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1. Introduction

The study of eigenvalues of geometric operators plays a major role in ascertaining the ge-
ometrical and topological properties of the underlying manifolds. This area of research became
attractive after Perelman’s work [1]. He presented a functional F =

∫
M(R + |∇ f |2)e− f dµ. It

is shown that this functional is nondecreasing under the Ricci flow with a backward heat-type
equation. It explains that the first eigenvalue of −4∆ + R (R is the scalar curvature) is non-
decreasing under the Ricci flow. Later, many authors studied properties of eigenvalues for
different geometric operators on evolving Riemannian manifolds and other manifolds. For
example, Cao, in [2], studied eigenvalues of (−△+ R

2 ) and obtained that the eigenvalues
of (−△+ R

2 ) are nondecreasing under the Ricci flow for manifolds with a non-negative
curvature operator. In Ref. [3], he considered the first eigenvalues of geometric operators
under the Ricci flow. Bracken and Azami obtained some results on the evolution of the first
eigenvalue recently [4–6]. Other remarkable work can be found in [7–10]. We call the smooth
function u : M → R a harmonic function if ∆u = 0. Harmonic functions play a significant
role in Dirichlet boundary value and Neumann boundary value problems. The function
u is called biharmonic if ∆2u = 0. Here, ∆2 is known as the biharmonic operator. The
biharmonic function has application to continuum mechanics and elasticity theory. It is
known that every harmonic function is biharmonic, but the converse is not true. As a
generalization, the function u is called p-biharmonic if ∆2

pu = 0 for p ∈ (1,+∞), where ∆2
p

is known as the p-biharmonic operator (an elliptic operator of fourth order), defined by
∆2

pu = ∆(|∆u|p−2∆u). For p = 2, the p-biharmonic operator reduces to a harmonic opera-
tor. In Ref. [11], Khalil et al. researched the spectrum for the p-biharmonic operator. It was
proved that the spectrum of the p-biharmonic operator with Dirichlet boundary conditions
and indefinite weight includes at least one nondecreasing sequence of positive eigenvalues.
The spectra of the Neumann p-biharmonic and Dirichlet problems were considered in [12].
In the last decade, there are many results on the p-biharmonic operator that can give us
motivation. For example, Benedikt and Drábek studied the principal eigenvalue of the
p-biharmonic operator in [13,14]. In Refs. [15–18], Khalil et al. researched the singular- and
double-eigenvalue problems for the p-biharmonic operator. Work regarding the boundary
value problems of the p-biharmonic operator can be found in [19–21]. Other properties
of the p-biharmonic operator from different viewpoints can be seen in [22–25]. Recently,
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in [26] Abolarinwa et al. studied the demeanor of the spectrum of the p-biharmonic oper-
ator on a closed complete Riemannian manifold when the manifold evolves by the Ricci
flow and found evolution formulas and some monotonic formulas along the Ricci flow.
Abolarinwa [27] extended this to volume-preserving Ricci flow and found some useful
applications on closed surfaces within restrictions on Euler characteristics, and also, on
locally homogeneous 3-manifolds in Bianchi classes. Furthermore, in recent years Khan
and Li et al. obtained some interesting results relevant to soliton theory [28], submanifold
theory [29], singularity theory [30], classical differential geometry [31–33], and tangent
bundle problems [34–38], etc. These papers give our inspiration and motivation in the
present and future research work. In future work, we are going to find more new results
combined with the techniques and the results in those papers. In Ref. [39], Azami studied
the first eigenvalue of the ∆2

p − ∆p, where ∆p is the p-Laplace operator, on a closed Rieman-
nian manifold along the Ricci flow, and by the application of some geometric conditions
it was proved that the first eigenvalue is nondecreasing under the Ricci flow. In Ref. [40],
Li and Tang established the existence of more than three solutions to a Navier boundary
problem adhering to the (p, q)-biharmonic systems. Recently, in [41] the authors considered
a system called a (p, q)-biharmonic system, given by

∆2
pu = λa(x)|u|p−2u + λc(x)|u|α−1|v|β+1u, in Ω,

∆2
qv = λb(x)|v|q−2v + λc(x)|u|α+1|v|β−1v, in Ω,

u = ∆u = 0, v = ∆v = 0, on ∂Ω.

Here, Ω ⊂ RN , N ≥ 1 is a connected set and bounded; λ > 0 is a parameter;
p > 1, q > 1, max{p, q} < N

2 , α ≥ 0, and β ≥ 0; a, b, and c are positive functions defined in
Ω and c ̸= 0 in Ω.

Fourth-order PDEs are very useful in different fields of science, such as engineer-
ing [42–44], signal processing [45–48], nuclear physics [49,50], etc. As an example, these
kind of PDEs arise in traveling waves of suspension bridges. To study the mechanical
vibrations of plates, the eigenvalue problems of biharmonic systems plays an important
role. Interested readers are directed to [41] for additional information.

Consider dµ as the Riemann volume measure of an n-dimensional closed Riemannian
manifold (Mn, g). We now consider the (p, q)-biharmonic system below:

∆2
pu = λ|u|α|v|βv, in M,

∆2
qv = λ|u|α|v|βu, in M,

(u, v) ∈ W2,p(M)× W2,q(M),

(1)

where α > 0, β > 0, α+1
p + β+1

q = 1, and W2,p(M) is the Sobolev space, and study its
eigenvalue on (Mn, g), evolving by the Ricci flow. Mainly under the normalized Ricci flow
and Ricci flow, the variational formula for the first eigenvalue of the system (1) is derived.
Along the Ricci flow we also deduce certain monotonic quantities.

2. Preliminaries

In this section, we first present the eigenvalue of the (p, q)-biharmonic operator and
recall some standard evolution equations.

Definition 1. λ is said to be an eigenvalue of the system (1) if ∃ is a pair of functions (u, v) ∈
W2,p(M)× W2,q(M); u ̸= 0, v ̸= 0 such that∫

M
|∆u|p−2∆u∆ϕdµ = λ

∫
M
|u|α|v|βϕvdµ,∫

M
|∆v|q−2∆v∆ψdµ = λ

∫
M
|u|α|v|βuψdµ

(2)
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holds. Here, (ϕ, ψ) ∈ (W1,p
0 (M) ∩ W2,p(M))× (W1,q

0 (M) ∩ W2,q(M)) = E and W1,p
0 (M) de-

notes the closure of the set C∞
0 (M) in the space W1,p(M). The pair (u, v) is termed an eigenfunction

corresponding to the eigenvalue λ.

Let us consider the following two functionals:

A(u, v) =
α + 1

p

∫
M
|∆u|pdµ +

β + 1
q

∫
M
|∆v|qdµ, (3)

and
B(u, v) =

∫
M
|u|α|v|βuvdµ. (4)

The first positive eigenvalue of (1) is characterized by

λ(u, v) = in f {A(u, v) : (u, v) ∈ E, B(u, v) = 1}. (5)

A one-parameter family of metrics g(t) is said to satisfy the Ricci flow [51] if the
equation below holds:

∂

∂t
gij = −2Rij, (6)

with g(0) = g0. Here, Rij stands for the Ricci tensor. Hamilton [51] showed the existence of
solutions of the Ricci flow and also proved its uniqueness.

If (Mn, g(t)) is a solution of the Ricci flow (6) on the closed manifold (Mn, g0), then

λ(t, u(t), v(t)) =
α + 1

p

∫
M
|∆u|pdµ +

β + 1
q

∫
M
|∆v|qdµ, (7)

is the evolution of the first eigenvalue of (1), where (u(t), v(t)) is a normalized eigenfunc-
tion, i.e., B(u, v) = 1 is associated with the eigenvalue λ.

The next lemma contains some evolution equations which are standard in the theory
of Ricci flow. Their proofs are omitted here but an interested reader can consult Ref. [52].

Lemma 1. Under Ricci flow, the following equations hold:

(1)
∂

∂t
(dµ) = −Rdµ (2)

∂

∂t
∆u = 2Rij∇i∇ju + ∆ut

(3)
∂

∂t
gij = 2Rij (4)

∂

∂t
R = ∆R + 2|Ric|2

where gij is the inverse matrix of gij, dµ is the volume element, ∆ is the Laplace operator, and R is
the scalar curvature.

3. Variation Formula

Before continuing, we note that, as far as we are aware, it remains uncertain if the first
eigenvalue of the system (1) or its associated eigenfunctions possess C1-differentiability
along the Ricci flow.

Then, for the procedure we adopt in this paper we need to introduce smooth functions
defined at t0 ∈ [0, T) and a continuous eigenvalue.

Lemma 2. For a given time t0 ∈ [0, T), there exists C∞ functions u(t0) and v(t0) satisfying∫
M
|u|α|v|βuvdµg(t) = 1,

such that at t0, (u0, v0) = (u(t0), v(t0)) is the eigenfunction corresponding to λ1(t0). Here, λ1
denotes the first eigenvalue of the system (1).
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Proof. At time t0, set (u0, v0) = (u(t0), v(t0)) to be the eigenfunction corresponding to
λ1(t0). Consider the following smooth functions along the Ricci flow:

h(t) = u0

(
det(g(t0))

det(g(t))

) 1
2(α+β+1)

and w(t) = v0

(
det(g(t0))

det(g(t))

) 1
2(α+β+1)

.

Moreover, these functions can be normalized as follows:

u(t) =
h(t)(∫

M |h(t)|α|w(t)|βh(t)w(t)dµg(t)

) 1
p

and

v(t) =
w(t)(∫

M |h(t)|α|w(t)|βh(t)w(t)dµg(t)

) 1
q

.

Clearly, the above functions u(t) and v(t) are smooth along the Ricci flow and can be
shown to have satisfied the condition∫

M
|u|α|v|βuvdµg(t) = 1.

Proposition 1. Suppose (Mn, g(t)) is a solution of (6). For any t1, t2 ∈ [0, T) (with t1 being
sufficiently close to t2), ϵ > 0, and g(t1) and g(t2) satisfying

(1 + ϵ)−1g(t1) < g(t2) < (1 + ϵ)g(t1),

we have
λ(g(t2))− λ(g(t1)) ≤ ((1 + ϵ)

p+n
2 − (1 + ϵ)

n
2 )λ(g(t1)),

for p ≥ q > 1. In particular, λ(t) is continuous.

The above lemma is an adaptation of lemma 3.1 in [53] and their proofs are similar, so
the proof of Proposition 1 is omitted.

Proposition 2. Suppose (Mn, g(t)) is a solution of (6). Let λ1(t) be the first eigenvalue of the
(p, q)-biharmonic system (1) under the flow. For any t0, t1 ∈ [0, T) such that t0 < t1, we have

λ1(t1) ≥ λ1(t0) +
∫ t1

t0

G(t)dt,

where

G(t) :=2(α + 1)
∫

M
|∆u|p−2∆u(Rij∇i∇ju +

1
2

∆ut)dµg(t)

+ 2(β + 1)
∫

M
|∆v|q−2∆v(Rij∇i∇jv +

1
2

∆vt)dµg(t)

− α + 1
p

∫
M

R|∆u|pdµg(t) −
β + 1

q

∫
M

R|∆v|qdµg(t).

Proof. By definition

λ(t) =
α + 1

p

∫
M
|∆u(t)|pdµg(t) +

β + 1
q

∫
M
|∆v(t)|pdµg(t).
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Using the functions u(t) and v(t) defined in Lemma 2, the time derivative of λ(t)
under the Ricci flow (6) yields

dλ(t)
dt

=
∂

∂t

(
α + 1

p

∫
M
|∆u(t)|pdµg(t) +

β + 1
q

∫
M
|∆v(t)|pdµg(t)

)
=: G(t). (8)

Applying Lemma 1 and the evolution (|∆u(t)|p)t (see (12) below), it then follows that

G(t) =2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ − α + 1

p

∫
M

R|∆u|pdµ

+ 2(β + 1)
∫

M
|∆v|q−2∆vRij∇i∇jvdµ − β + 1

q

∫
M

R|∆v|qdµ

+ (α + 1)
∫

M
|∆u|p−2∆u∆utdµ

+ (β + 1)
∫

M
|∆v|q−2∆v∆vtdµ,

which is the same as G defined in the statement of the proposition (see the detailed compu-
tation in (13) below). Integrating both sides of (8) with respect to t on [t0, t1], we obtain

λ(t1)− λ(t0) =
∫ t1

t0

G(t)dt.

Since in this case λ(t1) = λ1(t1) and λ(t0) ≥ λ1(t0), we arrive at

λ1(t1) ≥ λ1(t0) +
∫ t1

t0

G(t)dt. (9)

Remark 1. The above inequality (9) can be used to establish the monotonicity and differentiability
of λ1(t) in the flow interval [0, T). Here, if it can be established that

∫ t1
t0

G(t)dt > 0 in any small
neighborhood of t1, then we have

λ1(t1) > λ1(t0),

for any t0 < t1, with t0 being sufficiently close to t1. Two conclusions can easily be drawn as follows:
(1) Since t ∈ (0, T) is arbitrary, then λ1(t) is strictly increasing on [0, T); and (2) invoking the
classical Lebesgue theorem, based on the monotonicity and continuity properties, λ1(t) is almost
everywhere differentiable along g(t), t ∈ [0, T).

3.1. Variation in Eigenvalue along the Unnormalized Ricci Flow

We now introduce a new quantity

λ(t, u(t), v(t)) :=
α + 1

p

∫
M
|∆u(t)|pdµg(t) +

β + 1
q

∫
M
|∆v(t)|pdµg(t),

where u(t) and v(t) are smooth functions satisfying the normalization condition∫
M
|u|α|v|βuvdµg(t) = 1.

The function λ(t, u(t), v(t)) is a smooth function with respect to the variable t. If (u, v)
are the corresponding eigenfunctions of λ(t0), then λ(t0, u(t0), v(t0)) = λ(t0). In general,
λ(t, u, v) ̸= λ(t) but are equal at t = t0.

The variation formula for the eigenvalue λ(t) along the Ricci flow is therefore
as follows:
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Proposition 3. Suppose (Mn, g(t)) is a solution of (6) on the smooth closed manifold (Mn, g0).
If λ denotes the evolution of the first eigenvalue of the (p, q)-biharmonic system (1), then

d
dt

λ(t, u(t), v(t))|t=t0 = 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ − α + 1

p

∫
M

R|∆u|pdµ

+ 2(β + 1)
∫

M
|∆v|q−2∆vRij∇i∇jvdµ − β + 1

q

∫
M

R|∆v|qdµ

+ λ(t0)
∫

M
R|u|α|v|βuvdµ, (10)

where (u(t), v(t)) is a normalized eigenfunction associated with the eigenvalue λ(t).

Proof. Differentiating (7) with respect to t at t = t0, we have

d
dt

λ(t, u(t), v(t))|t=t0 =
α + 1

p

∫
M

∂

∂t
(|∆u|p)dµ +

β + 1
q

∫
M

∂

∂t
(|∆v|q)dµ

− α + 1
p

∫
M

R|∆u|pdµ − β + 1
q

∫
M

R|∆v|qdµ.
(11)

We have
∂

∂t
(|∆u|p) = p|∆u|p−2∆u{2Rij∇i∇ju + ∆ut}. (12)

Thus, from (11), we obtain

d
dt

λ(t, u(t), v(t))|t=t0 = 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ − α + 1

p

∫
M

R|∆u|pdµ

+ 2(β + 1)
∫

M
|∆v|q−2∆vRij∇i∇jvdµ − β + 1

q

∫
M

R|∆v|qdµ

+ (α + 1)
∫

M
|∆u|p−2∆u∆utdµ

+ (β + 1)
∫

M
|∆v|q−2∆v∆vtdµ. (13)

From ∫
M
|u|α|v|βuvdµ = 1

we obtain

(α + 1)
∫

M
|u|α|v|βvutdµ + (β + 1)

∫
M
|u|α|v|βuvtdµ =

∫
M

R|u|α|v|βuvdµ. (14)

So,

(α + 1)
∫

M
|∆u|p−2∆u∆utdµ + (β + 1)

∫
M
|∆v|q−2∆v∆vtdµ

= (α + 1)
∫

M
λ|u|α|v|βvutdµ + (β + 1)

∫
M

λ|u|α|v|βuvtdµ

= λ
∫

M
R|u|α|v|βuvdµ, using (14). (15)

Finally, using (15) in (13), we obtain (10).

Theorem 1. Suppose (Mn, g(t)) is a solution of (6) on the smooth closed Riemannian manifold
(Mn, g0) and λ(t) is the evolution of the first eigenvalue of the system (1), with the associated
normalized eigenfunction (u(t), v(t)). If Rmin(0) > 0 and Rij ≥ γRgij with 1

k ≤ γ ≤ 1
n , where

k = min{p, q}, then the quantity
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λ(t)(R−1
min(0)−

2
n

t)nkγ (16)

is monotone nondecreasing on [0, T
′
), where T

′
= min{T, n

2 Rmin(0)}. Moreover, λ(t) is differen-
tiable almost everywhere on [0, T

′
).

Proof. Using the fact that Rij ≥ γRgij, from (10) we have

d
dt

λ(t, u(t), v(t))|t=t0 ≥ 2γ(α + 1)
∫

M
|∆u|pRdµ − α + 1

p

∫
M

R|∆u|pdµ

+ 2γ(β + 1)
∫

M
|∆v|qRdµ − β + 1

q

∫
M

R|∆v|qdµ

+ λ(t0)
∫

M
R|u|α|v|βuvdµ

≥ (2pγ − 1)
α + 1

p

∫
M

R|∆u|pdµ

+ (2qγ − 1)
β + 1

q

∫
M

R|∆v|qdµ

+ λ(t0)
∫

M
R|u|α|v|βuvdµ. (17)

From Lemma 2 and using the inequality |Ric|2 ≥ 1
n R2, we have

∂

∂t
R ≥ ∆R +

2
n

R2. (18)

The solution to the ODE d
dt σ(t) = 2

n σ2(t), σ(0) = Rmin(0) is

σ(t) =
1

(Rmin(0))−1 − 2
n t

. (19)

Then, by using maximum principle we have

R(x, t) ≥ σ(t) =
1

(Rmin(0))−1 − 2
n t

, t ∈ [0, T
′
) (20)

where T
′
= min{T, n

2 Rmin(0)}. Hence, from (17) in a sufficiently small neighborhood of t0
we obtain

d
dt

λ(t) ≥ 2kγ

(
1

(Rmin(0))−1 − 2
n t

)
λ(t). (21)

Taking integration of the above inequality on [t1, t0], we obtain

λ(t0) ≥ λ(t1) exp
{

2kγ
∫ t0

t1

dt
(Rmin(0))−1 − 2

n t

}
, (22)

i.e.,

λ(t0)(R−1
min(0)−

2
n

t0)
nkγ ≥ λ(t1)(R−1

min(0)−
2
n

t1)
nkγ. (23)

Hence, the quantity λ(t)(R−1
min(0)−

2
n t)nkγ is monotone nondecreasing on [t1, t0]. Since

t0 is arbitrary, λ(t)(R−1
min(0)−

2
n t)nkγ is monotonic nondecreasing on [0, T

′
). Since λ(t) is

monotone and continuous on [0, T
′
), then the classical Lebesgue theorem implies that λ(t)

is almost everywhere differentiable on [0, T
′
).
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Theorem 2. Suppose (M2, g(t)) is a solution of (6) on the closed surface (M2, g0) with non-
negative scalar curvature. If λ(t) is the evolution of the first eigenvalue of the system (1), then λ(t)
is monotone nondecreasing.

Proof. On a surface we have Rij = 1
2 Rgij. So, from ∂R

∂t = ∆R + 2|Ric|2 we obtain
∂R
∂t = ∆R + R2. Using the maximum principle, one can demonstrate that the scalar curva-

ture R remains non-negative under the Ricci flow. Now, from

d
dt

λ(t, u(t), v(t))|t=t0 =
α + 1

p
(p − 1)

∫
M
|∆u|pRdµ

+
β + 1

q
(q − 1)

∫
M
|∆v|qRdµ

+ λ(t0)
∫

M
R|u|α|v|βuvdµ

≥ 0,

which shows that λ(t) is monotone nondecreasing.

Corollary 1. Suppose (Mn, g(t)) is a solution of (6) on a closed homogeneous Riemannian mani-
fold (Mn, g0). If λ(t) is the evolution of the first eigenvalue of the system (1), then

d
dt

λ(t, u(t), v(t))|t=t0 = 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ

+ 2(β + 1)
∫

M
|∆v|q−2∆vRij∇i∇jvdµ.

Proof. Since scalar curvature on an evolving homogeneous manifold is constant, we have

d
dt

λ(t, u(t), v(t))|t=t0 = 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ

+ 2(β + 1)
∫

M
|∆v|q−2∆vRij∇i∇jvdµ

− R
(

α + 1
p

∫
M
|∆u|pdµ +

β + 1
q

∫
M
|∆v|qdµ

)
+ λ(t0)R

∫
M
|u|α|v|βuvdµ,

from which Corollary 1 follows.

3.2. Variation in Eigenvalue along Normalized Ricci Flow

Normalized Ricci flow is given by the following equation:

∂

∂t
gij = −2Rij +

2
n

rgij, g(0) = g0, (24)

where r =
∫

M Rdµ∫
M dµ

is the average scalar curvature. Along the normalized Ricci flow (24), we

have the following evolution equations:

(i)
∂

∂t
dµ = (r − R)dµ, (ii)

∂

∂t
∆u = 2Rij∇i∇ju + ∆ut −

2
n

r∆u. (25)



Axioms 2024, 13, 332 9 of 12

Proposition 4. Suppose (Mn, g(t)) is a solution of (24) on closed Riemannian manifold (Mn, g0)
and λ(t) is the evolution of the first eigenvalue of the system (1). Then,

d
dt

λ(t, u(t), v(t))|t=t0 = 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ − α + 1

p

∫
M
|∆u|pRdµ

+ 2(β + 1)
∫

M
|∆u|q−2∆vRij∇i∇jvdµ − β + 1

q

∫
M
|∆v|qRdµ

− 2r
α + 1

n

∫
M
|∆u|pdµ − 2r

β + 1
n

∫
M
|∆v|qdµ

+ λ(t0)
∫

M
|u|α|v|βuvRdµ. (26)

Here, (u(t), v(t)) is the associated normalized eigenfunction.

Proof. Differentiating (7) with respect to the time t at t = t0, we have

d
dt

λ(t, u(t), v(t))|t=t0 =
α + 1

p

∫
M

∂

∂t
(|∆u|p)dµ +

β + 1
q

∫
M

∂

∂t
(|∆v|q)dµ

+
α + 1

p

∫
M
|∆u|p(r − R)dµ +

β + 1
q

∫
M
|∆v|q(r − R)dµ. (27)

Now,

∂

∂t
(|∆u|p) = p

2
|∆u|p−2 ∂

∂t
(|∆u|2)

= p|∆u|p−2∆u{2Rij∇i∇ju + ∆ut −
2
n

r∆u}. (28)

Using (28) and (27) yields

d
dt

λ(t, u(t), v(t))|t=t0 =
α + 1

p

∫
M

p|∆u|p−2∆u{2Rij∇i∇ju + ∆ut −
2
n

r∆u}dµ

+
β + 1

q

∫
M

q|∆u|q−2∆v{2Rij∇i∇jv + ∆vt −
2
n

r∆v}dµ

+
α + 1

p

∫
M
|∆u|p(r − R)dµ +

β + 1
q

∫
M
|∆v|q(r − R)dµ

= 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ − α + 1

p

∫
M
|∆u|pRdµ

+ 2(β + 1)
∫

M
|∆u|q−2∆vRij∇i∇jvdµ − β + 1

q

∫
M
|∆v|qRdµ

+ (α + 1)
∫

M
|∆u|p−2∆u∆utdµ + (β + 1)

∫
M
|∆u|q−2∆v∆vtdµ

− 2r
α + 1

n

∫
M
|∆u|pdµ − 2r

β + 1
n

∫
M
|∆v|qdµ + rλ(t0). (29)

Differentiating
∫

M |u|α|v|βuvdµ = 1 we obtain

(α + 1)
∫

M
|u|α|v|βutvdµ + (β + 1)

∫
M
|u|α|v|βuvtdµ = −

∫
M
|u|α|v|βuv(r − R)dµ. (30)

Thus,

(α + 1)
∫

M
|∆u|p−2∆u∆utdµ + (β + 1)

∫
M
|∆u|q−2∆v∆vtdµ =λ

∫
M
|u|α|v|βuvRdµ

− rλ. (31)

Substituting (31) into (29) we obtain the result.
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Theorem 3. Suppose (M2, g(t)) is a solution of (24) on closed Riemannian surface (M2, g0). If
λ(t) is the evolution of the first eigenvalue of the system (1), then

d
dt

λ(t, u(t), v(t))|t=t0 =(p − 1)
α + 1

p

∫
M
|∆u|pRdµ + (q − 1)

β + 1
q

∫
M
|∆v|qRdµ

− r(α + 1)
∫

M
|∆u|pdµ − r(β + 1)

∫
M
|∆v|qdµ

+ λ(t0)
∫

M
|u|α|v|βuvRdµ, (32)

where (u(t), v(t)) is the associated normalized eigenfunction.

Proof. On a closed surface, we have Rij =
1
2 Rgij. Thus, from (26), we have

d
dt

λ(t, u(t), v(t))|t=t0 = (α + 1)
∫

M
R|∆u|pdµ − α + 1

p

∫
M
|∆u|pRdµ

+ (β + 1)
∫

M
R|∆u|qdµ − β + 1

q

∫
M
|∆v|qRdµ

− r(α + 1)
∫

M
|∆u|pdµ − r(β + 1)

∫
M
|∆v|qdµ

+ λ(t0)
∫

M
|u|α|v|βuvRdµ. (33)

Hence, the result follows.

Corollary 2. Suppose (Mn, g(t)) is a solution of (24) on a closed homogeneous Riemannian
manifold (Mn, g0). If λ(t) is the evolution of the first eigenvalue of the system (1), then

d
dt

λ(t, u(t), v(t))|t=t0 = 2(α + 1)
∫

M
|∆u|p−2∆uRij∇i∇judµ

+ 2(β + 1)
∫

M
|∆u|q−2∆vRij∇i∇jvdµ

− 2r
α + 1

n

∫
M
|∆u|pdµ − 2r

β + 1
n

∫
M
|∆v|qdµ.

Proof. This result has the same proof of Corollary 1.

4. Conclusions and Future Expectations

Harmonic functions plays a significant role in Dirichlet boundary value and Neumann
boundary value problems. As we know, a smooth function u : M → R is called a harmonic
function if ∆u = 0. The function u is called biharmonic if ∆2u = 0. Here, ∆2 is known as the
biharmonic operator. The biharmonic function has application to the continuum mechanics
and elasticity theory. It is known that every harmonic function is biharmonic, but the
converse is not true. As a generalization, the function u is called p-biharmonic if ∆2

pu = 0
for p ∈ (1,+∞), where ∆2

p is known as the p-biharmonic operator (an elliptic operator
of fourth order), defined by ∆2

pu = ∆(|∆u|p−2∆u). For p = 2, the p-biharmonic operator
reduces to a harmonic operator. Based on these definitions and motivations, in this paper
we studied the variation formula of the first eigenvalue of the (p, q)-biharmonic system
on a closed Riemannian manifold. We also obtained some monotonic quantities. In future
work, we want to perform interdisciplinary research addressing soliton theory, singularity
theory, submanifold theory, etc., to find more new results. We will take advantage of those
theories and results presented in [13–25] to adapt and improve the approaches to develop
flexible methods to study the eigenvalues of geometric operators. To study the mechanical
vibrations of plates, the eigenvalue problems of biharmonic systems play an important role.
Therefore, in the future research we also want to explore the applications in engineering,
nuclear physics, signal processing, etc.
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19. Gyulov, T.; Moroşanu, G. On a class of boundary value problems involving the p-biharmonic operator. J. Math. Anal. Appl. 2010,

367, 43–57. [CrossRef]
20. Candito, P.; Bisci, G.M. Multiple solutions for a Navier boundary value problem involving the p-biharmonic operator. Discrete

Contin. Dyn. Syst. Ser. S. 2012, 5, 741–751. [CrossRef]
21. Mohammed, M. Existence and nonexistence for boundary problem involving the p-biharmonic operator and singular nonlineari-

ties. J. Func. Spaces 2023, 2023, 7311332.
22. Barker, W.; Dung, N.T.; Seo, K.; Tuyen, N.D. Rigidity properties of p-biharmonic maps and p-biharmonic submanifolds. J. Math.

Anal. Appl. 2024, 537, 128310. [CrossRef]
23. Doumate, J.T.; Toyou, L.R.; Leadi, L.A. On eigenvalues of p-biharmonic operator and associated concave-convex type equation.

Gulf J. Math. 2022, 13, 54–87. [CrossRef]
24. Talbi, M.; Tsouli, N. On the spectrum of the weighted p-harmonic operator with weight. Medeterr. J. Math. 2007, 4, 73–86.

[CrossRef]
25. Ge, B.; Zhou, Q.; Wu, Y. Eigenvalues of the p(x)-biharmonic operator with indefinite weight. Z. Angew. Math. Phys. 2015, 66,

1007–1021. [CrossRef]

http://doi.org/10.1090/S0002-9939-08-09533-6
http://dx.doi.org/10.4236/apm.2021.114015
http://dx.doi.org/10.1016/j.jmaa.2022.125990
http://dx.doi.org/10.55730/1300-0098.3423
http://dx.doi.org/10.1007/s40304-020-00215-6
http://dx.doi.org/10.1007/s00208-007-0098-y
http://dx.doi.org/10.3390/math11234717
http://dx.doi.org/10.1155/S1085337504311115
http://dx.doi.org/10.1016/j.na.2012.04.055
http://dx.doi.org/10.1016/j.na.2013.10.016
http://dx.doi.org/10.4064/ap104-1-5
http://dx.doi.org/10.1515/anona-2020-0042
http://dx.doi.org/10.1155/2014/498386
http://dx.doi.org/10.3934/math.20231528
http://dx.doi.org/10.1016/j.jmaa.2009.12.022
http://dx.doi.org/10.3934/dcdss.2012.5.741
http://dx.doi.org/10.1016/j.jmaa.2024.128310
http://dx.doi.org/10.56947/gjom.v13i1.927
http://dx.doi.org/10.1007/s00009-007-0104-3
http://dx.doi.org/10.1007/s00033-014-0465-y


Axioms 2024, 13, 332 12 of 12

26. Abolarinwa, A.; Yang, C.; Zhang, D. On the spectrum of the p-biharmonic operator under the Ricci flow. Results Math. 2020, 75, 54.
[CrossRef]

27. Abolarinwa, A. Some monotonic quantities involving the eigenvalues of p-bi-Laplacian along the Ricci flow. Iran. J. Sci. Technol.
Trans. Sci. 2021, 46, 219–228. [CrossRef]

28. Li, Y.; Siddiqi, M.; Khan, M.; Al-Dayel, I.; Youssef, M. Solitonic effect on relativistic string cloud spacetime attached with strange
quark matter. AIMS Math. 2024, 9, 14487–14503. [CrossRef]

29. Li, Y.; Aquib, M.; Khan, M.A.; Al-Dayel, I.; Youssef, M.Z. Chen-Ricci Inequality for Isotropic Submanifolds in Locally Metallic
Product Space Forms. Axioms 2024, 13, 183. [CrossRef]

30. Li, Y.; Jiang, X.; Wang, Z. Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime. Res. Math. Sci.
2024, 11, 7. [CrossRef]

31. Li, Y.; Güler, E. Twisted Hypersurfaces in Euclidean 5-Space. Mathematics 2023, 11, 4612. [CrossRef]
32. Li, J.; Yang, Z.; Li, Y.; Abdel-Baky, R.A.; Saad, M.K. On the Curvatures of Timelike Circular Surfaces in Lorentz-Minkowski Space.

Filomat 2024, 38, 1–15.
33. Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Kinematic-geometry of a line trajectory and the invariants of the axodes. Demonstratio Math.

2023, 56, 20220252. [CrossRef]
34. Khan, M.N.I.; Mofarreh, F.; Haseeb, A.; Saxena, M. Certain results on the lifts from an LP-Sasakian manifold to its tangent bundles

associated with a quarter-symmetric metric connection. Symmetry 2023, 15, 1553. [CrossRef]
35. Khan, M.N.I.; Bahadur, O. Tangent bundles of LP-Sasakian manifold endowed with generalized symmetric metric connection.

Facta Univ. Ser. Math. Inform. 2023, 38, 125–139.
36. Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent

bundle. Mathematics 2023, 11, 53. [CrossRef]
37. Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740.
38. Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric

connection. Symmetry 2023, 15, 753. [CrossRef]
39. Azami, S. The first eigenvalue of ∆2

p − ∆p along the Ricci flow. J. Nonlinear Funct. Anal. 2020 .
40. Li, L.; Tang, C.L. Existence of three solutions for (p, q)-biharmonic systems. Nonlinear Anal. 2010, 73, 796–805. [CrossRef]
41. Kong, L.; Nichols, R. On principle eigenvalues of biharmonic systems. Commun. Pure Appl. Anal. 2021, 20, 15.
42. Esen, H.; Ozdemir, N.; Secer, A.; Bayram, M. Traveling wave structures of some fourth-order nonlinear partial differential

equations. J. Ocean Engi. Sci. 2023, 8, 124–132. [CrossRef]
43. Feola, R.; Giuliani, F.; Iandoli, F.; Massetti, J.E. Local well posedness for a system of quasilinear PDEs modelling suspension

bridges. Nonlinear Anal. 2024, 240, 113442. [CrossRef]
44. Mukiawa, S.E.; Leblouba, M.; Messaoudi, S.A. On the well-posedness and stability for a coupled nonlinear suspension bridge

problem. Commun. Pure Appl. Anal. 2023, 22, 2716–2743. [CrossRef]
45. You, Y.L.; Kaveh, M. Fourth-order partial differential equations for noise removal. IEEE Trans. Image Proc. 2000, 9, 1723–1730.

[CrossRef]
46. Laghrib, A.; Chakib, A.; Hadri, A.; Hakim, A. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement.

Disc. Cont. Dyn. Syst. 2020, 25, 415. [CrossRef]
47. Barbu, T. Mixed noise removal framework using a nonlinear fourth-order PDE-based model. Appl. Math. Opti. 2021, 84, 1865–1876.

[CrossRef]
48. Barbu, T. Feature keypoint-based image compression technique using a well-posed nonlinear fourth-order PDE-based model.

Mathematics 2020, 8, 930. [CrossRef]
49. Chand, F. Fourth-order constants of motion for time independent classical and quantum systems in three dimensions. Can. J.

Phys. 2010, 88, 165–174. [CrossRef]
50. Bytev, V.V.; Kniehl, B.A.; Veretin, O.L. Specializations of partial differential equations for Feynman integrals. Nuclear Phys. B 2022,

984, 115972. [CrossRef]
51. Hamilton, R.S. Three manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17, 255–306. [CrossRef]
52. Chow, B.; Knopf, D. The Ricci Flow: An Introduction; NAMS: Providence, RI, USA, 2004.
53. Azami, S. Variation of the first eigenvalue of (p, q)-Laplacian along the Ricci-harmonic flow flow. Int. J. Nonlinear Anal. Appl.

2021, 12, 193–204.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00025-020-1182-9
http://dx.doi.org/10.1007/s40995-021-01240-y
http://dx.doi.org/10.3934/math.2024704
http://dx.doi.org/10.3390/axioms13030183
http://dx.doi.org/10.1007/s40687-023-00420-z
http://dx.doi.org/10.3390/math11224612
http://dx.doi.org/10.1515/dema-2022-0252
http://dx.doi.org/10.3390/sym15081553
http://dx.doi.org/10.3390/math11010053
http://dx.doi.org/10.3390/sym15030753
http://dx.doi.org/10.1016/j.na.2010.04.018
http://dx.doi.org/10.1016/j.joes.2021.12.006
http://dx.doi.org/10.1016/j.na.2023.113442
http://dx.doi.org/10.3934/cpaa.2023084
http://dx.doi.org/10.1109/83.869184
http://dx.doi.org/10.3934/dcdsb.2019188
http://dx.doi.org/10.1007/s00245-021-09813-4
http://dx.doi.org/10.3390/math8060930
http://dx.doi.org/10.1139/P09-094
http://dx.doi.org/10.1016/j.nuclphysb.2022.115972
http://dx.doi.org/10.4310/jdg/1214436922

	Introduction
	Preliminaries
	Variation Formula
	Variation in Eigenvalue along the Unnormalized Ricci Flow
	Variation in Eigenvalue along Normalized Ricci Flow

	Conclusions and Future Expectations 
	References

