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1. Introduction

We start by recalling the classical Brunn–Minkowski inequality. Let Kn denote the
class of convex bodies (compact convex subsets with interior points) in an n-dimensional
Euclidean space Rn, and let Kn

o denote the subset of convex bodies containing the origin
in their interiors in Kn. Let K1, K2 ∈ Kn and λ ∈ (0, 1). The classical Brunn–Minkowski
inequality states that

|Kλ|
1
n ≥ (1 − λ)|K1|

1
n + λ|K2|

1
n , (1)

where | · | denotes the Lebesgue measure (i.e., the n-dimensional volume), and

Kλ = (1 − λ)K1 + λK2 = {(1 − λ)x + λy : x ∈ K1, y ∈ K2}

denotes the Minkowski convex combination of K1 and K2, which is still a convex body.
The set sum “+" is said to be the Minkowski sum. Moreover, the equality in (1) holds if
and only if K1 and K2 are homothetic, i.e., K1 = sK2 + x, for some s > 0 and x ∈ Rn. The
Brunn–Minkowski inequality is one of the fundamental results in the theory of convex
bodies, and several other important inequalities, e.g., the isoperimetric inequality, can be
deduced from it; see [1–6], for example.

Stability results of an inequality answer the following question: is the inequality that
we consider sensitive to small perturbations of the maximizers (or minimizers) of the
inequality? In other words, if a function almost reaches the equality in a given inequality, is
it possible for this function to be close to the maximizers (or minimizers) of the inequality?
For example, the classical isoperimetric inequality in two-dimensional Euclidean space
states that for any convex body K in the plane, one has

P(K)2 ≥ 4πA(K),

where P(K) and A(K) denote the perimeter and area of K. The equality holds if and only if
K = Bn

2 (r) for r > 0. The stability question of this isoperimetric inequality asks that when a
convex body K makes the isoperimetric deficit P(K)2 − 4πA(K) ≤ ε for small ε > 0, how
is the body K close to the Euclidean ball Bn

2 (r) for r > 0? Stability results for the classical
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isoperimetric inequality for convex bodies were proven by Bonnesen (see [7], e.g.). If ε > 0
is small such that P(K)2 − 4πA(K) ≤ ε, then

δ(K, Bn
2 ) ≤

1
4
√

π
ε

1
2 ,

where δ(K, Bn
2 ) denotes the Hausdorff distance between K and ball Bn

2 . The result says that
if ε converges to 0 (i.e., the equality almost attained), then K is close to a Euclidean ball with
speed ε

1
2 in the Hausdorff distance. Moreover, the stability strengthens the isoperimetric

inequality. Letting ε = P(K)2 − 4πA(K), we have

P(K)2 − 4πA(K) ≥ 16πδ(K, Bn
2 )

2,

which also is referred to the stability of the isoperimetric inequality.
Since the convex bodies K1 and K2 are homothetic when the equality holds in (1), it is

natural to ask the following stability question: if the equality almost holds in inequality (1),
are K1 and K2 close to each other up to being homothetic?

To answer this question, one needs to define what “close” means. Two natural ways
to measure how “close” two convex bodies are were deduced from the Hausdorff distance
and from the volume. Using the Hausdorff distance between the convex body K1 and K2,
Minkowski himself established the first stability result of the Brunn–Minkowski inequality
(see Groemer [7]), and Diskant [8] and Groemer [9] offered a stability version which is close
to optimal. However, using the ”homothetic” distance deduced from the volume of the
symmetric difference is a more natural way to compare the distances, and was used by
Figalli, Maggi, and Pratelli [10,11] to establish the optimal result. To state this result, we
recall the relative asymmetry of two sets K1 and K2, which is defined by

A(K1, K2) := inf
x∈Rn

{
|K1∆(x + λK2)|

|K1|
, λ =

(
|K1|
|K2|

) 1
n
}

. (2)

In addition, let Λ = max
{

λ
1−λ , 1−λ

λ

}
and σ(K1, K2) := max

{
K1
K2

, K2
K1

}
. Figalli, Maggi,

and Pratelli [11] showed the following quantitative form of the Brunn–Minkowski
inequality.

Theorem 1 (Figalli, Maggi, Pratelli [11]). Let K1, K2 ∈ Kn
o , 0 < λ < 1. Then,

|Kλ| ≥ M 1
n
(|K1|, |K2|, λ)

(
1 +

1

Λσ(K1, K2)
1
n

(
A(K1, K2)

C(n)

)2
)

,

where Mp(a, b, λ) denotes the (λ-weighted) p-mean of a, b (see Section 2 for more details) and
C(n) is a constant depending on n with polynomial growth. In particular,

C(n) =
362n7

(2 − 2
n

n−1 )3/2
.

Note that the exponent 2 in A(K1, K2)
2 is optimal, see Figalli, Maggi, Pratelli [11]. The

constant C(n) was improved to cn7 by Segal [12], and to cn5.5 by Kolesnikov and Milman
([13] Theorem 12.12). The best bound found for C(n) up to now is cn5+o(1), which is
obtained by combining the general estimate of Kolesnikov and Milman [13] with the bound
no(1) (o(1) represents an infinitesimal of a higher order than the constants) on the Cheeger
constant of a convex body in an isotropic position that follows from Chen’s work [14].

There are many ways to generalize inequalities, such as considering different spaces,
different quantities of geometry (or functions), and different scales, see [5,6,15,16] for
examples. Among them, both [15,16] utilize the Hölder inequality, which is closely related
to our study. In this paper, we consider the Brunn–Minkowski inequality for multiple
convex bodies and the Borell–Brascamp–Lieb inequality for multiple functions.
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For the Brunn–Minkowski inequality for multiple convex bodies, suppose Ki ∈ Kn,

λi ∈ (0, 1) and
m
∑

i=1
λi = 1,

|Kλ|
1
n ≥ λ1|K1|

1
n + · · ·+ λm|Km|

1
n , (3)

where Kλ = λ1K1 + · · ·+ λmKm = {λ1x1 + · · ·+ λmxm : x1 ∈ K1, · · · , xm ∈ Km}. Obvi-
ously, if n = 2, inequality (3) turns to the classical Brunn–Minkowski inequality.

The first aim of this paper is to show the stability of the Brunn–Minkowski inequality
for multiple convex bodies in terms of the concept of relative asymmetry.

Let Γ = {K1, · · · , Km} be the set of bounded convex sets. Its relative asymmetry is
defined by

A(Γ) := inf
xij∈Rn

i ̸=j=1,··· ,m

 |Ki∆(αi,jKj + xij)|
|Ki|

: αi,j =

(
|Ki|
|Kj|

)1/n
. (4)

In the case m = 2, it turns to the classical relative asymmetry (2). Note that it is essentially
the minimum of A(Ki, Kj), that is,

A(Γ) = inf
i ̸=j=1,··· ,m

{
A(Ki, Kj)

}
.

In Section 3, we prove the following stability of inequality (3), which is a generalization
of Theorem 1.

Theorem 2. Let Γ = {K1, · · · , Km}, λ = (λ1, · · · , λm), Ki ∈ Kn
o , λi ∈ (0, 1), i = 1, · · · , m,

m
∑

i=1
λi = 1, and Kλ =

m
∑

i=1
λiKi. Then,

|Kλ| ≥ M 1
n
(|K1|, · · · , |Km|, λ)

(
1 +

A(Γ)2

Λσ(Γ)
1
n C1(n)2

)
, (5)

where C1(n) = 2C(n), σ(Γ) = max
i ̸=j=1,··· ,m

{
|Ki|/|Kj| : Ki, Kj ∈ Γ

}
and Λ = max

i ̸=j=1,··· ,n
{λi/λj}.

Next, we state the Borell–Brascamp–Lieb inequality for multiple functions. Through-
out this paper, ui ∈ L1(Rn), (n ≥ 1) is a real non-negative bounded function with compact
support Ωi, i = 1, · · · , m. To avoid triviality, we assume that

Ii =
∫
Rn

uidx > 0, for i = 1, · · · , m.

The Borell–Brascamp–Lieb inequality for multiple functions (BBL(m) inequality below)
claims that

Theorem 3 (BBL(m) inequality). Let λ = (λ1, · · · , λm), λi ∈ (0, 1), i = 1, · · · , m,
m
∑

i=1
λi = 1,

− 1
n ≤ p ≤ +∞, and 0 ≤ h ∈ L1(Rn) and assume that

h(λ1x1 + · · ·+ λmxm) ≥ Mp(u1(x1), · · · , um(xm), λ),

for every xi ∈ Ωi, i = 1, · · · , m. Then,∫
Ωλ

h(x)dx ≥ M p
np+1

(I1, · · · , Im, λ),

where Ωλ = λ1Ω1 + · · ·+ λmΩm.
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The proof of Theorem 3 is very similar to the Borell–Brascamp–Lieb inequality,
see [17] (Section 3) for an example. It suffices to utilize the concept of the quantity
Mp(a1, · · · , am, λ) and Lemma 1. To avoid redundancy, we omit the proof.

Note that the number p/(pn + 1) can be interpreted in extremal cases; it is equal
to −∞ when p = −1/n, and to 1/n when p = +∞. In the case of m = 2, the BBL(m)
inequality is the classical Borell–Brascamp–Lieb inequality (BBL inequality below). The
BBL inequality was first proven for p > 0 (in a slightly different form) by Henstock and
Macbeath [18] and by Dinghas [19], and was generalized by Brascamp and Lieb [20] and by
Borell [21]. In the case of p = 0, the inequality is known as the Prékopa–Leindler inequality,
which was originally established by Prékopa [22] and Leindler [23], and later rediscovered
by Brascamp and Lieb in [24].

A non-negative function u is called p-concave for some p ∈ [−∞,+∞] if

u((1 − λ)x + λy) ≥ Mp(u(x), u(y), λ) for every x, y ∈ Rn and λ ∈ (0, 1).

Recently, Ghilli and Salani [17] studied the stability of the BBL inequality for power
concave functions with compact support. It is shown in [17] (Theorem 4.1) that in the same
assumption of Theorem 3, p > 0 and u1, u2 are p-concave functions and for some (small
enough) ε > 0, ∫

Ωλ

h(x)dx ≤ M p
np+1

(I1, I2, λ) + ε,

It holds that
|Ωλ| ≤ M 1

n
(|Ω1|, |Ω2|, λ)

[
1 + ηε

p
p+1
]
,

where η ≤ 2(n +M p
np+1

(I1, I2, λ)−1).

Another contribution of this paper is to establish the stability of the Borell–Brascamp–
Lieb inequality for multiple power concave functions via the concept of relative asymmetry.

Theorem 4. Assume that λ = (λ1, · · · , λm) with λi ∈ (0, 1) and
m
∑

i=1
λi = 1, p > 0, and ui are

non-negative bounded and p-concave functions in Rn with convex compact supports Ωi, respectively.
If, for some (small enough) ε > 0, it holds that∫

Ωλ

h(x)dx ≤ M p
np+1

(I1, · · · , Im, λ) + ε, (6)

then

|Ωλ| ≤
[

1 + 2
(

n +M p
np+1

(I1, · · · , Im, λ)−1
)

ε
p

p+1

]
M 1

n
(|Ω1|, · · · , |Ωm|, λ). (7)

By using the stability result between the compact supports of the involved function
obtained in Theorem 4, we obtain a quantitative version of the BBL(m) inequality. With the
adjective “quantitative", we mean to estimate the distance of support sets Ωi of the functions
ui precisely in terms of the relative asymmetry of Ωi. That is, when A(Γ) is small enough,
we have a strengthened BBL(m) inequality by means of the relative asymmetry of their
support sets Ωi.

Theorem 5. In the same assumptions and notation of Theorem 4, Γ = {Ω1, · · · , Ωm}. If A(Γ) is
small enough, it holds that∫

Ωλ

h(x)dx ≥ M p
np+1

(I1, · · · , Im, λ) + βA(Γ)
2(p+1)

p , (8)

where

β =

(
8C(n)2Λσ(Γ)

1
n

(
n +M p

np+1
(I1, · · · , Im, λ)−1

))− p+1
p

.
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Note that this theorem strengthens the BBL(m) inequality, since the right side of (8) is
greater than or equal to M p

np+1
(I1, · · · , Im, λ).

The rest of this paper is as follows. In Section 2, we recall some basic results in
convex geometry. The main results of this paper will be proven in Section 3, including
Theorems 2, 4 and 5. In Section 4, we construct some examples as applications of our results.
Finally, the conclusion of this paper is given in Section 5.

2. Preliminaries
2.1. Means of Non-Negative Numbers

For p ∈ [−∞,+∞], λ = (λ1, · · · , λm) with λi ∈ (0, 1) and
m
∑

i=1
λi = 1, the quantity

Mp(a1, · · · , am, λ) represents the (λ-weighted) p-mean of non-negative numbers ai, i =
1, · · · , m, which is defined by Mp(a1, · · · , am, λ) = 0 for a1, · · · , am ≥ 0 and a1 · · · am = 0,
and for a1, · · · , am > 0, we set

Mp(a1, · · · , am, λ) =


max{a1, · · · , am}, if p = +∞,[

λ1ap
1 + · · ·+ λmap

m

] 1
p , if 0 ̸= p ∈ R,

aλ1
1 · · · aλm

m , if p = 0,
min{a1, · · · , am}, if p = −∞.

We next recall some useful facts, see [25,26] for more details. Note that for all p and
λ, Mp(a1, · · · , am, λ) is non-decreasing with respect to ai, i = 1, · · · , m. Using Jensen’s
inequality, Mp(a1, · · · , am, λ) is non-decreasing with respect to p, that is,

Mp(a1, · · · , am, λ) ≤ Mq(a1, · · · , am, λ), if p ≤ q.

We also have the following technical lemma, which can be found in [25].

Lemma 1. Let λi ∈ (0, 1),
m
∑

i=1
λi = 1 and a1, · · · , am, b1, · · · , bm be non-negative numbers.

If p + q > 0, then

Mp(a1, · · · , am, λ)Mq(b1, · · · , bm, λ) ≥ Ms(a1b1, · · · , ambm, λ), (9)

where s = pq
p+q . Moreover, the result holds trivially with s = 0 if p = q = 0.

2.2. Convex Body

Throughout this article, K (possibly with subscripts) denotes a convex body (convex,
compact set with non-empty interior) in Rn. We denote by Kn the class of convex bodies in
Rn. Let Kn

o denote the subset of convex bodies containing the origin in their interiors in Kn.
For K ∈ Kn

o , we define the weight function in direction ν:

∥ν∥∗ := sup{x · ν : x ∈ K}, ν ∈ Sn−1.

Let E be an open subset of Rn, with a smooth or polyhedral boundary ∂E oriented by
its outer unit normal vector νE. The anisotropic perimeter of E is defined as

PK(E) :=
∫

∂E
∥νE(x)∥∗dHn−1(x), (10)

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure on Rn. If K1, K2 ∈ Kn
o , E

is a set of finite perimeter, then

PK1(E) + PK2(E) = PK1+K2(E). (11)



Axioms 2024, 13, 320 6 of 13

From the definition of PK(E), we have PK(K) = n|K|. For more properties about
anisotropic perimeters, we refer to [11]. Now, we recall the anisotropic isoperimetric
inequality, that is,

PK(E) ≥ n|K|1/n|E|1/n′
, if |E| < ∞, (12)

where n′ = n
n−1 .

Figalli, Maggi, and Pratelli [11] have provided a quantitative form of (12) in terms of
the asymmetry index, shown in the following.

Lemma 2. Let E be a set of finite perimeters with |E| < ∞; then,

PK(E) ≥ n|K|1/n|E|1/n′
(

1 +
(
A(E)
C(n)

)2
)

, (13)

where A(E) represents the asymmetry index of E:

A(E) := inf
x∈Rn

{
|E∆(x + λK)|

|E| , λ =

(
|E|
|K|

) 1
n
}

.

Note that the asymmetry index of E is the relative asymmetry between E and K, that
is, A(E) = A(E, K). Note that the triangle inequality holds for the relative asymmetry. For
K1, K2, L ∈ Kn

o ,
A(K1, K2) ≤ A(K1, L) +A(L, K2). (14)

This can be proven easily by the triangle inequality of the symmetric difference and
the property of scaling and translation invariance of the relative asymmetry.

2.3. Power Concave Function and (p, λ)-Convolution of Non-Negative Functions

Let Ω be a convex set in Rn and p ∈ [−∞,+∞]. We say that a non-negative function u
defined in Ω is p-concave if

u((1 − λ)x + λy) ≥ Mp(u(x), u(y), λ),

for every x, y ∈ Ω and λ ∈ (0, 1). In short, u is p-concave if it has convex support Ω and

(1) up is concave in Ω for p > 0;
(2) log u is concave in Ω for p = 0;
(3) up is convex in Ω for p < 0;
(4) u is quasi-concave, i.e., all its superlevel sets are convex, for p = −∞;
(5) u is a non-negative constant in Ω for p = +∞.

Let p ∈ [−∞,+∞] and ui be non-negative functions with compact convex support
Ωi, i = 1, · · · , m. The (p, λ)-convolution of ui is the function defined as

up,λ(x) = sup{Mp(u1(x1), · · · , un(xm), λ) : x = λ1x1 + · · ·+ λmxm, xi ∈ Ω̄i}.

From above the definition of up,λ and the monotonicity of the p-mean with respect to
p, we obtain

up,λ ≤ uq,λ for − ∞ ≤ p ≤ q ≤ +∞.

Obviously, the support of up,λ is Ωλ = λ1Ω1 + · · · + λmΩm and the continuity of
ui, i = 1, · · · , m yields the continuity of up,λ. For more details on supremal convolution of
convex/concave functions, see [26–29].

3. Proofs of Theorems 2, 4 and 5

Motivated by a similar method, to prove Theorem 1, we now use Lemma 2 to prove
Theorem 2.
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Proof of Theorem 2. According to the definitions of A, σ, they are all translation invariant.
Thus, we may assume that Ki, i = 1, · · · , m contain the origin. By Lemma 2, we have

Pλ1K1(Kλ) ≥ n|λ1K1|
1
n |Kλ|

n−1
n

(
1 +

(
A(Kλ, λ1K1)

C(n)

)2
)

,

...

PλmKm(Kλ) ≥ n|λmKm|
1
n |Kλ|

n−1
n

(
1 +

(
A(Kλ, λmKm)

C(n)

)2
)

.

Adding up the above inequalities, thanks to (10) and the fact that
m

∑
i=1

PλiKi (Kλ) = Pλ1K1+···+λmKm(Kλ),

Pλ1K1+···+λmKm(Kλ) = n|Kλ|,

we obtain

|Kλ|
1
n

m
∑

i=1
|λiKi|

1
n

− 1 ≥ |λ1K1|
1
n

m
∑

i=1
|λiKi|

1
n

(
A(Kλ, λ1K1)

C(n)

)2
+ · · ·+ |λmKm|

1
n

m
∑

i=1
|λiKi|

1
n

(
A(Kλ, λmKm)

C(n)

)2

≥

m
∑

i=1
(A(Kλ, Ki))

2

mC(n)2Λσ(Γ)
1
n

,

where the last inequality follows from the definitions of Λ and σ(Γ). Using

m
m

∑
i=1

a2
i ≥

(
m

∑
i=1

ai

)2

, ∀ai > 0, i = 1, · · · , m,

and the fact that

A(Kλ, Ki) +A(Kλ, Kj) ≥ A(Ki, Kj) ≥ A(Γ), i ̸= j,

it follows that

|Kλ|
1
n

m
∑

i=1
|λiKi|

1
n

− 1 ≥

[
m
∑

i=1
A(Kλ, Ki)

]2

m2C(n)2Λσ(Γ)
1
n

≥ ((m/2)A(Γ))2

m2C(n)2Λσ(Γ)
1
n
=

A(Γ)2

4C(n)2Λσ(Γ)
1
n

.

That is,

|Kλ| ≥ M 1
n
(|K1|, · · · , |Km|, λ)

(
1 +

A(Γ)2

C1(n)2Λσ(Γ)
1
n

)
.

We next prove Theorem 4.

Proof of Theorem 4. For simplicity, we recall some notation and concepts. For the given
bounded functions ui, i = 1, · · · , m, their distribution functions are given by

µi(s) = |{ui ≥ s}|, s ∈ [0, Li],
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where Li = max
Ωi

ui < +∞. And, for λi ∈ (0, 1) and p > 0, it follows that

Lλ = max
Ωλ

up,λ = Mp(L1, · · · , Lm, λ),

and
µλ(s) =

∣∣{up,λ ≥ s
}∣∣,

for s ∈ [0, Lλ]. From the p-concavity of ui and up,λ, we obtain that the distribution functions
µi and µλ are continuous. The Brunn–Minkowski inequality yields

|Ωλ| ≥ M 1
n
(|Ω1|, · · · , |Ωm|, λ).

In the case of equality, the final result holds trivially. Then, we may assume that for
some τ > 0,

|Ωλ| = M 1
n
(|Ω1|, · · · , |Ωm|, λ) + τ. (15)

Now, we want to find a function to estimate τ depending on ε, that is, to search for a
function f such that lim

ε→0
f (ε) = 0 and τ < f (ε). The definition of up,λ yields

{
up,λ ≥ Mp(s1, · · · , sm, λ)

}
⊇ λ1{u1 ≥ s1}+ · · ·+ λm{um ≥ sm},

for si ∈ [0, Li], i = 1, · · · , m. Thus, the Brunn–Minkowski inequality implies

µλ

(
Mp(s1, · · · , sm, λ)

)
≥ M 1

n
(µ1(s1), · · · , µm(sm), λ). (16)

For i = 1, · · · , m, we set functions si : [0, 1] → [0, Li] such that for t ∈ [0, 1]

∫ si(t)

0
µi(s)ds = tIi, (17)

where Ii =
∫
Rn ui(x)dx. Note that si is strictly increasing, and it is differentiable almost

everywhere. Then, by differentiating (17), we have

µi(si(t))si
′(t) = Ii for a.e. t ∈ [0, 1]. (18)

We now define the map sλ : [0, 1] → [0, Lλ] as

sλ = Mp(s1(t), · · · , sm(t), λ), t ∈ [0, 1]. (19)

The continuity of si implies the continuity of the function sλ; thus, it follows that

s′λ(t) =

(
m

∑
i=1

λis′i(t)si(t)p−1

)
sλ(t)1−p, t ∈ [0, 1].

Applying Lemma 1 with p = 1
n and q = 1, we have, for si(t) ∈ [0, Li],

M 1
n
(µ1(s1(t)), · · · , µm(sm(t)), λ)M1

(
s1

′(t)s1(t)p−1, · · · , s′m(t)sm(t)p−1, λ
)

≥M 1
n+1

(
µ1(s1(t))s1(t)p−1s′1(t), · · · , µm(sm(t))sm(t)p−1s′m(t), λ

)
.

Then, the identity

sλ(t)1−p = Mp(s1(t), · · · , sm(t), λ)1−p = M p
1−p

(
s1(t)1−p, · · · , sm(t)1−p, λ

)
, (20)

together with Lemma 1 and (18), implies that
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M 1
n
(µ1(s1(t)), · · · , µm(sm(t)), λ)s′λ(t)

=M 1
n
(µ1(s1(t)), · · · , µm(sm(t)), λ)M1

(
s′1(t)s1(t)p−1, · · · , s′m(t)sm(t)p−1, λ

)
sλ(t)1−p

≥M 1
n+1

(µ1(s1(t))s1(t)p−1s′1(t), · · · , µm(sm(t))sm(t)p−1s′m(t), λ)M p
1−p

(s1(t)1−p, · · · , sm(t)1−p, λ) (21)

≥M p
np+1

(I1, · · · , Im, λ).

Next, for any given δ > 0, set

Fδ =
{

t ∈ [0, 1] : µλ(sλ(t)) > M 1
n
(µ1(s1(t)), · · · , µm(sm(t)), λ) + δ

}
,

and
Γδ = {sλ(t) : t ∈ Fδ}.

Then, we have

Iλ =
∫ Lλ

0
µλ(s)ds =

∫ 1

0
µλ(sλ(t))sλ(t)′dt

=
∫

Fδ

µλ(sλ(t))sλ(t)′dt +
∫
[0,1]\Fδ

µλ(sλ(t))sλ(t)′dt

≥
∫

Fδ

(
M 1

n
(µ1, · · · , µm, λ) + δ

)
sλ(t)′dt +

∫
[0,1]\Fδ

µλ(sλ(t))sλ(t)′dt

≥
∫ 1

0
M 1

n
(µ1, · · · , µm, λ)s′λ(t)dt + δ|Γδ|, (22)

where the last inequality follows from (16). From (21), it follows that∫ 1

0
M 1

n
(µ1, · · · , µm, λ)s′λ(t)dt ≥ M p

np+1
(I1, · · · , Im, λ). (23)

Combining (22), (23) and the condition (5), we have

M p
np+1

(I1, · · · , Im, λ) + ε ≥ Iλ ≥ M p
np+1

(I1, · · · , Im, λ) + δ|Γδ|,

which implies

|Γδ| ≤
ε

δ
.

For some α ∈ (0, 1), we take δ = εαL−1
λ . Then,

L−1
λ |Γ

εα L−1
λ
| ≤ ε1−α. (24)

Letting ε be small enough, (24) implies that the set [0, 1]\Γ
εα L−1

λ
is big enough. Then, there

exists t̄ /∈ F
εα L−1

λ
such that sλ(t̄) ≤ η for any small η. Therefore, there exists t̄ ∈ [0, 1]

such that
sλ(t̄) ≤ ε1−αLλ, (25)

and
µλ(sλ(t̄)) ≤ M 1

n
(µ1(s1(t̄)), · · · , µm(sm(t̄)), λ) + εαL−1

λ . (26)

Suppose ξi ∈ (0, 1) and
m
∑

i=1
ξi = 1. Let

ξm =

(
sλ(t̄)

Lλ

)p
. (27)
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From (25), we have
ξm ≤ ε(1−α)p.

For i = 1, · · · , m, by the assumption that ui are p-concave, we have that up,λ is p-
concave. Set l1 = · · · = lm−1 = 0, lm = Lλ. Then,

{z : up,λ(z) ≥ Mp(l1, · · · , lm−1, Lλ, ξ)} ⊇
m−1

∑
i=1

ξi{xi : up,λ(xi) ≥ 0}+ ξm{xm : up,λ(xm) ≥ Lλ}.

Since sλ(t̄) = Mp(0, · · · , 0, Lλ, ξ) from (27), the above inclusion can be written as

{up,λ(z) ≥ sλ(t̄)} ⊇
m−1

∑
i=1

ξiΩλ + ξm
{

up,λ ≥ Lλ

}
.

By the Brunn–Minkowski inequality, we get

∣∣{up,λ ≥ sλ(t̄)
}∣∣ ≥ (m−1

∑
i=1

ξi|Ωλ|
1
n + ξm

∣∣{up,λ ≥ Lλ

}∣∣ 1
n

)n

. (28)

Since the set
{

up,λ ≥ Lλ

}
=

m
∑

i=1
{ui ≥ Li} is a single point set under the assumption

that the involved functions are strictly p-concave, we then have that
{

up,λ ≥ Lλ

}
has zero

measure. Then, using (26) and the fact µi(si(t̄)) ≤ |Ωi|, and then using (28) and (15),
we have

M 1
n
(|Ω1|, · · · , |Ωm|, λ) + εαL−1

λ

≥µλ(sλ(t̄)) =
∣∣{up,λ ≥ sλ(t̄)

}∣∣
≥
(

m−1

∑
i=1

ξi|Ωλ|
1
n

)n

≥(1 − ξm)
nM 1

n
(|Ω1|, · · · , |Ωm|, λ) + (1 − ξm)

nτ.

Since (1 − ξm)n ≥ 1 − nξm ≥ 1
2 for 0 ≤ ξm ≤ 1

2n , we get

τ ≤

(
εαL−1

λ + [1 − (1 − ξm)n]M 1
n
(|Ω1|, · · · , |Ωm|, λ)

)
(1 − ξm)

n

≤ 2
(

εαL−1
λ + nξmM 1

n
(|Ω1|, · · · , |Ωm|, λ)

)
.

Taking α = p
p+1 and a small enough ε (precisely, ε ≤

(
1

2n

) p+1
p ) and combining

ξm ≤ ε(1−α)p, we have

|Ωλ| ≤ M 1
n
(|Ω1|, · · · |Ωm|, λ) + 2

(
L−1

λ + nM 1
n
(|Ω1|, · · · |Ωm|, λ)

)
ε

p
p+1 . (29)

Since clearly Ii ≤ Li|Ωi| for i = 1, · · · , m, λ, we get

Lλ = Mp(L1, · · · , Lm, λ) ≥ Mp

(
I1

|Ω1|
, · · · ,

Im

|Ωm|
, λ

)
,

and recalling Lemma 1,

Lλ ≥
M p

np+1
(I1, · · · , Im, λ)

M 1
n
(|Ω1|, · · · , |Ωm|, λ)

.
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Finally, combining the above inequality with (29) we obtain

|Ωλ| ≤
[

1 + 2
(

n +M p
np+1

(I1, · · · , Im, λ)−1
)

ε
p

p+1

]
M 1

n
(|Ω1|, · · · , |Ωm|, λ),

and the proof is complete.

Now, by virtue of Theorem 2 and Theorem 4 obtained above, we are in the position to
prove Theorem 5.

Proof of Theorem 5. We argue by contradiction. Suppose that∫
Ωλ

h(x)dx < M p
np+1

(I1, · · · , Im, λ) + βA(Γ)
2(p+1)

p ,

where β is defined in Theorem 5. Then, we apply Theorem 4 and we have

|Ωλ| ≤
[

1 +
A(Γ)2

Λσ(Γ)
1
n C1(n)2

]
M 1

n
(|Ω1|, · · · |Ωm|, λ).

Then, according to Theorem 2, we can easily get a contradiction and finish the
proof.

4. Examples of Theorems 2, 4 and 5

Now, we give some specific examples to further reveal the application and significance
of our results. We consider three convex bodies in R2, one of which is a ball K1 = B2

2(r) for
r = π−1/2, one is a square K2 with sides of 1, and the other K3 is a rectangle with sides of
lengths ε and 1

ε which has a big difference in shape from the above two bodies. Moreover,
the area of them is one, i.e., |K1| = |K2| = |K3| = 1.

Example 1 (Example of Theorem 2). Let Γ = {K1, K2, K3} with K1 = {x ∈ R2 : |x| ≤
π−1/2}, K2 = [−1/2, 1/2]2 and K3 = [−1/(2ε), 1/(2ε)] × [−ε/2, ε/2], λ = ( 1

3 , 1
3 , 1

3 ) and
Kλ = 1

3 K1 +
1
3 K2 +

1
3 K3. It follows from Theorem 2 that

|Kλ| ≥
(

1 +
C2

C1(2)2

)
,

where C1(2) = 2C(2) with C(2) defined in Theorem 1, and

C2 = 1 − 4

√
1
π

− 1
4
+

6
π

arcsin
√

1 − π

4
− 2

π
arcsin

√
π

4
.

Proof. Using the assumption and the definitions of Λ and σ(Γ), it is easy to obtain
Λ = σ(Γ) = 1. Let us calculate A(Γ). Thanks to the fact that A(Γ) = inf

i ̸=j=1,2,3

{
A(Ki, Kj)

}
and the definition of K3, which has a great difference in shape from K1 and K2, we only
need to deduce the relative asymmetry between K1 and K2. By (4) and calculus of integrals,
we get

C2 := A(Γ) = A(K1, K2) = 1 − 4

√
1
π

− 1
4
+

6
π

arcsin
√

1 − π

4
− 2

π
arcsin

√
π

4
.

Example 2 (Example of Theorems 4). Let K1 = {x ∈ R2 : |x| ≤ π−1/2}, K2 = [−1/2, 1/2]2

and K3 = [−1/(2ε), 1/(2ε)] × [−ε/2, ε/2], and assume that λ = ( 1
3 , 1

3 , 1
3 ), p > 0, and

ui ∈ L1(R2), i = 1, 2, 3 are non-negative bounded and p-concave functions in R2 with convex com-
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pact supports Ki, respectively. Assume that
∫
R2 ui(x)dx = 1 and for ε > 0

∫
Kλ

h(x)dx ≤ 1 + ε.
From Theorem 4, we get

|Kλ| ≤ 1 + 6ε
p

p+1 .

Example 3 (Example of Theorems 5). Let Γ = {K1, K2, K3} with K1 = {x ∈ R2 : |x| ≤
π−1/2}, K2 = [−1/2, 1/2]2 and K3 = [−1/(2ε), 1/(2ε)] × [−ε/2, ε/2], and assume that
λ = ( 1

3 , 1
3 , 1

3 ), p > 0 and ui ∈ L1(R2), i = 1, 2, 3 are non-negative bounded and p-concave
functions in R2 with convex compact supports Ki, respectively. Assume that

∫
R2 ui(x)dx = 1,

and for ε > 0
∫

Kλ
h(x)dx ≤ 1 + ε. Using Theorem 5, it holds that∫

Kλ

h(x)dx ≥ 1 + βC
2(p+1)

p
2 ,

where β =
(
24C(2)2)− p+1

p , C2 is obtained in Example 1 and C(2) is the value of C(n) which is
defined in Theorem 1 when n = 2.

5. Conclusions

This paper has deepened the understanding of the stability of the Brunn–Minkowski
inequality for multiple convex bodies by incorporating the concept of relative asymme-
try. Additionally, applying the established stability estimations of the Brunn–Minkowski
inequality and the property of compact support, we also established the stability of the
Borell–Brascamp–Lieb inequality for multiple power concave functions. Furthermore, some
examples are also given in Section 4 as applications of the main results.
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