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Abstract: Impressed with the very recent developments of noncoercive complementarity problems
and the use of recession sets in complementarity problems, here, we discuss mixed generalized com-
plementarity problems in Hausdorff topological vector spaces. We used the Tikhonov regularization
procedure, as well as arguments from the recession analysis, to establish the existence of solutions for
mixed generalized complementarity problems without coercivity assumptions in Banach spaces.

Keywords: complementarity problem; Tikhonov regularization procedure; copositive mapping;
recession function; recession cone; variational inequality

MSC: 47H04; 47H10; 46N10

1. Introduction

In the year 1965, Lemke [1] initiated the complementarity concept, followed by Cottle
and Dantzig [2], in order to study linear and quadratic programming problems, as well
as the bimatrix game problems. Nowadays, it provides a reliable platform to analyze
a wide variety of unrelated problems in physics, optimization, transportation, etc; see,
for instance, [2–4]. Initially, complementarity problem formulation was studied in the
framework of finite dimensional spaces (see [3,5,6]); out of which, the work of Habetler and
Price [3] is significant. Habetler and Price [3] have replaced the usual non-negative partial
ordering generated by Rn for finite dimensional form of complementarity problems by
partial orderings induced by some given cone along with its polar. Karamardian [7] have
extended the work of Habetler and Price [3] into the framework of locally convex Hausdorff
topological vector spaces. Saigal [6] has extended the problem of Habetler and Price [3]
for multivalued mappings. Schaible and Yao [8] considered the problem of Habetler and
Price [3] in the setting of Banach lattices and studied the equivalence of complementarity
problems, least-element problems, and variational inequalities. The results in [8] were then
extended by Ansari, Lai, and Yao [9] and by Zeng, Ansari, and Yao [10] for multivalued
mappings by using pseudomonotonicity of operators in the sense of Karamardian.

Most of the techniques used to obtain the existence of solutions for the complementar-
ity problems are usually based on the Karamardian [4] type of monotonicity. On the other
hand, there is an another kind of monotonicity property of operators that is used to evaluate
equilibrium problems, as well as variational inequalities, known as pseudomonotonicity in
the topological sense. This concept of monotonicity was initiated by Brézis [11] in the year
1968, and then later it became known as pseudomonotonicity in the sense of Brézis. It is a
hybridization of both the monotonicity as well as continuity property of operators, and
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thus it distinguishes itself from the others. Aubin [12] has considered this concept of pseu-
domonotonicity with a relaxing of the continuity properties of operators while formulating
minimax problems in game theory, as well as fixed point problems. The unique feature of
Brézis pseudomonotonicity is that it provides a unified approach to both monotonicity and
compactness. The class of pseudomonotone operators in the sense of Brézis is quite large,
for example, Kien et al. [13] proved by means of examples that there exists an operator
which is pseudomonotone in the sense of Brézis but not pseudomonotone in the sense of
Karamardian. Further, Browder [14] had proved that every maximal monotone operator
is Brézis pseudomonotone [14]. The pseudomonotonicity in the sense of Brézis is rich in
applications, and it is very useful for the study of coercive and noncoercive hemivariational
inequalities see [15,16].

The concept of recession function was introduces by Brézis and Nirenberg [17] in
1978 for a nonlinear operator, in the context of Hilbert spaces, in order to find an analytic
description of the range of sum of linear and nonlinear operators while solving nonlinear
partial differential equations. On the other hand, the concept of recession cone was initiated
by Baocchi, Gastaldi, and Tomarelli [18] in the year 1986 while establishing the existence
of solutions for the results on noncoercive variational inequalities. A bridge between the
recession function and recession cone was established by Baiocchi et al. [19] in 1988. Later
on, the concept of recession functions, as well as recession cones, was enormously used by
various authors while evaluating noncoercive equilibrium problems, as well as variational
inequalities [20–22].

Very recently, Sahu et al. [23] used both the concepts of Brézis pseudomonotonicity
as well as recession sets and studied the noncoercive complementarity problems with
copositivity assumptions.

Motivated by the above works, in this paper, we defined a very general kind of
complementarity problem, known as the mixed generalized complementarity problem in
the framework of Hausdorff topological vector spaces. We first establish an equivalence
between our mixed generalized complementarity problem with a class of variational
inequality problems for multivalued mappings and then find the existence of solutions
for the complementarity problem. We then used the Tikhonov regularization procedure
as well as arguments from the recession analysis and found some existing results on
mixed generalized complementarity problems without coercivity assumptions in Banach
spaces. Our results improve many existing results in the literature, including the results of
Sahu et al. [23], Chadli et al. [24], Karamardian [7], and Park [25].

The rest of this paper is organized as follows. We introduce the mixed general-
ized complementarity problem and give some definitions and preliminaries in Section 2.
Section 3 is devoted to studying the solvability for the mixed generalized complementarity
problem in the context of Hausdorff topological vector spaces. In Section 4, our focus is on
noncoercive complementarity problems in the case of reflexive Banach spaces.

2. Preliminaries

Let K ⊂ X be a closed convex cone and ⟨·, ·⟩ be a bilinear form on X × Y to R. Here, X
is a real topological vector space, and Y is a real vector space. The bilinear form is defined in
a way such that the points of Y are separated by the family of linear functionals {⟨x, ·⟩}x∈X .
Let us assume that the family of linear functionals {⟨x, ·⟩}x∈X generates weak topology
denoted by σ(Y, X) on Y. For any subset A ⊂ X, let us denote the convex hull of A by
co(A), the closure of A by cl(A), and the collection of all finite subsets of A by F (A). Let I
be an index set, then for any net {xα}α∈I in X, the set of all cluster points is denoted by Cxα .
For the multivalued mapping F : K → 2Y \ {∅} and for any x ∈ K, let the upper support
function of F(x) at z ∈ K be σ♯

F(x)(z), where σ♯
F(x)(z) = sup

y∈F(x)
⟨z, y⟩ (see [23]).

The mixed generalized complementarity problem that we considered in this paper is
as follows:
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Definition 1. Let F : K → 2Y be a multivalued mapping and Φ : K × K → R be a real-valued
bifunction, then the mixed generalized complementarity problem (MGCP) is to find an x ∈ X and a
ϖ ∈ F(x) such that

x ∈ K, ⟨y, ϖ⟩+ Φ(x, y) ≥ 0, and ⟨x, ϖ⟩ = 0, for all y ∈ K. (1)

Let MGCP(K, F) denote the solution set of the problem (1).

Remark 1. If Φ ≡ 0, then the problem (1) reduces to the extended generalized complementarity
problem (EGCP):
Find an x ∈ X and a ϖ ∈ F(x) such that

x ∈ K, ϖ ∈ K∗, and ⟨x, ϖ⟩ = 0, (2)

where K∗ is the polar of K. The problem (2) was considered by Sahu et al. [23] in 2021. If we
consider both X and Y as Rn, ⟨·, ·⟩ as the usual inner product in Rn and Φ ≡ 0, then (1) boils
down to the complementarity problem studied by Saigal [6]. Let F be a single-valued mapping from
K into Y, then the problem (1) becomes to the mixed complementarity problem (MCP):
Find an x ∈ X such that

x ∈ K, ⟨y, F(x)⟩+ Φ(x, y) ≥ 0, ⟨x, F(x)⟩ = 0, for all y ∈ K. (3)

It may be observed that the complementarity problem considered by Karamardian [7] can be obtained
from (3), if Φ ≡ 0.

In order to find the existence of solutions for the problem (1), we need the following
class of variational inequalities called mixed generalized variational inequalities.

Definition 2. Let F : K → 2Y be a multivalued mapping and Φ : K × K → R be a real-valued
bifunction, then the mixed generalized variational inequality problem (MGVI) is to find an x ∈ K
and a ϖ ∈ F(x) such that

⟨y − x, ϖ⟩+ Φ(x, y) ≥ 0, ∀y ∈ K. (4)

Let MGVI(K, F) denote the solution set of (4).

The notion of pseudomonotonicity in the sense of Brézis as defined in [11] is defined
below.

Definition 3 ([11]). Let K be a nonempty closed and convex subset of X. A single-valued mapping
T : K → Y is said to be pseudomonotone in the sense of Brézis (in short B-pseudomonotone)
if, for any net {xα}α∈I satisfying {xα}α∈I that stays in a compact set and converges to x̄ and
lim supα∈I⟨xα − x̄, Txα⟩ ≤ 0, its limit x̄ satisfies

⟨x̄ − z, Tx̄⟩ ≤ lim inf
α∈I

⟨xα − z, Txα⟩, for all z ∈ K.

The pseudomonotonicity in the sense of Brézis was then extended to bifunctions by J.
Gwinner [26] in the year 1978 and further by himself in a couple of papers [27,28].

Definition 4 ([26]). Let K be a nonempty closed and convex subset of X. A bifunction Ψ :
K × K → R is pseudomonotone in the sense of Brézis if, for any generalized sequence {xα}α∈I
satisfying {xα}α∈I that stays in a compact set and converges to x̄ and lim infα∈I Ψ(xα, x̄) ≥ 0, its
limit x̄ satisfies

Ψ(x̄, z) ≥ lim sup
α∈I

Ψ(xα, z), for all z ∈ K.
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Remark 2. The operator T : K → Y is B-pseudomonotone if and only if the bifunction Ψ :
K × K → R defined by Ψ(x, y) = ⟨y − x, Tx⟩ is B-pseudomonotone. Further, if Ψ is upper
semicontinuous with respect to the first argument, then it is B-pseudomonotone. The converse of
which is also true was asserted by Sadeqi and Paydar [29] in 2015. But later, in 2019, Steck [30]
proved that the assertion of Sadeqi and Paydar was wrong by providing a counter example.

In 2021, the pseudomonotonicity in the sense of Brézis for the single-valued mappings
was then extended to the case of multivalued mappings by Sahu, Chadli, Mohapatra, and
Pani in [23].

Definition 5 ([23]). Consider K ⊂ X to be a nonempty convex and closed subset of X and
F : K → 2Y \ {∅} be a multivalued mapping. F is defined to be pseudomonotone in the sense of
Brézis if Φ(x, z) = σ♯

F(x)(z − x) is pseudomonotone in the sense of Brézis. Here, Φ is a real-valued
bifunction on K × K.

Definition 6 ([24]). Suppose K ⊂ X is nonempty and Φ is a bifunction from K × K to R. Φ is
monotone, if for each x, z ∈ K, we have Φ(x, z) + Φ(z, x) ≤ 0.

Definition 7 ([31]). A single-valued function f defined from a topological space X to [−∞, ∞] is
lower semicontinuous at a point x̄ in X, if for any net {xα}α∈I ⊂ X converging to x̄ we have

f (x̄) ≤ lim inf
α∈I

f (xα).

The single-valued function f is lower semicontinuous on X if f is lower semicontinuous for each x
in X.

Definition 8 ([32]). Suppose X, Y are topological spaces. The mapping F : X → 2Y is upper
semicontinuous at x in X if there is a neighborhood V of x for which F(V) is in G for every open set
G ⊃ F(x). If F is upper semicontinuous for each x in X, then it is upper semicontinuous on X .

We need the following results to prove the solvability for the complementarity prob-
lems.

Proposition 1 ([32] (Proposition 2, Page 41)). Consider a multivalued map F : X → 2Y, where
X and Y are Hausdorff topological spaces. Let F(x) ⊂ Y be closed for every x in X and F be upper
semicontinuous on X, then the graph of F

G(F ) = {(x, y) ∈ X × Y : y ∈ T(x)}

is closed.

Proposition 2 ([32] (Proposition 3, Page 42)). Let X and Y be two Hausdorff topological spaces.
Let K be a compact subset of X and F : K → 2Y be a multivalued mapping. Let F(x) ⊂ Y be
compact for each x in K and F be upper semicontinuous on K, then F(K) is compact in Y.

Proposition 3 ([33] (Proposition 15, Page II.14)). Suppose X is a Hausdorff topological vector

space. For a finite number of compact convex sets Ai, in X, where i ranges from 1 to n, co

(
n⋃

i=1

Ai

)
is compact.

Consider a Hausdorff topological vector space X. For a nonempty set K ⊂ X, the
multivalued mapping F : K → 2X is said to be a Knaster–Kuratowski–Mazurkiewicz
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(KKM) mapping if for any finite set {x1, x2, · · · , xn} in K, co({x1, x2, · · · , xn}) is a subset of
n⋃

i=1

F(xi).

Lemma 1 ([34]). Suppose X is a Hausdorff topological vector space. Consider K ⊂ X to be
nonempty and the multivalued mapping F : K → 2X to be KKM. Let F(x) be closed in X for all x
in K and compact in X for some x in K, then⋂

x∈K
F(x) ̸= ∅.

Lemma 2 ([35]). Let D be a convex and compact set and K be a convex set. Let Φ : D × K → R
be a real-valued bifunction such that Φ is convex and lower semicontinuous with respect to first
argument and concave with respect to second argument. If min

ξ∈D
Φ(ξ, y) ≤ 0 for all y ∈ K, then

there exists ξ̄ ∈ D such that Φ(ξ̄, y) ≤ 0 for all y ∈ K.

3. Mixed Generalized Complementarity Problems in Topological Spaces

Throughout this section, unless otherwise stated, we assume that X is a Hausdorff
topological vector space, Y is a real vector space, ⟨·, ·⟩ : X × Y → R is a bilinear form such
that the points of Y are separated by {⟨x, ·⟩}x∈X , and the family of linear functionals and Y
is equipped with the weak topology σ(Y, X) generated by the family of linear functionals
{⟨x, ·⟩}x∈X .

Theorem 1. Suppose K ⊂ X is a convex closed cone and F : K → 2Y. Let Φ be a real-valued
bifunction on K × K for which Φ(x, x) = 0 for all x in K. In addition, let Φ be monotone,
and positively homogeneous in the first argument. Then, x ∈ MGCP(K, F) if and only if
x ∈ MGVI(K, F).

Proof. Let x ∈ MGVI(K, F), then there is ϖ ∈ F(x) such that

⟨y − x, ϖ⟩+ Φ(x, y) ≥ 0, for each y in K. (5)

Using monotonicity of Φ, we obtain

⟨y − x, ϖ⟩ ≥ Φ(y, x), for every y ∈ K. (6)

Since Φ is positively homogeneous in the first argument, taking y = 0 in (6), we obtain
⟨x, ϖ⟩ ≤ 0. Again, considering y = λx, λ > 1 in (6) and using the assumption that
Φ(x, x) = 0, we obtain ⟨x, ϖ⟩ ≥ 0. Thus, we obtain a vector ϖ ∈ F(x) for which ⟨x, ϖ⟩ = 0.
Further, (5), implies

⟨y, ϖ⟩+ Φ(x, y) ≥ ⟨x, ϖ⟩ = 0, for all y ∈ K.

Thus, x ∈ MGCP(K, F).
Conversely, let x ∈ MGCP(K, F), then we have a vector ϖ ∈ F(x), such that ⟨y, ϖ⟩+

Φ(x, y) ≥ 0, ∀ y ∈ K and ⟨x, ϖ⟩ = 0. Thus, we have

⟨y − x, ϖ⟩+ Φ(x, y) = ⟨y, ϖ⟩ − ⟨x, ϖ⟩+ Φ(x, y) = ⟨y, ϖ⟩+ Φ(x, y) ≥ 0, ∀ y ∈ K.

Thus, x ∈ MGVI(K, F), and the proof is complete.

Remark 3. Theorem 1 generalizes Theorem 1 of Sahu et al. [23], Lemma 3.1 of Karamardian [7],
and Theorem 2.3.1 in Chang’s book [36].
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Lemma 3. Suppose K is a closed convex cone in X and x 7→ ⟨x, y⟩ is continuous for every y in Y.
Let Φ be a real-valued bifunction on K×K for which Φ(x, x) = 0, ∀ x ∈ K, and F : K → 2Y \ {∅}
be a multivalued map such that F(x) is convex, for each x ∈ K. Assume the following:

(i) Φ to be monotone;
(ii) Φ to be convex in the second argument and lower semicontinuous;
(iii) For every A ∈ F (K), F is upper semicontinuous on co(A) and F(x) ⊂ Y is compact,

∀ x ∈ K.

Then, for every A in F (K), we have x in co(A) and ϖ in F(x) such that

⟨y − x, ϖ⟩ ≥ Φ(y, x), ∀ y ∈ co(A). (7)

Proof. Proceeding step by step, we prove the following:

(a) For every A in F (K), there is x ∈ co(A) such that for all y ∈ co(A), ∃ϖ ∈ F(x)
satisfying

⟨y − x, ϖ⟩ ≥ Φ(y, x). (8)

(b) For each A ∈ F (K), there exist x ∈ co(A) and ϖ in F(x) such that

⟨y − x, ϖ⟩ ≥ Φ(y, x), ∀ y ∈ co(A). (9)

Proof of (a). For each A ∈ F (K), define G : co(A) → 2co(A) by

G(y) = {x ∈ co(A) : ∃ϖ ∈ F(x) such that ⟨y − x, ϖ⟩ ≥ Φ(y, x)}.

It is clear that for each y ∈ co(A), G(y) ̸= ∅. Let {xα}α∈I be a net in G(y) converging to x̄
in co(A). For every α in I, there exists ϖα ∈ F(xα) such that

⟨y − xα, ϖα⟩ ≥ Φ(y, xα). (10)

By Proposition 3, co(A) is compact. Using assumption (iii), we conclude from Proposition 2
that F(co(A)) is compact in Y. Therefore, the net {ϖα}α∈I has a convergent subnet {ϖβ}β∈J
in F(co(A)). Suppose the net {ϖβ}β∈J converges to ϖ. Since the graph of F on co(A) is
closed by Proposition 1, ϖ ∈ F(x̄).

Now, by the triangle inequality, for each y ∈ co(A), we have

|⟨y − xβ, ϖβ⟩ − ⟨y − x̄, ϖ⟩| ≤ |⟨y − x̄, ϖβ − ϖ⟩|+ |⟨x̄ − xβ, ϖ⟩|+ |⟨x̄ − xβ, ϖβ − ϖ⟩|. (11)

The first two expressions of the right hand side of the relation (11) are easily seen to be
zero. The last one is zero due the equicontinuity of the family {⟨., ϖβ − ϖ⟩}β∈J on co(A) by
topological form of Banach–Steinhaus theorem. Therefore, from (11), we have

⟨y − xβ, ϖβ⟩ → ⟨y − x̄, ϖ⟩. (12)

Since Φ(x, ·) is lower semicontinuous, taking the lower limit in (10) and using relation (12),
we obtain

⟨y − x̄, ϖ⟩ ≥ Φ(y, x̄).

This proves x̄ ∈ G(y), and consequently, G(y) is closed in co(A), ∀ y ∈ co(A).
Now, we claim that the multivalued mapping G is KKM. Assuming the contradiction,

let us suppose G is not KKM, then we have a finite set {y1, · · · , yp} in co(A) and an
y ∈ co({y1, · · · , yp}), y = ∑

p
i=1 λiyi, where λi ≥ 0, 1 ≤ i ≤ p and ∑

p
i=1 λi = 1, but

y /∈ ⋃p
i=1 G(yi). By definition of G, for each ϖ ∈ F(y), we have

⟨yi − y, ϖ⟩ < Φ(yi, y), for each i = 1, · · · , p.
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Using the monotonicity of Φ , we obtain

⟨yi − y, ϖ⟩+ Φ(y, yi) < 0, for each i = 1, · · · , p. (13)

Since Φ(x, ·) is convex, from (13), we have

0 = ⟨z − z, y⟩+ Φ(y, y) ≤
p

∑
i=1

λi⟨zi − z, y⟩+
p

∑
i=1

λiΦ(y, yi) < 0,

which is clearly a contradiction. Thus, G is a KKM mapping. Finally, since co(A) is compact
and G(y) in co(A) is closed for every y ∈ co(A), G(y) is compact. Hence, using Lemma 1,
we conclude ⋂

y∈co(A)

Γ(y) ̸= ∅.

Therefore, for every A ∈ F (K), there is x ∈ co(A), for which ∃ϖ ∈ F(x), satisfying

⟨y − x, ϖ⟩ ≥ Φ(y, x), ∀y ∈ co(A).

Proof of (b). For every A in F (K), define a mapping Ψ : F(x)× co(Z) → R by

Ψ(ϖ, y) = ⟨x − y, ϖ⟩ − Φ(x, y).

By part (a),
min

ϖ∈F(x)
Ψ(ϖ, y) ≤ 0, for all y ∈ co(Z).

By the assumptions, F(x) is compact in Y and convex. Since, ⟨·, ·⟩ is a real-valued bilinear
form on X × Y and Φ(x, ·) is convex, Ψ is convex in the first argument and concave in the
second argument. Furthermore, since Y is equipped with σ(Y, X) topology generated by
the family of linear functionals {⟨x, ·⟩}x∈X , Ψ is lower semicontinuous in the first argument.
Thus, all the conditions of Lemma 2 hold well, and hence, by Lemma 2, there exists ϖ ∈ F(x)
such that Ψ(ϖ, y) ≤ 0 for all y ∈ co(A). Therefore, we have, for every A ∈ F (K), that there
is x ∈ co(A) and ϖ in F(x), which satisfies

⟨y − x, ϖ⟩ ≥ Φ(y, x), for all y ∈ co(A).

This completes the proof.

Lemma 4. Let K ⊂ X be a convex closed cone . Let us assume that x 7→ ⟨x, y⟩ is continuous for
each y in Y, and F : K → 2Y \ {∅} is a multivalued mapping. Consider a real-valued bifunction Φ
on K × K for which Φ(x, x) = 0 for every x in K. Let Φ(x, ·) be convex and, for every A in F (K),
Φ is continuous on co(A) with respect to the first argument. If there exists x0 ∈ K and ϖ ∈ F(x0)
satisfying

⟨x − x0, ϖ⟩ ≥ Φ(x, x0), ∀x ∈ K,

then
⟨x − x0, ϖ⟩+ Φ(x0, x) ≥ 0, ∀x ∈ K.

Proof. Consider a sequence {ti}i∈I in (0, 1) converging to zero, and for each x ∈ K, let
xi = tix + (1 − ti)x0. Then, for each i ∈ I, xi is in K as well as in co({x, x0}) and further
xi → x0. Thus, by assumption

⟨xi − x0, ϖ⟩ ≥ Φ(xi, x0). (14)

Since Φ(x, ·) is convex, we have

0 = Φ(xi, xi) ≤ tiΦ(xi, x) + (1 − ti)Φ(xi, x0).
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Thus, from (14), we have

ti[Φ(xi, x0)− Φ(xi, x)] ≤ Φ(xi, x0) ≤ ⟨xi − x0, ϖ⟩ = ti⟨x − x0, ϖ⟩.

Since ti > 0, for each i ∈ I, we have

Φ(xi, x0) ≤ ⟨x − x0, ϖ⟩+ Φ(xi, x).

Further, since {x, x0} ∈ F (K), by taking the limit and then using assumption (iii), we
obtain

⟨x − x0, ϖ⟩+ Φ(x0, x) ≥ 0.

Thus, there is x0 ∈ K and ϖ ∈ F(x0) such that

⟨x − x0, ϖ⟩+ Φ(x0, x) ≥ 0, for all x ∈ K.

Theorem 2. Consider a closed convex cone K ⊂ X. Let x 7→ ⟨x, y⟩ be continuous for all y in Y,
and the multivalued mapping F : K → 2Y \ {∅} be defined in a way such that for every x ∈ K,
F(x) is convex. Assume Φ to be a real-valued bifunction on K × K, where Φ(x, x) = 0 for every x
in K and Φ(·, y) is positively homogeneous, for each y ∈ K, such that the following hold:

(i) Φ is monotone;
(ii) Φ(x, ·) is lower semicontinuous;
(iii) For each A ∈ F (K), Φ is continuous with respect to the first argument on co(A);
(iv) Φ is convex with respect to the second argument;
(v) F is upper semicontinuous, for all A in F (K), on co(A) and for every x ∈ K, F(x) is compact

in Y;
(vi) F is B-pseudomonotone;
(vii) Coercivity: For a nonempty compact set D in K and a nonempty convex and compact set C in

K, there exists y in C such that

⟨y − x, ϖ⟩+ Φ(x, y) < 0,

for every x ∈ K \ D and for every ϖ ∈ F(x).

Then, there exists at least one solution to the MGCP (1), and the solution set for MGCP(K, F)
is compact in X.

Proof. We prove the following:

(a) The solvability of the problem (1) for a compact set K.
(b) The solvability of the problem (1) for an arbitrary K.
(c) The solution set MGCP(K, F) in X is compact.

Proof of (a). Define a multivalued set function H : F (K) → 2K by

H(A) = {x ∈ K : there exists ϖ ∈ F(x) satisfying ⟨y − x, ϖ⟩ ≥ Φ(y, x), ∀y ∈ co(A)}.

By Lemma 3, H(A) ̸= ∅, for each A ∈ F (K). Next, we claim that⋂
A∈F (K) cl(H(A)) ̸= ∅. Suppose {A1, A2, · · · , An} is a finite subcollection of F (K)

and let A =
⋃n

i=1 Ai. Then, A ∈ F (K), and hence, cl(H(A)) ̸= ∅. But by definition of H,
H(A) ⊂ H(Ai), for i ranging from 1 to n. Thus, H(A) ⊂ ⋂n

i=1 H(Ai) and thus

∅ ̸= cl(H(A)) ⊂ cl

(
n⋂

i=1

H(Ai)

)
⊂

n⋂
i=1

cl(H(Ai)).
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Thus, the collection {cl(H(A))}A∈F (K) satisfies the finite intersection property. Since K is
compact, ⋂

A∈F (K)

cl(H(A)) ̸= ∅.

Consider x0 ∈ ⋂
A∈F (K) cl(H(A)). Further suppose x ∈ K is any element. If

B = {x0, x} ∈ F (K), then B ∈ F (K), and hence, x0 ∈ cl(H(B)). Thus, we have a se-
quence {xα}, where α ∈ I in H(B) converging to x0. Hence, for every α in I, we have
ϖα ∈ F(xα) satisfying

⟨y − xα, ϖα⟩ ≥ Φ(y, xα), ∀y ∈ co(B).

Thus,
σ♯

F(xα)
(y − xα) ≥ Φ(y, xα), ∀y ∈ co(B). (15)

By considering y = x0 in relation (15), we obtain

σ♯
F(xα)

(x0 − xα) ≥ Φ(x0, xα), ∀α ∈ I. (16)

Since Φ(x, ·) is lower semicontinuous, by taking lower limit in (16), we obtain

lim inf
α∈I

σ♯
F(xα)

(x0 − xα) ≥ lim inf
α∈I

Φ(x0, xα) ≥ Φ(x0, x0) = 0.

Using B-pseudomonotonicity of F, we have

lim sup
α∈I

σ♯
F(xα)

(z − xα) ≤ σ♯
F(x0)

(z − x0), for all z ∈ K.

In particular, for z = x,

lim sup
α∈I

σ♯
F(xα)

(x − xα) ≤ σ♯
F(x0)

(x − x0). (17)

Now, putting y = x and taking upper limit in relation (15), we obtain

lim sup
α∈I

σ♯
F(xα)

(x − xα) ≥ lim sup
α∈I

Φ(x, xα).

Since Φ(x, ·) is lower semicontinuous, by using relation (17), we obtain

σ♯
F(x0)

(x − x0) ≥ Φ(x, x0).

Thus, there are ϖ ∈ F(x0) and x0 ∈ K satisfying

⟨x − x0, ϖ⟩ ≥ Φ(x, x0), ∀x ∈ K. (18)

Invoking Lemma 4, we conclude that there exists x0 ∈ K and ϖ ∈ F(x0) such that

⟨x − x0, ϖ⟩+ Φ(x0, x) ≥ 0, ∀x ∈ K. (19)

Therefore, by Theorem 1, it may be observed that, a solution to MGCP (1) is x0, when K is
compact.

Proof of (b). Consider a finite subset {x1, x2, · · · , xn} of K and let L = co(C∪{x1, x2, · · · ,
xn}). Then, by Proposition 3, L is a compact in X. Thus, by relation (19), there exists x0 ∈ L
and ϖ ∈ F(x0) such that

⟨x − x0, ϖ⟩+ Φ(x0, x) ≥ 0 for all x ∈ L.
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By coercivity condition, x0 ∈ D. Now, we define the multivalued set function H : F (K) →
2D by

H(A) = {x ∈ D : ∃ϖ ∈ F(x) satisfying ⟨y − x, ϖ⟩+ Φ(x, y) ≥ 0, ∀y ∈ co(C ∪ A)}.

Since co(C ∪ A) is compact, ∀A ∈ F (K), H(A) ̸= ∅. Repeating the same argument as in
(a), and using the compactness of D, we see that⋂

A∈F (K)

cl(H(A)) ̸= ∅.

Suppose x ∈ K is any element and x0 ∈ ⋂A∈F (K) cl(H(A)). If B = {x0, x}, then B ∈
F (K), and hence, x0 ∈ cl(H(B)). Thus, we have a sequence {xα}α∈I ⊂ H(B) converging
to x0. Hence, for every α in I, there is ϖα ∈ F(xα) satisfying

⟨y − xα, ϖα⟩+ Φ(xα, y) ≥ 0, ∀y ∈ co(C ∪ B).

Since Φ is monotone, we can write it as

σ♯
F(xα)

(y − xα) ≥ Φ(y, xα), ∀y ∈ co(C ∪ B). (20)

In particular,
σ♯

F(xα)
(x0 − xα) ≥ Φ(x0, xα), ∀α ∈ I.

Since Φ(x, ·) is lower semicontinuous, we have

lim inf
α∈I

σ♯
F(xα)

(x0 − xα) ≥ 0.

Using B-pseudomonotonicity of F, we have

lim sup
α∈I

σ♯
F(xα)

(z − xα) ≤ σ♯
F(x0)

(z − x0), for all z ∈ K.

In particular, for z = x,

lim sup
α∈I

σ♯
F(xα)

(x − xα) ≤ σ♯
F(x0)

(x − x0). (21)

Now, putting y = x and taking upper limit in relation (20), we obtain

lim sup
α∈I

σ♯
F(xα)

(x − xα) ≥ lim sup
α∈I

Φ(x, xα). (22)

Again using the fact that Φ(x, ·) lower semicontinuous, from (21) and (22), we obtain

σ♯
F(x0)

(x − x0) ≥ lim sup
α∈I

Φ(x, xα) ≥ lim inf
α∈I

Φ(x, xα) ≥ Φ(x, x0).

Once again invoking Lemma 4, we obtain that, there exists x0 ∈ K and ϖ ∈ F(x0) satisfying

⟨x − x0, ϖ⟩+ Φ(x0, x) ≥ 0, for all x ∈ K. (23)

Therefore, by Theorem 1, it is clear that MGCP (1) is solvable, and x0 is the solution.
Proof of (c). Let x ∈ cl(MGCP(K, F)). Then, there is a sequence {xα}α∈I in MGCP(K, F)

which converges to x. Thus, by Theorem 1 for every α in I, we have ϖα ∈ F(xα) satisfying

⟨y − xα, ϖα⟩+ Φ(xα, y) ≥ 0, ∀y ∈ K. (24)
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Now for arbitrary z in K, the segment [v, x] ⊂ K and hence the relation (24) becomes

⟨y − xα, ϖα⟩+ Φ(xα, y) ≥ 0, ∀y ∈ [z, x]. (25)

As F is B-pseudomonotone, by using condition (iii) and repeating the same argument as in
(b), we conclude the following,

∃ϖ ∈ F(x) : ⟨z − x, ϖ⟩+ Φ(x, z) ≥ 0.

Since z ∈ K is arbitrary, deploying Theorem 1 once again, we conclude that x ∈ MGCP(K, F).
Hence, MGCP(K, F) ⊂ D is closed, and since D is compact, MGCP(K, F) is compact in
X.

Remark 4. If Φ ≡ 0, then Theorem 2 boils down to Theorem 2 of Sahu et al. [23]. Therefore,
Theorem 2 is a proper generalization of Theorem 2 in Sahu et al. [23]. Theorem 2 also generalizes
and improves the Theorem 3.1 of Chadli et al. [24] and Theorem 3.1 of Karamardian [7].

When the multivalued mapping F is a single-valued mapping, we obtain the following
consequences of Theorem 2.

Corollary 1. Suppose K ⊂ X is a closed convex cone and for every y in Y, and the mapping
x 7→ ⟨x, y⟩ is continuous. Let us consider F to be a single-valued map from K to Y and Φ to be a
real-valued bifunction on K × K, where Φ(x, x) = 0 for all x in K and is positively homogeneous
with respect to first argument. Furthermore, we assume the conditions mentioned below:

(i) Φ is monotone;
(ii) Φ(x, ·) is lower semicontinuous;
(iii) For every A ∈ F (K), Φ(·, y) is continuous on co(A);
(iv) Φ(x, ·) is convex;
(v) For every A in F (K), F is continuous on co(A);
(vi) F is B-pseudomonotone;
(vii) Coercivity: For a nonempty compact set D ⊂ K and a nonempty convex and compact set C in

K, there exists y ∈ C satisfying

⟨y − x, F(x)⟩+ Φ(x, y) < 0, ∀x ∈ K \ D.

Then, the mixed complementarity problem (3) has a solution.

4. Mixed Generalized Complementarity Problems in Reflexive Banach Spaces

In this section, we use the Tikhonov regularization procedure as well as arguments
from recession analysis and prove the solvability of the mixed generalized complementarity
problem in the framework of reflexive Banach spaces.

Otherwise stated, in this section, we consider B∗ as the dual space of a reflexive
Banach space B. We assume that x∗ in B∗ takes the value ⟨x, x∗⟩ at x ∈ B. The family of
linear functionals {⟨x, ·⟩}x∈B generates weak topology, denoted as σ(B∗,B) on the space
B∗. The strong, weak, and weak* convergence are denoted by the symbols →, ⇀, and ∗

⇀,
respectively. Let K∗ ⊂ B∗ be the polar of K, where K ⊂ B is a nonempty closed convex cone
having a vertex at the origin 0.

In this section, our principal aim is to establish the solvability of the following mixed
generalized complementarity problem in Banach spaces.

Definition 9. Consider a multivalued mapping F : K → 2B
∗

and a real-valued bifunction Φ on
K × K, then the mixed generalized complementarity problem in Banach spaces is to obtain an x in
B and ϖ in F(x) satisfying

x ∈ K, ⟨y, ϖ⟩+ Φ(x, y) ≥ 0, ∀y ∈ K, and ⟨x, ϖ⟩ = 0. (26)
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Let S be the solution set of (26).

In the case of Banach spaces, the pseudomonotonicity in the sense of Brézis given in
Definition 3 becomes the following (see Steck [30]).

Definition 10 ([30]). Let T from B to B∗ be a single-valued mapping. The pseudomonotone in
the sense of Brézis, in case for any net {xn}n∈N in B if xn ⇀ x along with lim supn→∞⟨xn −
x, T(xn)⟩ ≤ 0, then

⟨x − z, T(x)⟩ ≤ lim inf
n→∞

⟨xn − z, T(xn)⟩, for all z ∈ K.

Definition 11. A multivalued mapping F : B → 2B
∗

is said to be

(i) copositive on K, if there is a z∗ ∈ F(0) such that for all x ∈ K and y∗ ∈ F(x), ⟨x, y∗ − z∗⟩ ≥
0;

(ii) strictly copositive on K, if there is a z∗ ∈ F(0) such that for all 0 ̸= x ∈ K and y∗ ∈ F(x),
⟨x, y∗ − z∗⟩ > 0;

(iii) strongly copositive on K, if there is a scalar α > 0 and a vector z∗ ∈ F(0) such that for all
x ∈ K and y∗ ∈ F(x), ⟨x, y∗ − z∗⟩ ≥ α∥x∥2.

Given a single-valued function f : B → R∪ {+∞}, the recession function of f defined
by Baocchi et al. [19] in 1988 is as follows:

f∞(x) := lim inf
t→+∞
v→x

[ f (tv)/t] = inf
{

lim inf
n→+∞

[ f (tnvn)/tn] : tn → +∞, vn → x
}

.

The recession function of Baocchi et al. [19] was then extended by Goeleven [21] in 1996 to
a general single-valued operator F from B to B∗ with respect to z0 ∈ B as

rz0,F(x) := lim inf
t→+∞
z→x

[
1
t
⟨F(tz), tz − z0⟩

]
.

The recession function of Goeleven [21] was then further extended by Sahu, Chadli, Moha-
patra, and Pani [23] in 2021 to the case of multivalued mappings as given below.

Definition 12 ([23]). The recession function for a multivalued mapping F : B → 2B
∗

with respect
to z0 ∈ B is

f F
∞,z0

(x) := lim sup
t→+∞
z→x

[
1
t

σ♯
F(tz)(z0 − tz)

]

= sup
{

lim sup
n→+∞

[
1
tn

σ♯
F(tnzn)

(z0 − tnzn)

]
: tn → +∞, zn → x

}
.

The recession cone defined by Adly et al. [20] in 1996 is given by

K∞ ={x ∈ B : ∃ nets {tn}n∈N in R+ and {xn}n∈N in K

satisfying lim
n→∞

tn = +∞ and lim
n→∞

1
tn

xn = w}.

For a given family of sets {Sn}n∈N of K, the recession set or set of asymptotic directions of
{Sn}n∈N, defined by Adly et al. [20] is as follows:

R({Sn}) ={w ∈ K∞ : there exists xn in Sn for which ∥xn∥ → +∞,

wn =
1

∥xn∥
xn ⇀ w}.
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Definition 13 ([20]). Given a family of sets {Sn}n∈N of K, the recession set R({Sn}) of {Sn}n∈N
is defined to be asymptotically compact if for every w ∈ R({Sn}), the net {wn}n∈N that is given
in R({Sn}) converges strongly to w.

Let us define a multivalued map Fε : K → 2B
∗

as Fε(x) = F(x) + εJ(x) for x ∈ K, and
ε > 0, where J : B → 2B

∗
is the duality map given by

J(x) =
{

x∗ ∈ B∗ : ⟨x, x∗⟩ = ∥x∗∥2 and ∥x∗∥ = ∥x∥
}

.

Lemma 5. Suppose B∗ is the topological dual of a reflexive Banach space B. Consider K ⊂ B
to be a nonempty convex and closed cone and a multivalued map F : K → 2B

∗ \ {∅}. If F is
B-pseudomonotone, then the multivalued map Fε is B-pseudomonotone.

Proof. Consider a net {xn}n∈N ⊂ K for which xn ⇀ x in K. Suppose that

lim inf
n∈N

σ♯
Fε(xn)

(x − xn) ≥ 0

=⇒ lim inf
n∈N

[
σ♯

F(xn)
(x − xn) + ε⟨x − xn, J(xn)⟩

]
≥ 0. (27)

Then, we must have

lim inf
n∈N

σ♯
F(xn)

(x − xn) ≥ 0 and lim inf
n∈N

⟨x − xn, J(xn)⟩ ≥ 0. (28)

Indeed, suppose there exists subsequences {xk}k∈N and {xl}l∈N of the sequence {xn}n∈N
such that

either (a) lim
k→+∞

σ♯
F(xk)

(x − xk) ≤ r < 0

or (b) lim
l→+∞

⟨x − xl , J(xl)⟩ ≤ s < 0

, (29)

for some r, s ∈ R hold.
If (a) of (29) holds, then from (27), we must have

lim inf
k∈N

⟨x − xk, J(xk)⟩ ≥ − r
ϵ
> 0. (30)

Since J is monotone and continuous, by Steck [30], J is B-pseudomonotone, and therefore,
from (30), we have

0 < − r
ϵ
≤ lim inf

k∈N
⟨x − xk, J(xk)⟩ ≤ lim sup

k∈N
⟨x − xk, J(xk)⟩ ≤ ⟨x − x, J(x)⟩ = 0.

Thus, we reach a contradiction.
Again, if (b) of (29) holds, then from (27), we must have

lim inf
l∈N

σ♯
F(xl)

(x − xl) ≥ −ϵs > 0.

Since F is B-pseudomonotone, we have

0 < −ϵs ≤ lim inf
l∈N

σ♯
F(xl)

(x − xl) ≤ lim sup
l∈N

σ♯
F(xl)

(x − xl) ≤ σ♯
F(x)(x − x) = 0,
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again a contradiction and thus we obtain the relation (28). Therefore, by B-pseudomonotonicity
of F and J, we have

lim sup
n∈N

[
σ♯

F(xn)
(z − xn) + ε⟨z − xn, J(xn)⟩

]
≤ σ♯

F(x)(z − x) + ε⟨z − x, J(x)⟩, ∀ z ∈ K.

Therefore, Fε is B-pseudomonotone.

With the aim of solving (26), we need the following regularized mixed generalized
complementarity problem in Banach spaces, which is also of general interest.

Definition 14. Suppose F : K → 2B
∗

is a multivalued map, Φ is a real-valued bifunction on
K × K, and ε > 0 is a given number. The regularized mixed generalized complementarity problem
in Banach spaces is to obtain xε in B and ϖε ∈ Fε(xε) satisfying

xε ∈ K, ⟨y, ϖε⟩+ Φ(xε, y) ≥ 0, ∀y ∈ K, and ⟨xε, ϖε⟩ = 0. (31)

Let Sε be the set of solutions of (31).

Theorem 3. Suppose B∗ is the dual of a reflexive Banach space B and ∅ ̸= K ⊂ B is a convex
and closed cone. Assume that F : K → 2B

∗ \ {∅} is a multivalued map. Let F(x) in B∗ be
bounded, closed, and convex for every x in K. Let Φ be a real-valued bifunction on K × K for which
Φ(x, x) = 0 for each x in K and Φ be positively homogeneous with respect to the first argument. In
addition, we assume the following:

(i) Φ is monotone;
(ii) Φ is lower semicontinuous with respect to the second argument;
(iii) For each A ∈ F (K), Φ(·, y) is continuous on co(A);
(iv) Φ(x, ·) is convex;
(v) F is upper semicontinuous for every A in F (K), on co(A);
(vi) F is B-pseudomonotone;
(vii) Coercivity: For a nonempty compact subset D in K, we have a weakly compact and convex

Cε ⊂ K for an arbitrarily small ε > 0, for which there exists y ∈ Cε such that

⟨y − x, ϖ⟩+ ε⟨y − x, J(x)⟩+ Φ(x, y) < 0,

for every x in K \ D and ϖ ∈ F(x).

Then, the following hold:

(a) The regularized mixed generalized complementarity problem (31) has a solution, for every
ε > 0.

(b)
⋃
ε>0

Sε is bounded.

(c) If x ∈ Cxεn in the weak topology σ(B,B∗), where xεn ∈ Sεn such that the sequence {εn}n∈N
in R+ converges to zero, then x ∈ S .

Proof. (a) Since J is continuous by assumption (v), Fε is upper semicontinuous on co(A)
for each A ∈ F (A). By Lemma 5 and assumption (vi), Fε is B-pseudomonotone. Thus, the
assumptions in Theorem 2 hold for B and B∗ equipped with the weak topologies σ(B,B∗)
and σ(B∗,B), respectively. Therefore, by Theorem 2, the regularized mixed generalized
complementarity problem (31) has a solution for every ε > 0.

(b) For any ε > 0, if xε ∈ Sε, then by Theorem 2, xε ∈ D. Since D is compact in B,⋃
ε>0

Sε is bounded.
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(c) Let the subsequence {xεk}k∈N of the sequence {xεn}n∈N converges weakly to x.
Since xεk ∈ Sεk , by Theorem 1, we deduce from relation (23) that

∃ξk ∈ Fεk (xεk ) such that ⟨z − xεk , ξk⟩+ Φ(xεk , z) ≥ 0, ∀z ∈ K. (32)

By monotonicity of Φ, we have

σ♯
F(xεk )

(z − xεk ) + εk⟨z − xεk , J(xεk )⟩ ≥ Φ(z, xεk ), ∀z ∈ K.

Since J is monotone, we have

σ♯
F(xεk )

(x − xεk ) + εk⟨x − xεk , J(x)⟩ ≥ Φ(x, xεk ). (33)

Since Φ(x, ·) is lower semicontinuous, we have

lim inf
k∈N

σ♯
F(xεk )

(x − xεk ) ≥ 0.

By B-pseudomonotonicity of F and lower semicontinuity of Φ(x, ·), we have from (33) that

σ♯
F(x)(z − x) ≥ lim sup

k∈N
Φ(x, xεk ) ≥ lim inf

k∈N
Φ(x, xεk ) ≥ Φ(z, x), for each z in K.

Hence, there exists ϖ ∈ F(x̄) such that

⟨z − x, ϖ⟩ ≥ Φ(z, x), for every z in K.

Using Lemma 4, it follows that

⟨z − x, ϖ⟩+ Φ(x, z) ≥ 0, for all z ∈ K.

Therefore, by Theorem 1, x ∈ S .

Remark 5. Theorem 3 generalizes Theorem 6 of Sahu et al. [23].

So far, we have obtained the solutions of the mixed generalized complementarity
problems under the coercivity assumptions. On the other hand, the variational formulations
of most of the engineering problems do not have coercivity due to boundary conditions. In
order to tackle such problems, various authors have studied noncoercive problems with
different approaches; see, for instance, [16,20,21]. Now, we are interested in solving the
mixed generalized complementarity problems without the coercivity assumption.

Theorem 4. Suppose B∗ is the dual of a reflexive Banach space B and ∅ ̸= K ⊂ B is a convex
and closed cone. Consider F : K → 2B

∗ \ {∅} as a strongly copositive multivalued map for which
F(x) is closed, bounded, and convex for every x in K. Let Φ be a real-valued bifunction on K × K
such that Φ(x, x) = 0 for all x in K and positively homogeneous with respect to the first argument.
Furthermore, assume the following:

(i) Φ is monotone;
(ii) Φ is lower semicontinuous in the second argument;
(iii) For every A ∈ F (K), Φ(·, y) is continuous on co(A);
(iv) Φ(x, ·) is convex;
(v) For every A in F (K), F is upper semicontinuous on co(A);
(vi) F is B-pseudomonotone.

Then, the mixed generalized complementarity problem (26) has a solution.
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Proof. Using strong copositivity condition on F, we can find α > 0 and z∗ in F(0) such that
for every x in K and y∗ in F(x), we have

⟨x, y∗ − z∗⟩ ≥ α∥x∥2. (34)

If z∗ = 0, then x = 0 solves (26). Indeed, by using the assumption that Φ is positively
homogeneous with respect to the first argument, we have

⟨y, z∗⟩+ Φ(0, y) ≥ 0, for each y in K.

Since ⟨0, z∗⟩ = 0, we see that x = 0 is the solution of (26). Now, suppose that z∗ ̸= 0, and
consider a subset D of K defined by D =

{
x ∈ K : ∥x∥ ≤ ∥z∗∥

α

}
. Then, D is nonempty and

weakly compact in B. For every x ∈ K \ D, we have from relation (34) that

⟨x, y∗⟩ ≥ α∥x∥2 + ⟨x, z∗⟩, ∀y∗ ∈ F(x)
≥ α∥x∥2 − ∥x∥∥z∗∥, ∀y∗ ∈ F(x)
> 0.

Taking {0} = C ⊂ K, which is nonempty, weakly compact, and convex, we see that for
each x in K \ D and y∗ ∈ F(x), there exists 0 in C satisfying

⟨0 − x, y∗⟩+ Φ(x, 0) < 0 − Φ(0, x) = 0.

Thus, all the conditions of Theorem 2 are satisfied for B equipped with the weak topology
σ(B,B∗) and B∗ equipped with the weak topology σ(B∗,B), and hence, by Theorem 2, x is
a solution of the mixed generalized complementarity problem (26).

Theorem 5. Suppose B∗ is the dual of a reflexive Banach space B and ∅ ̸= K ⊂ B is a convex
and closed cone. Consider F : K → 2B

∗ \ {∅} as a copositive multivalued map for which F(x) is
a closed, bounded, and convex subset of B∗ for every x in K. Let Φ be a real-valued bifunction on
K × K such that Φ(x, x) = 0 for all x in K and is positively homogeneous with respect to the first
argument. Furthermore, suppose that the following hold:

(i) Φ is monotone;
(ii) Φ(x, ·) is lower semicontinuous;
(iii) For every A ∈ F (K), Φ(·, y) is continuous on co(A);
(iv) Φ(x, ·) is convex;
(v) For every A in F (K), F is upper semicontinuous on co(A);
(vi) F is B-pseudomonotone.

Then, the regularized mixed generalized complementarity problem (31) has at least one solution.

Proof. In order to apply Theorem 4, we need only to show that Fε is strongly copositive
and B-pseudomonotone, and that for each A ∈ F (K), Fε is upper semicontinuous on co(A).
Since, for every A in F (K), F is upper semicontinuous on co(A) and J is continuous on B,
Fε is upper semicontinuous on co(A) for every A ∈ F (K). By the B-pseudomonotonicity of
F and Lemma 5, we see that Fε is B-pseudomonotone. Finally, using copositivity of F on K,
we have z∗ in F(0) satisfying

⟨x, y∗ − z∗⟩ ≥ 0, ∀ x ∈ K, y∗ ∈ F(x). (35)

Since ⟨x, J(x)⟩ = ∥x∥2 and J is positively homogeneous, we have

⟨x, y∗ − z∗⟩+ ϵ⟨x, J(x)− J(0)⟩ ≥ ϵ⟨x, J(x)− J(0)⟩
= ϵ∥x∥2.

Thus, Fε is strongly copositive on K. Therefore, by Theorem 4, the regularized mixed
generalized complementarity problem (31) has a solution.
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Now, we are in a position to find the existence of solutions for the problem (26) using
the solutions of the problem (31).

Theorem 6. Suppose B∗ is the dual of a reflexive Banach space B and ∅ ̸= K ⊂ B is a convex
and closed cone. Consider F : K → 2B

∗ \ {∅} as a copositive multivalued map for which F(x) is
a closed, bounded, and convex subset of B∗ for every x in K. Let Φ be a real-valued bifunction on
K × K such that Φ(x, x) = 0 for all x in K and is positively homogeneous with respect to the first
argument. Furthermore, assume the following:

(i) Φ is monotone;
(ii) Φ is lower semicontinuous in the second argument;
(iii) For every A in F (K), Φ(·, y) is continuous on co(A);
(iv) Φ(x, ·) is convex;
(v) For every A in F (K)„ F is upper semicontinuous on co(A);
(vi) F is B-pseudomonotone;
(vii) R({Sεn}) = ∅, where {εn}n∈N is a sequence in R+ converging to zero.

Then, the mixed generalized complementarity problem (26) is solvable.

Proof. Consider a sequence {xn}n∈N in K such that xn ∈ Sεn for each n ∈ N. Then, the
sequence {xn}n∈N is bounded. More precisely, suppose there is a subsequence {xk}k∈N of
the sequence {xn}n∈N such that ∥xk∥ → +∞. Consider the sequence {wk}k∈N such that
wk = 1

∥xk∥
xk. Then, {wk}k∈N is bounded and therefore, there is a subsequence {wl}l∈N

of {wk}k∈N such that wl ⇀ w. As a result, we have w ∈ R({Sεn}), which contradicts vii.
Let x ∈ Cxεn in the weak topology σ(B,B∗). Then, there exists a subsequence {xk}k∈N of
{xn}n∈N such that xk ⇀ x. Since xn ∈ Sεn , from Theorem 1 and relation (23), we have

∃yk ∈ Fεk (xk) such that ⟨z − xk, yk⟩+ Φ(xk, z) ≥ 0, ∀z ∈ K.

By monotonicity of Φ, we deduce that

σ♯
F(xk)

(z − xk) + εk⟨z − xk, J(xk)⟩ ≥ Φ(z, xk), ∀z ∈ K.

Sine J is monotone, we have

σ♯
F(xk)

(z − xk) + εk⟨z − xk, J(z)⟩ ≥ Φ(z, xk). (36)

Since Φ is lower semicontinuous in second argument, by replacing z with x and then taking
the lower limit, we obtain

lim inf
k∈N

σ♯
F(xk)

(x − xk) ≥ 0.

Using B-pseudomonotonicity of F, from (36), we have

σ♯
F(x̄)(z − x) ≥ Φ(z, x), for each z ∈ K.

Thus, there is ϖ in F(x) such that

⟨z − x, ϖ⟩ ≥ Φ(z, x), for each z ∈ K.

By Lemma 4, we obtain

⟨z − x, ϖ⟩+ Φ(x, z) ≥ 0, for each z ∈ K.

Invoking Theorem 1 once again, it is found that x ∈ S .

The following theorem provides a very good method for establishing the solvability
of (26) when it is not possible to show that recession set of the family {Sεn}n∈N of solution
sets for the problem (31) is empty.
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Theorem 7. Suppose B∗ is the dual of a reflexive Banach space B and ∅ ̸= K ⊂ B is a convex
and closed cone. Consider F : K → 2B

∗ \ {∅} as a copositive multivalued map for which F(x) is
a closed, bounded, and convex subset of B∗ for every x in K. Let Φ be a real-valued bifunction on
K × K such that Φ(x, x) = 0 for all x in K and is positively homogeneous with respect to the first
argument. Furthermore, suppose the following:

(i) Φ is monotone;
(ii) Φ is lower semicontinuous in second argument;
(iii) For every A in F (K), Φ(·, y) is continuous on co(A);
(iv) Φ(x, ·) is convex;
(v) For every A in F (K), F is upper semicontinuous on co(A);
(vi) F is B-pseudomonotone;
(vii) R({Sεn}) is asymptotically compact, where {εn}n∈N is a sequence in R+ converging to zero;
(viii) There is ∅ ̸= D ⊂ B \ {0}, for which R({Sεn}) ⊂ D, and we have a z0 ∈ K satisfying

f F
∞,z0

(ϖ) < 0, ∀ϖ ∈ D.

Then, the mixed generalized complementarity problem (26) is solvable.

Proof. Clearly, all but assumption vii of Theorem 6 hold. In order to apply Theorem 6, we
have only to establish that R({Sεn}) = ∅. Suppose, on the contrary, R({Sεn}) ̸= ∅, and
let w ∈ R({Sεn}) be any element. Then, we have {xn}n∈N in K, xn ∈ Sεn , for which the
sequence {tn}n∈N, tn = ∥xn∥ converges to +∞, and the sequence {wn}n∈N in B, wn = xn

tn
converges weakly to w. Since xn ∈ Sεn , from Theorem 1 and relation (23), we have

∃yn in Fεn(xn) satisfying ⟨z − xn, yn⟩+ Φ(xn, z) ≥ 0, for all z ∈ K.

Thus,
σ♯

F(xn)
(z − xn) + εn⟨z − xn, J(xn)⟩+ Φ(xn, z) ≥ 0, for all z ∈ K.

Since J is monotone, we have

σ♯
F(xn)

(z − xn) + εn⟨z − xn, J(z)⟩+ Φ(xn, z) ≥ 0, ∀z ∈ K. (37)

In particular, for z = w, we can write relation (37) as

σ♯
F(tnwn)

(w − tnwn) + εn⟨w − tnwn, J(w)⟩+ Φ(tnwn, w) ≥ 0.

Since, Φ is positively homogeneous with respect to the first argument, we have

1
tn

σ♯
F(tnwn)

(w − tnwn) + εn

〈
1
tn

w − wn, J(w)

〉
+ Φ(wn, w) ≥ 0.

Since Φ is monotone, we have

1
tn

σ♯
F(tnwn)

(w − tnwn) + εn

〈
1
tn

w − wn, J(w)

〉
≥ Φ(w, wn). (38)

By taking account of the fact that εn → 0, tn → +∞ and the weak topology σ(B,B∗) of B,
we have

lim
n→∞

εn

〈
1
tn

w − wn, J(w)

〉
= 0. (39)

Since R({Sεn}) is asymptotically compact, we obtain wn → w. As Φ(x, ·) is lower semi-
continuous, taking limit supremum in (38) and then using relation (39), we would have

f F
∞,w(w) ≥ 0.
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Since w ∈ R({Sεn}) is arbitrary, there is no subset D of B \ {0} satisfying the conditions of
(viii). Thus, we reach a contradiction, and hence, condition vii of Theorem 6 holds well.
The result now follows from Theorem 6.

Remark 6. Theorems 4–7 generalize, respectively, Theorem 4, Theorem 5, Theorem 7, and Theorem
8 of Sahu et al. [23].

5. Discussion

In this paper, we introduced the mixed generalized complementarity problem (MGCP)
in the Hausdorff topological vector space X. Under the coercivity assumption, we proved
that the problem MGCP has solution on an arbitrary topological vector space using the no-
tion of pseudomonotonicity in the sense of Brézis, which is obviously a weaker assumption
than that of monotonicity in the Karamardian sense, as was proved by Kien et al. [13] in
2009. We then proceed to use the Tikhonov regularization procedure in order to establish
the solution of the problem MGCP in reflexive Banach spaces. Finally, we proved the
existence of the solution to the MGCP in reflexive Banach spaces using the notion recession
sets, as well as asymptotical compactness without coercivity assumptions. In the future,
we plan to investigate some iterative schemes in order to find the numerical solutions for
the above model of complementarity problems. Moreover, we plan to carry out some more
existence results on mixed generalized complementarity problems related to our results.

Author Contributions: Conceptualization, B.K.S.; formal analysis, R.N.M., B.K.S., and G.P.; writing—
original draft preparation, R.N.M. and B.K.S.; writing—review and editing, R.N.M. and G.P.; supervi-
sion, R.N.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We are thankful to the anonymous referees for their valuable comments and
suggestions which extensively improved our original version of the paper. The second and third
authors are thankful to the Mohapatra Family Foundation for support during this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MGCP mixed generalized complementarity problem
EGCP extended generalized complementarity problem
MGVI mixed generalized variational inequality problem
KKM Knaster–Kuratowski–Mazurkiewicz

References
1. Lemke, C.E. Bimatrix equilibrium points and mathematical programming. Manag. Sci. 1965, 11, 681–689. [CrossRef]
2. Cottle, R.W.; Dantzig, G.B. Complementary pivot theory of mathematical programming. Linear Algebra Its Appl. 1968, 1, 103–125.

[CrossRef]
3. Habetler, G.J.; Price, A.L. Existence theory for generalized nonlinear complementarity problems. J. Optim. Theory Appl. 1971, 7,

223–239. [CrossRef]
4. Karamardian, S. Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 1976,

18, 445–454. [CrossRef]
5. Hu, Q.; Chen, Y.; Wang, J.; Ouyang, Z.S. Generalization of an existence theorem for complementarity problems. J. Comput. Appl.

Math. 2013, 253, 158–162. [CrossRef]
6. Saigal, R. Extension of the generalized complementarity problem. Math. Oper. Res. 1976, 1, 260–266. [CrossRef]
7. Karamardian, S. Generalized complementarity problem. J. Optim. Theory Appl. 1971, 8, 161–168. [CrossRef]
8. Schaible, S.; Yao, J.C. On the Equivalence of Nonlinear Complementarity Problems and Least-Element Problems. Math. Program

1995, 70, 191–200. [CrossRef]
9. Ansari, Q.H.; Lai, T.C.; Yao, J.C. On the equivalence of extended generalized complementarity and generalized least-element

problems. J. Optim. Theory Appl. 1999, 102, 277–288. [CrossRef]

http://doi.org/10.1287/mnsc.11.7.681
http://dx.doi.org/10.1016/0024-3795(68)90052-9
http://dx.doi.org/10.1007/BF00928705
http://dx.doi.org/10.1007/BF00932654
http://dx.doi.org/10.1016/j.cam.2013.04.017
http://dx.doi.org/10.1287/moor.1.3.260
http://dx.doi.org/10.1007/BF00932464
http://dx.doi.org/10.1007/BF01585936
http://dx.doi.org/10.1023/A:1021724306242


Axioms 2024, 13, 328 20 of 20

10. Zeng, L.C.; Ansari, Q.H.; Yao, J.C. Equivalence of generalized mixed complementarity and generalized mixed least element
problems in ordered spaces. Optimization 2009, 58, 63–76. [CrossRef]

11. Brézis, H. Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier Grenoble 1968, 18,
115–175. [CrossRef]

12. Aubin, J.P. Mathematical Methods of Game and Economic Theory, 1st ed.; North-Holland Publishing Company: New York, NY, USA,
1979; pp. 412–418.

13. Kien, B.T.; Wong, M.M.; Wong, N.C.; Yao, J.C. Solution existence of variational inequalities with pseudomonotone operators in
the sense of Brézis. J. Optim. Theory Appl. 2009, 140, 249–263. [CrossRef]

14. Browder, F.E.; Hess, P. Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 1972, 11, 251–294. [CrossRef]
15. Sahu, B.K.; Mohapatra, R.N.; Chadli, O.; Pani, S. Existence Results for Mixed Equilibrium Problems Involving Set-Valued

Operators with Applications to Quasi-Hemivariational Inequalities. J. Optim. Theory Appl. 2020, 184, 810–823. [CrossRef]
16. Chadli, O.; Schaible, S.; Yao, J.C. Regularized equilibrium problems with application to noncoercive hemivariational inequalities.

J. Optim. Theory Appl. 2004, 121, 571–596. [CrossRef]
17. Brézis, H.; Nirenberg, L. Characterizations of the ranges of some nonlinear operators and applications to boundary value

problems. Ann. Scuola Norm. Sup. Pisa 1978, 4, 225–326.
18. Baocchi, C.; Gastaldi, F.; Tomarelli, F. Some existence results on noncoercive variational inequalities. Ann. Della Sc. Norm.

Super.-Pisa.-Cl. Sci. 1986, 13, 617–659.
19. Baocchi, C.; Buttazzo, G.; Gastaldi, F.; Tomarelli, F. General existence theorems for unilateral problems in continuum mechanics.

Arch. Ration. Mech. Anal. 1988, 100, 149–189. [CrossRef]
20. Adly, S.; Goeleven, D.; Théra, M. Recession mappings and noncoercive variational inequalities. Nonlinear Anal. Theory Methods

Appl. 1996, 26, 1573–1603. [CrossRef]
21. Goeleven, D. Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets. J. Global

Optim. 1996, 9, 121–140. [CrossRef]
22. Auslender, A.; Teboulle, M. Asymptotic Cones and Functions in Optimization and Variational Inequalities, 3rd ed.; Springer Monographs

in Mathematics: Berlin/Heidelberg, Germany, 2003; pp. 154–196.
23. Sahu, B.K.; Chadli, O.; Mohapatra, R.N.; Pani, S. Existence of solutions for extended generalized complementarity problems.

Positivity 2021, 25, 769–789. [CrossRef]
24. Chadli, O.; Chbani, Z.; Riahi, H. Equilibrium problems with generalized monotone bifunctions and applications to variational

inequalities. J. Optim. Theory Appl. 2000, 105, 299–323.
25. Park, S. Generalized equilibrium problems and generalized complementarity problems. J. Optim. Theory Appl. 1997, 95, 409–417.

[CrossRef]
26. Gwinner, J. Nichtlineare Variationsungleichungen mit Anwendungen. Ph.D. Thesis, Universität Mannheim, Mannheim, Germany,

1978.
27. Gwinner, J. On fixed points and variational inequalities—A circular tour. Nonlinear Anal. 1981, 5, 565–583. [CrossRef]
28. Gwinner, J. A note on pseudomonotone functions, regularization, and relaxed coerciveness. Nonlinear Anal. Theory Methods Appl.

1997, 30, 4217–4227. [CrossRef]
29. Sadeqi, I.; Paydar, M.S. A comparative study of Ky Fan hemicontinuity ad Brézis pseudomonotonicity of mappings and existence

results. J. Optim. Theory Appl. 2015, 165, 344–358. [CrossRef]
30. Steck, D. Brézis pseudomonotonicity is strictly weaker than Ky-Fan hemicontinuity. J. Optim. Theory Appl. 2019, 181, 318–323.

[CrossRef]
31. Aliprantis, C.D.; Border, K.C. Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd ed.; Springer: Berlin, Germany, 2006; pp. 43–44.
32. Aubin, J.P.; Cellina, A. Differential Inclusions, 1st ed.; Springe: Berlin, Germany, 1984; pp. 40–46.
33. Bourbaki, N. Topological Vector Spaces: Chapters 1–5, 3rd ed.; Springer: New Work, NY, USA, 2003; pp. II.13–II.15.
34. Fan, K. A Generalization of Tychonoff’s Fixed-Point Theorem. Math. Ann. 1961, 142, 305–311. [CrossRef]
35. Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems. Math. Student 1994, 63, 123–145.
36. Chang, S.S. Variational Inequality and Complementarity Problem Theory with Applications, 1st ed.; Shanghai Science Technology:

Shanghai, China; New Work, NY, USA, 1991; pp. 59–63.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/02331930701761474
http://dx.doi.org/10.5802/aif.280
http://dx.doi.org/10.1007/s10957-008-9446-7
http://dx.doi.org/10.1016/0022-1236(72)90070-5
http://dx.doi.org/10.1007/s10957-019-01629-1
http://dx.doi.org/10.1023/B:JOTA.0000037604.96151.26
http://dx.doi.org/10.1007/BF00282202
http://dx.doi.org/10.1016/0362-546X(94)00364-N
http://dx.doi.org/10.1007/BF00121659
http://dx.doi.org/10.1007/s11117-020-00786-2
http://dx.doi.org/10.1023/A:1022643407038
http://dx.doi.org/10.1016/0362-546X(81)90104-8
http://dx.doi.org/10.1016/S0362-546X(97)00390-8
http://dx.doi.org/10.1007/s10957-014-0618-3
http://dx.doi.org/10.1007/s10957-018-1435-x
http://dx.doi.org/10.1007/BF01353421

	Introduction
	Preliminaries
	Mixed Generalized Complementarity Problems in Topological Spaces
	Mixed Generalized Complementarity Problems in Reflexive Banach Spaces
	Discussion
	References

