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Abstract: Railway signals’ fault text data contain a substantial amount of expert maintenance ex-
perience. Extracting valuable information from these fault text data can enhance the efficiency of
fault diagnosis for signal equipment, thereby contributing to the advancement of intelligent railway
operations and maintenance technology. Considering that the characteristics of different signal equip-
ment in actual operation can easily lead to a lack of fault data, a fault diagnosis method for railway
signal equipment based on data augmentation and an improved attention mechanism (DEIAM) is
proposed in this paper. Firstly, the original fault dataset is preprocessed based on data augmentation
technology and retained noun and verb operations. Then, the neural network is constructed by
integrating a bidirectional long short-term memory (BiLSTM) model with an attention mechanism
and a convolutional neural network (CNN) model enhanced with a channel attention mechanism.
The DEIAM method can more effectively capture the important text features and sequence features
in fault text data, thereby facilitating the diagnosis and classification of such data. Consequently,
it enhances onsite fault maintenance experience by providing more precise insights. An empirical
study was conducted on a 10-year fault dataset of signal equipment produced by a railway bureau.
The experimental results demonstrate that in comparison with the benchmark model, the DEIAM
model exhibits enhanced performance in terms of accuracy, precision, recall, and F1.

Keywords: railway signal equipment; data augmentation; deep learning; attention mechanism;
fault diagnosis

1. Introduction
1.1. Background

Railway signal equipment is an important part of the infrastructure used to ensure the
safe operation of trains. In the daily operation of trains, railway signal equipment generates
operation fault maintenance data. These data are mainly recorded text collected by onsite
maintenance personnel according to their own language habits and experience/knowledge,
including the fault symptoms, fault diagnosis process, and fault classification results of
all signal devices. The number of fault data are determined by the number of device
faults, and the data content is recorded according to the fault diagnosis process and can
be written in perfect detail without specific rules. These railway signal fault text data
undergo a series of checks by signal experts from the initial processing records to the final
archiving, and they contain rich knowledge from fault handling experts [1,2]. However,
due to the unstructured characteristics of their storage, they are not conducive to computer
analysis or processing, resulting in accumulation and wasted resources; thus, they are
not properly utilized. At present, the task of fault classification for signal equipment is
still completed by equipment maintenance personnel, and the classification results may
be inaccurate and arbitrary. Driven by the current development direction of railway big
data and intelligent operations and maintenance, research on fault diagnosis models based
on text data can mine the pattern relationships between fault records and corresponding
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fault equipment categories, achieve automatic classification and processing of fault data,
and provide efficient theoretical reference for maintenance personnel to quickly locate and
address faults according to fault phenomena when equipment fails [3–5].

In recent years, the continuous advancement in deep learning technology has led to
its increasingly profound application in the field of natural language processing. Scholars
have been endeavoring to employ word vector technology and deep learning techniques to
further enhance the precision of intelligent analysis for railway signal fault text. In the field
of natural language processing, recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) are commonly employed deep learning methods. RNNs and CNNs
leverage their respective strengths to extract sequential information and local features from
text data; however, they also possess certain limitations. Specifically, CNNs tend to lose
textual sequence information during the learning process, while RNNs lack the ability to
capture local context effectively. With the successful application of attention mechanisms
in deep learning, it has been realized that neural networks can efficiently and accurately
extract key task-related information from a vast amount of text data while marginalizing
non-key information. This effectively enhances the performance of neural networks [6–8]
and has emerged as a prominent research area within the field of deep learning. The
diverse range of railway signal equipment, complex fault mechanisms, varying amounts
of maintenance text data for different equipment types, imbalanced class distributions,
and short data lengths pose significant challenges to fault diagnosis algorithms during the
learning process.

Based on the aforementioned issues, this paper proposes a fault diagnosis method
(DEIAM) for railway signal equipment utilizing data augmentation and an enhanced
attention mechanism. Specifically, it employs easy data augmentation (EDA) and back-
translation techniques to augment the training dataset size and address sample imbalance.
Additionally, it leverages Word2Vec for word vectorization and utilizes a CNN to capture
local text features across different convolutional kernel sizes. Furthermore, an improved
channel-wise attention (ICWA) mechanism is employed to focus on text features that con-
tribute significantly to the classification results, resulting in the generation of CNN+ICWA
text feature vectors. Moreover, BiLSTM is utilized to learn contextual information from the
text features, followed by an attention mechanism for weighting important features within
the text. These weighted learning results are then incorporated into the BiLSTM-generated
text feature vector, leading to the generation of internal semantic BiLSTM+attention feature
vectors. Finally, fusion of these two types of feature vectors enhances their overall quality
and improves the model’s accuracy for fault diagnosis.

1.2. Literature Review

The fault diagnosis model, driven primarily by text data, classifies fault text through
the extraction of its data features and subsequently accomplishes fault diagnosis via text
classification [9]. The accuracy of fault diagnosis is directly influenced by factors such as
dataset characteristics, feature extraction algorithms, and classification algorithms.

The railway signal fault data are the maintenance data generated by equipment during
its actual operation. Due to variations in the frequency of faults among different equip-
ment, there exists an imbalance in the volume of fault data across various categories. The
methods for addressing dataset imbalance primarily encompass techniques to enhance
the original samples, such as EDA [10] and back-translation; approaches to augment text
representation data, including oversampling or undersampling [11,12]; and algorithmic
strategies, such as ensemble learning and cost-sensitive functions [13,14]. Li [9] employed
the ADASYN (adaptive synthetic sampling) method to address the imbalance in fault data
from high-speed rail signal equipment by synthesizing samples from underrepresented
categories in the training dataset, aiming to enhance the data distribution ratio and ul-
timately improve the overall performance of fault diagnosis models. Yang [15] utilized
the SVM-SMOTE algorithm to randomly generate additional samples for the small and
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medium-sized categories within the text vector representing railway signal equipment
faults, thereby addressing the problem of imbalanced sample data.

The feature extraction algorithms commonly employed in the literature include the
bag-of-words model, TF-IDF, probabilistic topic models, and feature representation based
on deep learning [16–18]. Shang [19] utilized a labeled-LDA probabilistic topic model
to extract the fault text data characteristics of vehicle equipment within the train control
system. Wei [20] incorporated prior knowledge in the railways field to calibrate label
information, employed a cost-sensitive support vector machine to address class imbalances
in fault data, and subsequently applied the latent Dirichlet allocation method with local and
global double-layer topic labels for feature extraction in fault text classification. Song [3]
utilized the Word2Vec model for processing fault terms and generating word vectors, which
were then used to extract the fault text features of train control vehicles through a CNN.
Finally, Zhou [21] applied CNNs for extracting vehicle fault text data features and adopted
a classifier that combines a random forest algorithm with cost-sensitive learning techniques
for diagnosing faults in vehicle equipment.

Classification models can be categorized into two forms: single and integrated. Single
classification models based on deep learning include Bayesian, KNN, and RNN models. In
the realm of continuous optimization for natural language classification models, researchers
have been assimilating the merits of individual models and endeavoring to effectively
amalgamate them into an integrated framework, thereby attaining enhanced classification
outcomes. Similarly, in the field of railway signal equipment fault diagnosis, researchers
have also conducted relevant research and exploration. Wei [5] employed word frequency
weighting to enhance the word vectors generated by the BERT model for extracting text
feature vectors. Subsequently, a combination of BiLSTM and an improved attention mecha-
nism was utilized to classify the fault text of train control vehicle equipment and enable
fault diagnosis. Shang [22] introduced long short-term memory (LSTM) and a BP neural
network into a vehicle equipment fault diagnosis model, where LSTM learned the temporal
characteristic information from the vehicle equipment fault text data while a Bayesian
regularization (BR) algorithm optimized the generalization ability of the BP neural network
model for completing the learning process with fault data samples and achieving unknown
sample-based fault type diagnosis. Drawing upon bidirectional long short-term memory’s
(BiLSTM) advantages in extracting temporal features from fault text, Lin [23] constructed
a railway switch fault diagnosis model by combining BiLSTM with a model based on
correlation (MLCBA), thereby enabling intelligent diagnosis of switch faults.

Drawing on the expertise of scholars and experts in text classification and consid-
ering the data characteristics specific to railway signal equipment fault text, this paper
incorporates data augmentation and attention mechanisms into the fault diagnosis method
for railway signal equipment. Firstly, an enhanced channel attention mechanism was
employed to focus on local features captured by CNNs that contributed significantly to
the classification results. Secondly, an attention mechanism was utilized to emphasize the
contextual sequence features of text learned by BiLSTM. The combination of these two
approaches enables comprehensive feature learning for fault text and further improves the
fault diagnosis performance for railway signal equipment.

The rest of this paper is structured as follows. Section 2 briefly reviews the funda-
mental methods and theories relevant to this research. Section 3 presents the theoretical
background and research framework of the DEIAM model proposed in this paper. Section 4
details the comparison experiment and discusses the results. Section 5 concludes the paper
and explores future work.

2. Materials and Methods
2.1. EDA Technology

EDA is a widely used technique for implementing text data augmentation [10]. EDA
encompasses four primary methods: random swap (RS), random deletion (RD), random
insertion (RI), and synonym replacement (SR). Suppose that C = {C1, C2, . . . , CN} repre-



Machines 2024, 12, 334 4 of 20

sents the dataset, N is the number of categories contained in dataset C, and Cj is the j-th
category in the dataset. Similarly, Cj = {d1, d2, . . . , dn}, where n is the number of samples
contained in Cj, and di is the i-th sample in Cj. After word segmentation preprocessing,
di is expressed as di = {w1, w2, . . . , wm}, where m is the number of words included in di,
wt represents a word in sample di, and wt− represents a non-stop word in sample di. The
principles underlying these four EDA methods are as follows:

(1) RS operation: Word wt in sample di swaps position with word wj after it is judged
with a probability of prs, and a new sample variant drs is created. This operation is
denoted Ors.

(2) RD operation: For word wt in sample di, the deletion operation is judged with a probability
of prd, and a new sample variant drd is created. This operation is denoted Ord.

(3) RI operation: For non-stop word wt− in sample di, the insertion of its synonym after
word wt in sample di is judged with a probability of pri, and a new sample variant dri
is created. This operation is denoted Ori.

(4) SR operation: For non-stop word wt− in sample di, the replacement of its synonym
with probability psr is judged, and a new sample variant dsr is created. This operation
is denoted Osr.

2.2. Back-Translation

The back-translation method employs translation tools and foreign languages as
intermediates to randomly translate samples into a specific form of intermediate language,
resulting in some changes in the language structure of the samples. Subsequently, the
intermediate language is translated back into Chinese, leading to further modifications
in the language structure while preserving the intended meaning of the samples. This
approach effectively enriches the training library by incorporating new samples.

2.3. Attention Mechanism

The concept of an attention mechanism is inspired by human visual perception. When
humans visually explore an object, they possess the innate ability to automatically and con-
tinuously direct their focus towards areas of interest while disregarding irrelevant regions.
This cognitive capability enables humans to efficiently extract pertinent information from a
vast amount of superfluous data.

In recent years, attention mechanisms have gained significant prominence in natural
language processing research. In the context of text classification tasks, if we abstract the
downstream task as a query, the text can be viewed as a sequence of key–value pairs. In the
usual case, K = V, considering the query Q = {q1, q2, . . . , qN}, key K = {k1, k2, . . . , kM},
and value V = {v1, v2, . . . , vM}, where qi is the i-th value of the query sequence, and k j
and vj are vector forms of the j-th constituent elements of the source text, which can be
characters, words, phrases, etc. The output of the attention model is based on the different
weight distributions of the source text sequence generated by different queries qi. The
general form of the attention mechanism can be summarized as follows [24]:

eij = score(qi, k j) (1)

αij = softmax(eij) =
exp(eij)

∑
j

exp(eij)
(2)

Attention(qi, K, V) = ∑
j

αijvj (3)

The attention mechanism’s calculation process is illustrated in Figure 1. Firstly, the
attention score eij for each query qi and key k j is computed based on Equation (1). Subse-
quently, the attention score eij is normalized using softmax and other functions as shown in
Equation (2) to obtain the attention weight score αij for each query qi and key k j. Finally,
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Equation (3) is employed to multiply the weight score αij by its corresponding value vj,
thereby assigning appropriate weights to key characteristics influencing downstream tasks.
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Figure 1. Attention mechanism calculation process.

In 2017, Chen et al. proposed the channel-wise attention (CWA) mechanism [25],
which achieved remarkable results in computer vision. The CWA attention formula is
calculated as follows:

b = tanh((Wc ⊗ v)⊕Whcht−1) (4)

β = softmax
(
W′ib + b′i

)
(5)

where v = {v1, v2, . . . , vc} ∈ RC is the channel feature vector of each channel after average
pooling; Wc, W′i, and Whc are transformation matrices, where Wc and W′i ∈ RK while
Whc ∈ RK×d; K denotes the dimension of the common mapping space; ⊗ represents the
product operation of matrices; ⊕ represents the addition operation of matrices and vectors;
and Wc ⊗ v is a K× C matrix. Additionally, ht−1 ∈ Rd, where ht−1 signifies the output of
the last sentence’s context coding, with d representing the LSTM’s hidden-state dimension.
Furthermore, bc ∈ RK and b′i ∈ R1 are bias terms, b is a K× C matrix, W′ib is a 1× C vector,
and β is also a 1× C vector that assigns weights to individual channel feature maps.

2.4. BiLSTM

The LSTM model incorporates adaptive gating control based on an RNN [26] to
determine the extent to which the LSTM unit retains the previous state and updates the
current input unit state. The gating control in LSTM comprises three components—an
input gate (it), a forgetting gate ( ft), and an output gate (ot)—as illustrated in Figure 2.
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The training procedure based on the LSTM model can be formulated as follows:

it = σ(Wixt + Uiht−1 + bi) (6)
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ft = σ
(

W f xt + U f ht−1 + b f

)
(7)

ot = σ(Woxt + Uoht−1 + bo) (8)

C̃t = tanh(Wcxt + Ucht−1) (9)

Ct = ftCt−1 + itC̃t (10)

ht = ottanh(Ct) (11)

where Wi, W f , Wo, and Wc represent the input weight matrices; Ui, U f , Uo, and Uc denote
the cyclic weight matrices; bi, b f , bo, and bc refer to the bias weights; xt signifies the word
vector of the current input network; and ht−1 represents the hidden-layer output of the
LSTM network at time t− 1.

BiLSTM is composed of forward and reverse LSTM networks, and the output

hi =

[→
h i,
←
h i

]
is obtained by combining the outputs of the forward

→
h i and reverse hidden

layers
←
h i.

3. DEIAM

The proposed fault diagnosis model (DEIAM) for railway signal equipment incorpo-
rates two main components: data preprocessing and the fault diagnosis model.

3.1. Data Preprocessing
3.1.1. Data Analysis

The railway signal fault data are derived from textual records documenting the faults
occurring in each component of the railway signaling system during its actual operation,
including information such as the time, location, and specific fault manifestations. Due to
variations in equipment structure and usage frequency, the number of faults experienced by
different equipment types within a given time period may differ significantly, resulting in an
imbalanced distribution across fault categories within the dataset used for training purposes.
This imbalance can lead to biased classification outcomes favoring overrepresented samples,
ultimately compromising diagnostic accuracy—an issue that cannot be overlooked.

3.1.2. Data Enhancement

Considering that the fault diagnosis accuracy of the model is largely determined by
the size and quality of training data, in practical railway signal equipment operations, the
fault data consist solely of actual onsite fault records, which are limited in quantity and
unbalanced across classes. To address this issue, we employed the easy data augmentation
(EDA) and back-translation techniques to augment the original dataset, thereby effectively
increasing its size and diversity. This approach mitigates the model’s problem of low
diagnostic accuracy caused by insufficient training data at the data level.

The introduction of text length in EDA technology necessitates the adjustment of
the number of words per EDA operation based on sentence length. Consequently, long
sentences allow for a greater degree of word modification while preserving the original
class label compared to shorter sentences. Additionally, we employed English, French,
Japanese, Korean, and Spanish as intermediate languages within the back-translation
method. During this process, samples are randomly translated into an intermediate form
using one of these languages before being translated back into Chinese in order to generate
new samples with identical labels to their originals.

Revised sentence: Assuming that the original fault corpus data collected from the
site are represented as Ds = {(datas, labels)}, we set neda as the multiplier for sample
enhancement in the EDA technology and nt as the multiplier for sample enhancement in the
back-translation method. The specific implementation algorithm for text data enhancement
is presented in Algorithm 1.
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3.1.3. Data Cleaning

The enhanced railway signal fault dataset was processed and organized, primarily
involving the utilization of the Jieba 0.42.1 word segmentation tool to segment the text based
on a self-constructed professional dictionary specific to railway signal faults. This process
included eliminating stop words, retaining verbs and nouns, and ultimately establishing
an index relationship between the text and words in the dataset.

Algorithm 1: Text enhancement algorithm based on EDA and back-translation technology.

Input: original dataset Ds = {(datas, labels)}
Output: enhanced sample dataset Dz = {(dataz, labelz)}
(1) Statistics of the number of samples in the original dataset n;
(2) Initialization of enhancement parameters: prd, pri, prs, psr, neda, nt;
(3) For s = 1 to n:
(4) For k = 1 to neda:

(5)
Ord(prd), Ori(pri), Ors(prs), Osr(psr) are performed on each sample in Ds

in turn;
(6) End for
(7) End for

(8)
The sample data with EDA enhancement are obtained as
Deda = {(dataeda, labeleda)}.

(9) For t = 1 to n:
(10) For r = 1 to nt:
(11) Perform back-translation operation on each sample in Ds in turn;
(12) End for
(13) End for

(14)
Obtain the sample data Dtra = {(datatra, labeltra)} enhanced by the back-translation
method.

(15)

Shuffle and mix the original sample dataset Ds with the enhanced sample datasets
Deda and Dtra to create the enhanced dataset Dz = {(dataz, labelz)}, where dataz is
composed of dataeda, datatra, and datas, while labelz is the corresponding label of
each sample.

3.2. Signal Equipment Fault Diagnosis Model

The signal equipment fault diagnosis model primarily relies on deep learning (BiL-
STM), a convolutional neural network (CNN), and an attention mechanism module for
its structure, as depicted in Figure 3. Regarding text feature extraction, CNNs excel at
capturing local text features; however, they have limitations in extracting sequential fea-
tures and obtaining long-distance semantic information from the text. On the other hand,
BiLSTM is a cyclic recursive network model that effectively captures sequence feature
information and facilitates long-term memory retention. By combining a CNN and BiLSTM
for text feature extraction, we can leverage their respective strengths to compensate for
each other’s weaknesses. Additionally, we introduced the attention mechanism into the
process of extracting text features using the CNN and BiLSTM. This incorporation allows
us to provide more detailed attention to those specific textual characteristics that positively
impact fault diagnosis results while enhancing diagnostic accuracy.

3.2.1. Word Vectorization of Text

Word vectorization of text in the dataset is performed using the Word2Vec algorithm
after data preprocessing. Word2Vec includes two models: CBOW and Skip-gram. In
this study, we adopted the CBOW model to generate word vectors for signal fault texts.
Let a signal fault text d contain n-many words, i.e., d =

{
a1, . . . , aj, . . . an

}
. After word

vectorization, each word aj in text d is converted into a word vector with dimensions
wj ∈ Rinputsize, where inputsize represents the dimensionality of the Word2Vec word vec-
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tors. Consequently, text d can be represented by a matrix D with dimensions
n× inputsize.
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3.2.2. CNN-ICWA Text Feature Extraction

CNN-ICWA text feature extraction, as illustrated in Figure 3, primarily aims to extract
local textual features using a convolutional neural network (CNN) and subsequently
employs the enhanced attention mechanism ICWA (improved CWA) to emphasize the
feature vectors of each channel that contribute significantly to classification. The CNN-
ICWA text feature extraction process encompasses four steps:

1. CNN text feature extraction involves adopting a multiscale convolution kernel ap-
proach to comprehensively extract semantic features at different word count levels
from the text word vector matrix D, considering the varying lengths of each text. To
achieve optimal classification results, it is recommended that convolution kernels with
sizes of 3, 4, and 5 be chosen [27]. The dimension of each row vector in the text matrix
D corresponds to the dimension of each word vector wj in the text. Therefore, we
set the size of each group of convolution kernels as 3× inputsize, 4× inputsize, and
5× inputsize, respectively. Subsequently, CNN convolution operations are performed
on each group, as shown in Equation (12):

Dm = Cm×inputsize·D[i : i + m− 1] (12)

where m represents various convolution kernels (m = 3, 4, 5), C represents the con-
volution operation matrix, and i represents the row subscript of the text matrix
D(i = 1, 2, . . . , n). The symbol · denotes the dot product of the matrices, with
Dm ∈ R(n−m+1).

Considering the training speed of neural networks and the enhancement in model
performance, Dm is batch-normalized and activated after the convolution operation using
Equation (13) to obtain Dm:

Dm
= Relu(Norm(Dm)) (13)

2. Pooling operation: Perform pooling on the outputs Dm obtained from each convo-
lution kernel operation, and select the maximum value Tm as the corresponding
text feature:

Tm = max
(

Dm
)

(14)
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Here, Tm ∈ R1; when the number of each convolution kernel is K, the text features
extracted by each convolution kernel according to Equations (13) and (14) are:

Tm = (Tm
1 , Tm

2 , . . . , Tm
K ) (15)

where Tm ∈ RK.

3. Attention weight calculation: To enhance the attention towards convolutional text
features that contribute to effective classification, we employ the improved channel-
wise attention (ICWA) mechanism for calculating the attention weights of the text
convolution feature Tm across different channels, drawing inspiration from previous
literature [28]. The ICWA mechanism operates as follows:

vm = tanh(Wm ⊗ Tm + bm) (16)

αm= sigmoid(vm) (17)

where Wm ∈ RK×K represents the transformation matrix of various text convolu-
tion features, bm ∈ RK denotes the bias term, vm ∈ RK signifies the channel at-
tention weight of different text convolution features, and αm =

(
αm

1 , αm
2 , . . . , αm

K
)
,

αm ∈ [0, 1], am ∈ RK indicates the channel attention weight of diverse normalized text
convolution features.

4. Update text features: The text convolution features obtained from the three pooling
operations with convolution kernels of sizes 3, 4, and 5 are denoted as Tm (where
m = 3, 4, or 5). Additionally, the attention weight for each text convolution feature
learned using the ICWA mechanism is represented as αm. The updated expression of
the text features can be formulated as follows:

Tm′ = αm × Tm = [αm
1 × Tm

1 , αm
2 × Tm

2 , . . . , αm
K × Tm

K ] (18)

where Tm′ ∈ RK.

The text features extracted by CNN-ICWA can be expressed as follows:

TC =
(

T3′ , T4′ , T5′
)

(19)

3.2.3. BiLSTM–Attention Text Feature Extraction

This consists of three steps:

1. BiLSTM-based text feature extraction: BiLSTM effectively captures the inter-sentence
dependencies in signal fault text by considering both the forward and reverse direc-
tions, thereby enabling deep semantic analysis. In this study, we employed BiLSTM
to extract features from the word vector matrix D of the text, which were then fed into
separate forward and reverse LSTM networks for training as per Equations (6)–(11).

→
h t = Flstm

(
D,
→
h t−1

)
(20)

←
h t = Blstm

(
D,
←
h t+1

)
(21)

Here, Flstm and Blstm represent the LSTM network in the forward and reverse direc-

tions, respectively, while
→
h t and

←
h t are their corresponding hidden-layer outputs. After

merging, the output of BiLSTM is as follows:

ht =

[→
h t ⊕

←
h t

]
(22)
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2. Attention weight calculation: The context feature information of the text, extracted by
the BiLSTM layer, is represented as ht. While ht encompasses the sequential feature
information of the text, it should be emphasized that the BiLSTM layer may not
effectively prioritize key textual information during the process of feature extraction.
To address this limitation, we can utilize the output hn from the implicit state of the
last time step in BiLSTM, which contains global feature information of the entire
text sequence. By generating attention weights based on hn, our model can learn
and prioritize text features that contribute positively to classification tasks. The
implementation process is outlined in detail as follows.

Firstly, considering that hn encompasses feature information in both positive and
negative directions, the output h′n of the BiLSTM layer is derived by aggregating hn based
on Equation (23):

h′n = ∑ hn (23)

Then, the text feature h′n is passed to the attention mechanism layer following the
BiLSTM layer, and the attention weight rt of the BiLSTM text feature h′n is generated based
on Equations (24) and (25):

un = tanh
(
Wnh′n + bn

)
(24)

rt =
exp[ f (un, ht)]

∑
t∈(1,2,...,n)

exp[ f (un, ht)]
(25)

where the matrix bn represents the bias of the attention layer, while Wn denotes the param-
eter matrix associated with the attention layer. Additionally, un signifies the hidden state of
the BiLSTM layer output h′n, t is the number of words in the text, t ∈ (1, 2, . . . , n), f (un, ht)
represents the correlation between un and ht, and rt represents the attention weight of
f (un, ht) normalized by importance.

3 Update text features: The text feature ht, obtained through BiLSTM, is calculated
based on the attention weight rt to derive the weighted feature representation h′n as
Equation (26):

h′n =
n

∑
t

rtht (26)

3.2.4. Feature Fusion and Classification

The aforementioned steps successfully extracted CNN-ICWA text features TC and
BiLSTM attention text features h′n through two distinct channels. Moreover, we employed
the approach outlined in Equation (27) to effectively integrate these two feature sets:

z = contact
(
TC, h′n

)
(27)

The fused text feature vector z is fed into the softmax classifier, and the diagnosis
category of the fault text to be classified is as follows:

ỹ= softmax(Θz + b) (28)

where Θ represents the weight matrix of the softmax classifier, Θ ∈ Rp×s, s denotes the
actual number of labels for signal equipment fault data, ỹ signifies the label probability
diagnosed by the model, and p refers to the feature dimension after fault text fusion.

In this study, the dropout layer was incorporated into the fully connected layer of
the DEIAM model to enhance the diagnostic performance across various fault datasets.
Additionally, the network optimization employed a cross-information entropy loss function,
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as depicted in Equation (29). Finally, the backpropagation (BP) algorithm was iteratively
employed for parameter updates.

L(y, ỹ) = −
s

∑
i=1

yi log ỹi (29)

4. Experimental Results and Analysis
4.1. Experimental Data

A total of 1515 instances of railway signal equipment failure data from the period of
2011 to 2020 were collected from a railway bureau, serving as the experimental data for this
study. Each piece of fault data contains the specific fault phenomenon, the fault handling
process, and the final fault classification label, which was determined by the railway signal
experts after layer-by-layer verification. These data encompass six distinct categories of
equipment, with the corresponding percentages presented in Table 1.

Table 1. Classification and proportion of each category in the original dataset.

Label Category Fault Description Number/Item Percentage

0 Computer interlocking Communication board equipment failure,
acquisition board failure. . . 82 5.41%

1 Signal light Signal light broken, unable to open. . . 166 10.96%

2 ATP Trigger emergency braking,
communication interrupted. . . 256 16.90%

3 Track circuit Insulation damage, red light band, white
light band. . . 459 30.30%

4 CTC Terminal display error, crash. . . 43 2.84%

5 Switch Poor adhesion of switches, no indication
of switch positioning/reversal. . . 509 33.60%

Taking the railway signal equipment data in Table 1 as illustrative examples, switches,
which are vital components within the railway signal system, exhibit intricate structures
and are characterized by their large quantities and frequent usage. Consequently, they
tend to experience a relatively high number of faults. The fault occurrence rate follows
a descending order for the categories switch, track circuit, ATP, signal light, computer
interlocking, and CTC.

The 1515 data collected from the field were taken as the original dataset, which was
expanded using EDA and back-translation methods. The optimal enhancement effect of
EDA technology is achieved when the enhancement parameters are prd = 0.1, pri = 0.1,
prs = 0.1, and psr = 0.1. In this study, we consistently set the parameters of prd, pri, prs,
and psr in accordance with these values, while employing an enhancement multiple of
neda = 4 for EDA samples and nt = 1 for back-translation samples. The distribution of
sample numbers for each category in the enhanced dataset is presented in Table 2.

Table 2. Sample numbers by category in the enhanced dataset.

Label Number of Original
Data/Items Number of Data Enhanced

0 82 492
1 166 996
2 256 1536
3 459 2754
4 43 258
5 509 3054

Total 1515 9090
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4.2. Evaluation Index

The evaluation indices employed in this study for the classification and diagnosis
results of railway signal fault text data included precision, recall, F1 value, and accuracy.
The calculation formulae for each index are presented as follows:

Precision =
1
|C|∑i∈c

(TPi + TNi)× TPi
TPi + FPi

(30)

Recall =
1
|C|∑i∈c

(TPi + TNi)× TPi
TPi + FNi

(31)

F1 =
2× Precision× Recall

Precision + Recall
(32)

Accarary =
nk
N

(33)

where C represents the total count of fault texts related to signal equipment, while c denotes
the total number of classification categories for these fault texts. TPi is the number of
fault samples with fault category i that are properly classified into category i, FNi is the
number of fault samples with fault category i that are classified into category non− i, TNi
is the number of fault samples with fault category non− i that are classified into category
non− i, FPi is the number of fault samples with fault category non− i that are classified
into category i, nk is the number of fault texts that are properly classified, and N is the total
number of fault texts.

4.3. Experimental Environment and Parameter Settings

The model in this study was constructed using the PyTorch deep learning framework
architecture. The experimental setup consisted of an i7-10510U processor, 16.0 GB RAM,
and the Windows 10 operating system. CBOW from the Word2vec model was employed
for word vector generation, with a dimensionality of 100. The CNN architecture utilized
convolution window sizes of 3, 4, and 5, with each having 150 convolution kernels [28]. For
the BiLSTM architecture, there were 128 hidden-layer nodes and a dropout rate of 0.2 for
the dropout layer. Finally, the Adam algorithm was utilized for updating the weight matrix
of the network during model training, with the learning rate set to 0.001.

4.4. Experimental Results

To comprehensively demonstrate the performance of our proposed model and mitigate
any potential deviations caused by randomly selected test data, we adopted a fivefold
cross-validation algorithm in our experiments. All experimental data were divided into
five parts for testing purposes. During each training process, four parts of the data were
used for training, while one part was reserved for testing.

4.4.1. Comparison Results of Data Augmentation and Data Processing Algorithms

To verify the effectiveness of retaining only nouns and verbs in data processing, as well
as the impact of data augmentation algorithms on the classification models, we conducted
four comparative experiments. The experimental data were divided into two categories:
original (O) and enhanced (E) datasets. The original dataset consisted of 1515 pieces of
data collected from railway sites, while the enhanced dataset contained 9090 pieces of data
obtained after applying Algorithm 1 to improve the original dataset. We categorized our
data processing based on whether or not the preprocessed datasets retained only nouns
and verbs. Preprocessing operations such as word segmentation and stop-word removal
were recorded as F, while preprocessing operations that retained only nouns and verbs
after these steps were recorded as B.

The first group consisted of O+F, the second group consisted of O+B, the third group
was composed of E+F, and the fourth group encompassed E+B. These four models were
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trained using a fivefold cross-validation approach, and the average values for accuracy,
precision, recall, and F1 from 50 iterations per fold were utilized as the final evaluation
results. The comparative assessment outcomes for all four test groups are presented in
Table 3.

Table 3. Comparison results based on different data enhancement and data processing algorithms (%).

Dataset Accuracy Precision Recall F1

O+F 93.14 93.10 81.61 78.41
O+B 95.87 94.31 84.28 84.08
E+F 97.41 98.17 94.97 95.17
E+B 98.72 98.75 96.92 96.94

The evaluation data of the first group of experiments in Table 3 (O+F) were taken as
the benchmark, and Figure 4 illustrates the comparison between the evaluation indices of
the other three groups of experimental data and those of O+F. For the original dataset, O+B
exhibited improved evaluation indices compared to O+F, with increases of 2.93%, 1.30%,
3.27%, and 7.23%, respectively. Similarly, for the enhanced dataset, E+B also demonstrated
varying degrees of improvement in the evaluation indices compared to E+F, with increases
of 1.34%, 0.59%, 2.05%, and 1.86%, respectively. These improvements are significantly
higher when compared to the evaluation indices obtained from O+F; specifically, there
were increases of 5.99%, 6.07%, 18.76%, and 23.63%, respectively. This analysis highlights
that employing data augmentation techniques along with noun and verb retention practices
contributes towards enhancing both the size and quality of datasets while reducing noise
levels effectively, consequently leading to improved diagnostic performance by the models.
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Figure 4. Comparison of evaluation indices based on different data augmentation and data processing
algorithms.

4.4.2. Comparison Results without Considering the Attention Mechanism

The proposed model in this paper incorporates attention mechanisms (attention and
ICWA) into both channels. To assess the efficacy of attention mechanisms across different
model algorithms, CNN, LSTM, and BiLSTM were selected as benchmark models, resulting
in the construction of five models for comparative experiments. The dataset used was
E+B, with evaluation metrics consistent with those outlined in Section 4.4.1. Table 4
presents the experimental comparison results of the five models without incorporating
attention mechanisms.
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Table 4. Comparison of the effects of 5 models without considering the attention mechanism (%).

Model Accuracy Precision Recall F1

LSTM 93.85 93.65 91.18 91.22
LSTM+CNN 94.47 94.18 91.67 91.67

BiLSTM 94.46 94.10 92.24 91.93
CNN 94.93 94.80 92.42 92.47

BiLSTM+CNN 95.54 95.46 93.00 93.13

The evaluation indices of the BiLSTM+CNN model, obtained through fivefold cross-
validation, as shown in Table 4, exhibited higher mean values than the LSTM+CNN, LSTM,
CNN, and BiLSTM models. In comparison to the LSTM model, the BiLSTM+CNN model
demonstrated improvements in the evaluation indices of 1.80%, 1.93%, 2.00%, and 2.09%,
respectively. Notably, the LSTM model exhibited the lowest accuracy among all models,
due to potential randomness in the artificial language used for recording fault data text,
which weakens contextual associations and hampers the effective capture of sequence
features by the model. Conversely, similarly to the CNN model, the BiLSTM+CNN model
effectively extracted sequence features from text, resulting in improved accuracy (0.63%)
and precision (0.71%).

4.4.3. Comparison Results Based on Attention Mechanisms

In order to further validate the efficacy of attention mechanisms in enhancing the clas-
sification models’ predictions, this section takes CNN and BiLSTM as benchmark models.
Four comparison models were constructed by incorporating different attention mecha-
nisms (attention and ICWA) at various positions within the models in order to conduct
comparative tests. The fusion of text sequence features extracted by BILSTM+attention and
convolution features extracted by CNN is denoted as (BiLSTM+attention)+CNN, while
BiLSTM+(CNN+ICWA) follows a similar approach. The evaluation metrics used were con-
sistent with those mentioned in Section 4.4.1, and Table 5 presents the average prediction
evaluation index for each fold in the fivefold cross-validation test conducted on the DEIAM
model. Table 6 showcases the comparison results for the five attention-mechanism-based
classification models on the enhanced dataset.

Table 5. The prediction results of the DEIAM model in fivefold incremental learning (%).

Per Fold Accuracy Precision Recall F1

K = 1 95.72 95.73 87.71 87.20
K = 2 99.35 99.36 99.34 99.35
K = 3 99.52 99.54 99.18 99.35
K = 4 99.42 99.44 99.05 99.22
K = 5 99.60 99.69 99.31 99.56

Mean value 98.72 98.75 96.92 96.94

Table 6. Comparison of the effects of five models based on different attention mechanisms (%).

Model Accuracy Precision Recall F1

CNN+ICWA 96.45 96.39 93.88 93.72
BiLSTM+attention 95.59 95.21 92.87 93.67

(BiLSTM+attention)+CNN 96.03 96.16 93.40 93.37
BiILSTM+(CNN+ICWA) 96.63 96.58 94.71 94.75

DEIAM 98.72 98.75 96.92 96.94

The evaluation indices of the DEIAM model proposed in this paper were significantly
higher than those of the other models, as shown in Table 6. Compared with the CNN+ICWA
model, there were increases of 2.35%, 2.45%, 3.24%, and 3.44% in the evaluation indices,
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respectively. Similarly, compared with the BILSTM+attention model, there were increases
of 3.27%, 3.72%, 4.36%, and 3.49%, respectively. Furthermore, when compared to the
BILSTM+AT+CNN model, the evaluation indices of the BILSTM+CNN+ICWA model
showed improvements of 0.62%, 0.44%, 1.40%, and 1.48%, respectively. This indicates that
ICWA has a more pronounced effect on improving evaluation indices at the local feature
extraction layer than attention at the sequence feature extraction layer.

From Tables 4 and 6, it can be observed that introducing attention mechanisms en-
hances the model’s focus on text features, which positively impacts classification tasks and
leads to varying degrees of growth in various index values, demonstrating that attention
mechanisms improve the overall performance. However, it should be noted that, while
enhancing performance, attention mechanisms also increase the computational power and
time requirements to some extent.

4.4.4. Comparison Results Based on Data Features and Attention Mechanisms

To further validate the efficacy of the proposed data augmentation technique across differ-
ent benchmark models, two datasets, O+F and E+B, were selected for analysis. The models
were categorized based on whether they incorporated an attention mechanism. Due to space
constraints, only six models (BiLSTM, CNN, BiLSTM+CNN, CNN+ICWA, BiLSTM+attention,
and DEIAM) were chosen for experimental comparison in Sections 4.4.2 and 4.4.3. The eval-
uation metrics remained consistent with those mentioned in Section 4.4.1. Table 7 and
Figure 5 present the comparative results of these six models on the O+F and E+B datasets.

Table 7. Comparison of the effects of six models based on different data features and attention
mechanisms (%).

Dataset Model Accuracy Precision Recall F1

O+F

BiLSTM 91.36 89.13 75.12 74.23
CNN 92.32 91.40 74.75 72.30

BiLSTM+CNN 92.87 93.21 81.07 80.61
CNN+ICWA 94.01 93.38 82.31 81.70

BiLSTM+attention 93.32 91.19 81.05 81.13
DEIAM 95.37 94.41 83.98 83.78

E+B

BiLSTM 94.46 94.10 92.24 91.93
CNN 94.93 94.80 92.42 92.47

BiLSTM+CNN 95.54 95.46 93.00 93.13
CNN+ICWA 96.45 96.39 93.88 93.72

BiLSTM+attention 95.59 95.21 92.87 93.67
DEIAM 98.72 98.75 96.92 96.94

According to the index values in Table 7, Figure 5 presents a comparative analysis
of the indices for the five models on O+F and E+B. It is evident from Figure 5 that each
model exhibited varying degrees of improvement in the evaluation indices on E+B, particu-
larly with respect to the recall and F1 measures, which showed significant enhancements.
This underscores the direct impact of data quality on model performance, while also af-
firming the positive role played by our adopted data processing method and attention
mechanism design in enhancing model effectiveness, thereby validating the efficacy of our
research approach.

The O+B and E+B datasets were taken as examples to further validate the effectiveness
of the DEIAM model in fault diagnosis across various signal equipment categories. The
fivefold cross-validation approach was employed for training, and the evaluation results of
the confusion matrix were obtained using the prediction data from the 50th round of each
fold, as illustrated in Figures 6 and 7.
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The comparison of fault diagnosis accuracy in the 50th round per fold between
Figures 6 and 7 reveals that the DEIAM model performs better on the E+B dataset than on
the O+F dataset. Additionally, Table 1 shows that category 4 represents CTC equipment
faults while category 0 represents interlocking equipment faults, with their proportions
of fault samples amounting to 2.84% and 5.41%, respectively, indicating their status as
minority categories. Regarding the diagnosis effect for minority categories, it can be ob-
served from Figures 6 and 7 that the DEIAM model demonstrated excellent performance
on the E+B dataset. For instance, for category 4, its fault diagnosis accuracy is reported as
0% and 100% in Figure 6a and Figure 7a, respectively; similarly, for category 0, its fault
diagnosis accuracy is reported as 0% and 97.04% in these figures, respectively. These results
demonstrate that for the E+B dataset, the DEIAM model exhibits enhanced response time
and improved accuracy in fault diagnosis for minority categories. This suggests that the
data processing method proposed in this study effectively mitigates the impact of data
imbalance on model performance and enhances the efficacy of fault diagnosis for minority
categories.

5. Conclusions

In order to enhance the level of intelligent operations and maintenance of railway
signal equipment, a fault diagnosis model based on DEIAM is proposed here, using
text data from signal equipment faults in railway units over the past decade. The main
conclusions are as follows.
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(1) Data processing technology that includes data enhancement and the retention of
names and verbs was shown to improve the size and quality of the dataset compared
to the original dataset (O+F). This improvement effectively enhanced the diagnostic
performance of the model.

(2) The improved model, incorporating attention mechanisms, demonstrated improved
focus on text features that positively impact classification tasks. This resulted in better
fault text feature extraction and overall model performance compared to benchmark
models such as BiLSTM and CNNs.

(3) By integrating sequential and local text features, the enhanced representation of
text features was achieved, thereby strengthening the diagnostic performance of the
DEIAM model. Compared to other models, the DEIAM model showed superior per-
formance in the accuracy, precision, recall, and F1 evaluation indicators. These results
validated its effectiveness in the fault diagnosis and analysis of signal equipment.
Furthermore, this provides a new method for further analyzing fault mechanisms and
diagnosing signal equipment using big data.

The next phase of research will focus on: (1) expanding the range of signal equipment
fault data categories and collecting more signal fault data to validate the universality and
effectiveness of the proposed method; and (2) comprehensively addressing time cost and
computing power issues related to the attention mechanism in model operation, with a
view to further optimizing overall performance.
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