

0 .

NΨ(ρ, 0) = max{Ψ(ρ, 0), Ψ∗(ρ, Tρ), Ψ∗(0, T0), Ψ∗(ρ, T0), Ψ∗(0, Tρ)}

NΨ(ρ, 0) = max{ξ(tρ
0), tmin{ρ,ρ+1}

0 , inf{Ψ(0, 0), Ψ(0, 1)}, inf{Ψ(ρ, 0), Ψ(ρ, 1)}, ξ(tρ+1
0 )}

= max{ξ(tρ
0), tρ

0, inf{1, ξ(t0)}, inf{ξ(tρ
0), tmin{ρ,1}

0 , ξ(tρ+1
0 )}

= max{t
ρ
2
0 , tρ

0, inf{1, t
1
2
0 }, inf{t

ρ
2
0 , t0}, t

ρ+1
2

0 }

= max{t
ρ
2
0 , tρ

0, t
1
2
0 , t

ρ
2
0 , t

ρ+1
2

0 } = t
1
2
0 .

Note that since ρ ≥ µ, we obtain

HΨ(Tρ, Tµ)

NΨ(ρ, µ)
=

t(µ+1)
0

tµ
0

= tµ−µ+1
0 = t0,
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then,
HΨ(Tρ, Tµ) ≤ t0NΨ(ρ, µ), and

HΨ(Tρ, T0)
NΨ(ρ, 0)

=
t

ρ+1
2

0

t
1
2
0

= t
ρ
2
0 ≤ t0, as ρ ≥ 1.

So, HΨ(Tρ, Tµ) ≤ t0NΨ(ρ, µ).
Moreover, there is only one iterative sequence {ρn} that has the initial element ρ0 ∈ Γ with

ρn ̸= ρn−1 which is given by ρn+1 = ρn + 1, started with ρ0 and since

Ψ(0, ρn) = ξ(tρn
0 ) = t

ρn
2

0

then {ρn} converges to zero. let sn = 1 for all n , {sn} ⊂ [1, ∞]

(i) Ψ∗(ρn−1, Tρn) ≤ snΨ(ρn−1, ρn) because

L.H.S = Ψ∗(ρn−1, Tρn) = inf{Ψ(ρn−1, ρn+1)}

= tmin{ρn−1,ρn+1}
0

= tρn−1
0

R.H.S = snΨ(ρn−1, ρn)

= tmin{ρn−1,ρn}
0

= tρn−1
0 .

(ii) lim sup
n→∞

sn = lim sup 1 = 1 ≤ 1√
t0

since t0 < 1 then
√

t0 < 1 then 1√
t0
> 1.

Hence, requirements (i) and (ii) of Definition (7) hold. Also, the sequence {ρn} converges to
zero which is the fixed point of T. Therefore, Theorem (5) is satisfied.

Example 5. Let Γ = {0} ∪ [2, ∞) and let

Ψ(ρ, µ) =


ρ + µ, if ρ ̸= 0 and µ ̸= 0;
ρ
2 , if µ = 0;
µ
2 , if ρ = 0.

Let T0 = {0, 2} and let Tρ = { 1
1+ρ + 2} for each ρ ≥ 2. We show that (Γ, Ψ) is a subordinate

semimetric space and

HΨ(Tρ, Tµ) ≤ 7
26

NΨ(ρ, µ).

Using Theorem (5), we can conclude that T possesses a fixed point. To prove that Ψ is a
subordinate semi-metric on Γ,

(D1) for each pair (ρ, µ) ∈ Γ2, we have to prove that Ψ(ρ, µ) = 0 implying that ρ = µ, if ρ ̸= 0
and µ ̸= 0; then, Ψ(ρ, µ) = ρ + µ = 0 is impossible because ρ and µ belong to [2, ∞] and
are non-negative. If ρ ̸= 0 and µ = 0, then Ψ(ρ, µ) = ρ

2 = 0, ρ = 0 and ρ = µ. The other
case is similar.

(D2) for each pair (ρ, µ) ∈ Γ2, clearly we have Ψ(ρ, µ) = Ψ(µ, ρ).
(D3) let a function ξ : [0, ∞] → [0, ∞] be defined by ξ(ρ) = ρε,

where ε > 1, thus ξ is non-decreasing; lim
ρ→0

ξ(ρ) = 0. In part two of definition of Ψ we cannot

find an infinite Cauchy sequence in Γ such that (ρn) is convergent to 0.



Axioms 2024, 13, 318 14 of 15

In part one of definition of Ψ, assume (ρ, µ) ∈ Γ2, with ρ ̸= µ, and (ρn) is an infinite Cauchy
sequence in Γ with (ρn) convergent to ρ, we obtain

Ψ(ρ, µ) = Ψ( lim
n→∞

ρn, µ)

= lim
n→∞

(ρn + µ)

= lim sup
n→∞

(ρn + µ)

= lim sup
n→∞

Ψ(ρn, µ)

≤ (lim sup
n→∞

Ψ(ρn, µ))ε

= ξ(lim sup
n→∞

Ψ(ρn, µ)).

Therefore, (Γ, Ψ) is a subordinate semimetric space and is also clearly complete. Now, let
ρ, µ ≥ 2 and without loss of generality we can suppose that ρ > µ. Thus,

HΨ(Tρ, Tµ) =
ρ + µ + 2

(ρ + 1)(µ + 1)
and HΨ(Tρ, T0) =

1
2(ρ + 1)

+ 1.

Also,

NΨ(ρ, µ) = max{ρ + µ, ρ +
1

(1 + µ)
+ 2} and NΨ(ρ, 0) =

1
1 + ρ

+ 2 + ρ.

Note that, since ρ > µ, we have

HΨ(Tρ, Tµ)

NΨ(ρ, µ)
=

ρ+µ+2
(ρ+1)(µ+1)

max{ρ + µ, ρ + 1
(1+µ)

+ 2}

≤ 1

max{ρ + µ, ρ+1
(µ+1) + 2}

<
1

2µ
≤ 1

4
, (12)

and

HΨ(Tρ, T0)
NΨ(ρ, 0)

=

1
2(1+ρ)

+ 1
1

(ρ+1) + 2 + ρ
=

2ρ + 3
2ρ2 + 6ρ + 6

≤ max
ρ≥2

{ 2ρ + 3
2ρ2 + 6ρ + 6

}

=
7
26

. (13)

Thus, (12) and (13) prompt us to choose α = 7
26 and hence

HΨ(Tρ, Tµ) ≤ 7
26

NΨ(ρ, µ).

Moreover, there is only one iterative sequence {ρn} that has the initial element ρ0 ∈ Γ with
ρn ̸= ρn−1 which is ρn+1 = 1

1+ρn
+ 2 starting with ρ0. By Theorem (5) , {ρn} is convergent to

1+
√

13
2 and it is the fixed point of T. Let

sn =
ρn−1 + ρn+1

ρn−1 + ρn
,

we observe that (i) and (ii) of Definition (7) hold.
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