
Citation: Guo, L.; Wang, Y. Predicting

Tool Wear with ParaCRN-AMResNet:

A Hybrid Deep Learning Approach.

Machines 2024, 12, 341. https://

doi.org/10.3390/machines12050341

Academic Editor: Kai Cheng

Received: 4 April 2024

Revised: 4 May 2024

Accepted: 12 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Predicting Tool Wear with ParaCRN-AMResNet: A Hybrid Deep
Learning Approach
Lian Guo and Yongguo Wang *

School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China;
godferyguo@shu.edu.cn
* Correspondence: ygwang@shu.edu.cn

Abstract: In the manufacturing sector, tool wear substantially affects product quality and production
efficiency. While traditional sequential deep learning models can handle time-series tasks, their
neglect of complex temporal relationships in time-series data often leads to errors accumulating
in continuous predictions, which reduces their forecasting accuracy for tool wear. For addressing
these limitations, the parallel convolutional and recurrent neural networks with attention-modulated
residual learning (ParaCRN-AMResNet) model is introduced. Compared with conventional deep
learning models, ParaCRN-AMResNet markedly enhances the efficiency and precision of feature
extraction from time-series data through its innovative parallel architecture. The model adeptly
combines dilated convolution neural network and bidirectional gated recurrent units, effectively
addressing distance dependencies and enriching the quantity and dimensions of extracted features.
The strength of ParaCRN-AMResNet lies in its refined ability to capture the complex dynamics
of time-series data, significantly boosting the model’s accuracy and generalization capability. The
model’s efficacy was validated through comprehensive milling experiments and vibration signal
analyses, showcasing ParaCRN-AMResNet’s superior performance. In evaluation metrics, the model
achieved a MAE of 2.6015, MSE of 15.1921, R2 of 0.9897, and MAPE of 2.7997%, conclusively proving
its efficiency and accuracy in the precise prediction of tool wear.

Keywords: tool wear prediction; dilated convolution neural network; bidirectional gated recurrent
unit; attention mechanism

1. Introduction

With the rapid development of the manufacturing industry, an increasing demand
for advanced machining technologies has been observed. In the machining process, wear
on cutting tools lead to a reduction in product quality and a decrease in production
efficiency [1,2]. Therefore, tool-condition monitoring (TCM) plays a crucial role in providing
valuable guidance for the reasonable use of tools. For companies, a reliable TCM has a
significant production value due to its potential in preventing unplanned downtime and
avoiding corresponding economic losses [3,4]. Considering the dynamic and nonlinear
nature of the tool wear process, influenced by complex working environments, the accurate
prediction of tool wear continues to face significant challenges [5].

Facing predictive challenges, this study employed deep learning techniques. Unlike
traditional machine learning models that require pre-defined feature extraction, deep
learning autonomously learns from complex data, crucial for understanding nonlinear
and multivariate tool wear processes [6]. Its robust adaptability and generalization also
effectively handle real-world data inconsistencies and noise. This study aimed to develop
a deep learning-based TCM model to enhance the accuracy and efficiency of cutting tool
wear prediction, with convolutional neural networks (CNNs) [7] and recurrent neural
networks (RNNs) [8] being the most utilized in recent studies.

CNNs have demonstrated superior feature extraction capabilities in large-scale image
recognition tasks due to their unique convolutional and pooling layers [9]. For example,

Machines 2024, 12, 341. https://doi.org/10.3390/machines12050341 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12050341
https://doi.org/10.3390/machines12050341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0003-7479-2776
https://doi.org/10.3390/machines12050341
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12050341?type=check_update&version=1

Machines 2024, 12, 341 2 of 23

Kumar et al. [10] employed a deep CNN architecture using images of surfaces machined
without cutting fluid as inputs. By selecting the right training parameters, they classi-
fied cutting tool wear, reaching a model recognition and classification accuracy of 99.9%.
Additionally, Lim et al. [11] conducted a comparison between DNN and CNN networks
in the field of tool wear recognition. They found that CNNs are more reliable in using
cropped images of machined surface contours to predict the amount of flank wear on tools
during turning processes, achieving an accuracy rate of 98.9% and an average test RMSE of
2.0969. Meanwhile, García-Pérez et al. [12] employed multi-view camera technology, sup-
plemented by data augmentation and class weighting, to manage the number of worn tools
assessed and the costs associated with image collection. They considered and tested two
CNN architectures, reaching an experimental accuracy as high as 97.8% (with a Matthews
correlation coefficient of 0.955), and they were able to detect defects in various blade types.
Zhang et al. [13] obtained the initial dataset through wavelet transformation, followed
by the use of a conditional variational autoencoder with CNN to augment the dataset,
addressing the issue of data imbalance. This augmented dataset served as the input for a
CNN. Subsequently, they described tool wear using a multistage nonlinear Wiener process
model. Brili et al. [14] implemented an infrared camera for process monitoring, capturing
the visual and thermal states during the cutting process, and created a dataset with more
than 9000 images. Using a CNN, they developed a predictive model for tool wear and
tool damage. The model automatically assesses the condition of cutting tools (ranging
from no wear to high wear) using thermal imaging data, with a classification accuracy of
99.55%. While CNNs have made advancements in the prediction of tool wear, existing
models mainly focus on the spatial correlations of machining signals, often overlooking the
inherent temporal associations and dynamic features within the signals. This bias leads
to current CNN models’ difficulty in effectively addressing long-term dependency issues,
which are crucial for analyzing physical quantities in tool operations as these quantities are
information-rich along the temporal dimension.

The core characteristic of RNNs lies in their hidden layers, which allow the model
to consider the temporal order and dependencies between current input and historical
information when processing data [15]. However, the main challenge that RNNs are prone
to is gradient explosion, especially when there are more hidden layers. To address this issue,
researchers have proposed variants such as long short-term memory networks (LSTMs)
and gated recurrent units (GRUs). Shah et al. [16] used sensors to capture acoustic emission
and vibration signals, creating scaleograms with Morlet wavelets. They utilized the relative
wavelet energy criterion to choose appropriate wavelet functions and employed SinGAN to
produce extra scaleograms. Subsequently, they extracted several image quality parameters
to build feature vectors, which were fed into a stacked LSTM model, achieving outstanding
performance indicators. Li et al. [17] used radar charts to integrate multi-source signal
features and combined them with AdaBoost and Stacked BiLSTM for accurate tool wear
prediction. Mahmood et al. [18] employed the singular spectrum analysis algorithm to
denoise and extract features from original force signal data. Utilizing principal component
analysis techniques to reduce data dimensionality and one-hot encoding to transform the
model’s target variables from text to binary numerical format, they inputted these data into
a BLSTM model, which successfully recognized the state of the tools. Marani et al. [19]
proposed a predictive model based on LSTM for predicting tool flank wear in the machining
process of steel alloys. They tested the LSTM model using the spindle motor current signals
gathered during experiments performed on a lathe. Bilgili et al. [20] developed a neural
network based on LSTM architecture to predict tool flank wear using measured spindle
motor current and dynamometer signals. Although RNNs excel in processing time-series
data, particularly in capturing temporal correlations and long-term dependencies, they still
encounter limitations in the field of tool wear prediction. Existing RNN models typically
process sequence data at fixed time steps, a structure that restricts RNNs from naturally
adapting to and capturing the multi-scale features present in sequence data. This limitation

Machines 2024, 12, 341 3 of 23

inevitably leads to a significant loss of valuable information and results in an incomplete
representation of features.

Although all of these methods employ variants of CNN or RNN and combine them
with other unique processing to obtain good results, they may still not be able to fully
learn all the relevant information as they are mainly based on a single network structure,
which may limit the performance of the models. Furthermore, the stability of these models
in harsh environments remains to be further verified. Therefore, deeper exploration into
network structures is crucial.

In recent years, the combination of CNNs and RNNs has been widely explored in
various fields, as this combination is able to take advantage of the unique strengths of both
networks in feature extraction. Marei et al. [21] developed a hybrid CNN-LSTM model that
incorporates a transfer learning mechanism, using multimodal data from cutting tools. They
employed a pre-trained ResNet-18 CNN model to extract features from visual inspection
images of the cutting tools. They implemented transfer learning based on maximum mean
discrepancy to adapt the trained model specifically for cutting tools. Zhou et al. [22]
used a GRU to capture the temporal dependence in the tool cutting signal and then used
CNN to extract multidimensional features, which were mapped to tool wear values by
linear regression. Si et al. [23] proposed BiLPReS, a novel predictive model that utilizes a
hybrid architecture integrating LSTM, an encoder actuator, and residual skip connections.
Compared with CNNs and RNNs, this model achieves global perception of long-range
dependencies and parallel computation. An et al. [24] first extracted local features using
CNN and reduced the dimensionality, then stacked BiLSTM with LSTM for denoising and
coding, followed by multiple fully connected layers and regression layers to predict the
remaining useful life of the tool. Bazi et al. [25] decomposed signals into a sub-time-series
known as intrinsic mode functions through variational mode decomposition. Using these
intrinsic mode functions as inputs, they successfully achieved relatively accurate tool wear
predictions by employing a combination of CNN and BiLSTM. While the fusion of CNNs
and RNNs in the field of tool cutting wear prediction has shown significant effectiveness,
the current mainstream architecture of serial models exhibits clear limitations. Specifically,
the architecture where the output of one model serves sequentially as the input for the
subsequent model leads to a key issue: errors at each stage may be cumulatively amplified
in subsequent stages, thereby affecting the accuracy of the final output. Moreover, this serial
dependency nature restricts the model’s parallel processing capabilities, further reducing
computational efficiency.

To address the above issues, this paper introduces a novel approach named parallel
convolutional and recurrent neural networks with attention-modulated residual learning
(ParaCRN-AMResNet). The framework adopts a parallel structure that integrates multi-
scale dilated CNN modules with BiGRU modules. In addition, residual blocks with an
attention mechanism are introduced to compensate for uncaptured critical information,
using standard residual blocks to accelerate convergence and stabilize the computation.
Global average pooling (GAP) is employed to identify and retain the most representative
local spatial features while also reducing the spatial dimensions of the feature mappings.
The selected prominent features are fused through a fully connected layer, outputting the
predicted tool wear amount.

The main contributions are as follows:

1. A new tool wear prediction method has been proposed that completes wear prediction
through an end-to-end mechanism, significantly surpassing traditional sequential
deep learning models, especially in terms of processing speed improvement.

2. A parallel architecture is adopted, enabling independent feature capture among
CNN modules, residual blocks, and RNN modules, which significantly enhances the
model’s computational efficiency and accuracy and reduces error accumulation.

3. Different sizes of dilated convolution structures and BiGRU structures have been
designed to capture feature information across various time dimensions, effectively
solving the time-dependency issues found in traditional models.

Machines 2024, 12, 341 4 of 23

4. Effective attention units have been integrated, with SimAM emphasizing and high-
lighting key features, while ResNeSt compensates for potentially uncaptured criti-
cal information, further enhancing prediction accuracy and the model’s noise resis-
tance capability.

The remainder of this paper is structured as follows. Section 2 thoroughly discusses the
detailed structure of the functional modules and overall framework of the proposed deep
learning model. Section 3 details the construction of the experimental rig and delves into an
in-depth analysis of the experimental results on tool wear prediction, thereby confirming
the efficacy and noise resistance capability of the proposed ParaCRN-AMResNet model.
Section 4 presents some important conclusions of the paper.

2. Proposed Methodological Framework

This section primarily introduces the methodological principles employed by the
ParaCRN-AMResNet model. It combines the advantages of dilated CNN and BiGRU
models in a parallel structure. The model conducts in-depth spatio-temporal feature
extraction through the SimAM module and a series of dilated CNN layers, utilizing ResNeSt
for feature refinement and focus. Meanwhile, a Seq2Seq-structured BiGRU processes
sequential data, capturing temporal features across different scales. The two streams are
then merged, with final predictions being performed through a fully connected layer.

2.1. Dilated CNN

Dilated CNN has been recognized as a significant technological advancement in the
field of deep learning. Its advantage lies in systematically enlarging the receptive field of
the convolutional kernel without adding any extra parameters [26,27]. This adjustment
allows for a deeper and broader exploration of the input features, thereby improving the
model’s capacity for processing time-series data. Focusing on the architecture of the dilated
CNN, it is characterized by its ability to modify the layout of the convolutional kernel
to enhance functionality. This design not only enhances the model’s ability to capture
long-term dependencies but also maintains computational efficiency.

In terms of technical details, the key difference between dilated CNN and traditional
CNN is the specific interval arrangement of elements within the convolutional kernel, with
the scale of this interval being defined by the dilation rate. For the dilated CNN of 1D data,
the specific layout can be exhaustively described by the following equation:

y[i] = ∑M
j=1 x[i − j · d] · k[j] (1)

where y[i] is the output feature at position i; x is the input feature; k is the weights in
the convolution kernel; j is traversing all positions of the convolution kernel; i is the
current data point position; d is the dilation rate, defining the interval between weights
in the convolution kernel; and M is the length of the convolution kernel. To further
elucidate, Figure 1 provides an intuitive illustration. In this figure, Figure 1a depicts a
standard convolution kernel covering a 5 × 5 feature range; Figure 1b shows a convolution
kernel with a dilation rate of 2, where each pair of adjacent elements has a clear gap, thus
expanding its receptive field to 9 × 9; Figure 1c presents a convolution kernel with a dilation
rate of 4, where there are 3 gaps between each pair of adjacent elements, leading to a further
increase in the receptive field to 17 × 17.

Machines 2024, 12, 341 5 of 23
Machines 2024, 12, x FOR PEER REVIEW 5 of 24

Figure 1. Dilated convolution visualization: (a) dilation rate = 1, (b) dilation rate = 2, (c) dilation rate

= 4.

2.2. Global Average Pooling

GAP is a variant of conventional pooling, and its general structure can be seen in

Figure 2 [28]. It is positioned at the end of the CNN, following the last convolutional layer.

Unlike the traditional flatten layer, the introduction of the GAP layer aims to effectively

reduce the number of parameters in the model, mitigate overfitting, and enhance the

model’s global understanding of spatial features in the input data. For time-series data,

GAP1D is commonly used, where the average is calculated as follows:

1

1
()

L

i

i

GAP F f
L =

= (2)

where F is the feature vector; L is the length of the feature vector; and fi is the i-th feature

value in the vector. Specifically, the GAP layer performs a global average pooling opera-

tion on the feature maps output by the last convolutional layer, transforming each feature

map into a single numerical value. This not only simplifies the subsequent processing

steps but also retains essential spatial information within the feature maps. Hence, the

GAP layer serves as a key transition point within the model’s structure and acts as a bridge

between feature extraction and classification decision making.

Figure 2. The structure of GAP.

.

.

.

...

Feature maps

Global

Average

Pooling

Outputs

Figure 1. Dilated convolution visualization: (a) dilation rate = 1, (b) dilation rate = 2, (c) dilation rate = 4.

2.2. Global Average Pooling

GAP is a variant of conventional pooling, and its general structure can be seen in
Figure 2 [28]. It is positioned at the end of the CNN, following the last convolutional layer.
Unlike the traditional flatten layer, the introduction of the GAP layer aims to effectively
reduce the number of parameters in the model, mitigate overfitting, and enhance the
model’s global understanding of spatial features in the input data. For time-series data,
GAP1D is commonly used, where the average is calculated as follows:

GAP(F) =
1
L

L

∑
i=1

fi (2)

where F is the feature vector; L is the length of the feature vector; and fi is the i-th feature
value in the vector. Specifically, the GAP layer performs a global average pooling operation
on the feature maps output by the last convolutional layer, transforming each feature map
into a single numerical value. This not only simplifies the subsequent processing steps but
also retains essential spatial information within the feature maps. Hence, the GAP layer
serves as a key transition point within the model’s structure and acts as a bridge between
feature extraction and classification decision making.

Machines 2024, 12, x FOR PEER REVIEW 5 of 24

Figure 1. Dilated convolution visualization: (a) dilation rate = 1, (b) dilation rate = 2, (c) dilation rate

= 4.

2.2. Global Average Pooling

GAP is a variant of conventional pooling, and its general structure can be seen in

Figure 2 [28]. It is positioned at the end of the CNN, following the last convolutional layer.

Unlike the traditional flatten layer, the introduction of the GAP layer aims to effectively

reduce the number of parameters in the model, mitigate overfitting, and enhance the

model’s global understanding of spatial features in the input data. For time-series data,

GAP1D is commonly used, where the average is calculated as follows:

1

1
()

L

i

i

GAP F f
L =

= (2)

where F is the feature vector; L is the length of the feature vector; and fi is the i-th feature

value in the vector. Specifically, the GAP layer performs a global average pooling opera-

tion on the feature maps output by the last convolutional layer, transforming each feature

map into a single numerical value. This not only simplifies the subsequent processing

steps but also retains essential spatial information within the feature maps. Hence, the

GAP layer serves as a key transition point within the model’s structure and acts as a bridge

between feature extraction and classification decision making.

Figure 2. The structure of GAP.

.

.

.

...

Feature maps

Global

Average

Pooling

Outputs

Figure 2. The structure of GAP.

Machines 2024, 12, 341 6 of 23

2.3. Bidirectional Gated Recurrent Unit

GRUs [29] are the same as the LSTM network, which was proposed to address the
issues of long-term memory and gradient problems in traditional RNN networks dur-
ing backpropagation. These units are designed to process sequential data, particularly
in contexts requiring the capture of long-term dependencies. GRU controls the flow of
information by introducing a gating mechanism, with its structure being shown in Figure 3.
For a sequence x = (x1, x2, x3, . . ., xt), where xt is the input at time step t, the update gate zt
determines the extent to which the hidden state from the previous time step ht−1 is retained
in the current time step:

zt = σ(Wz · [ht−1, xt] + bz) (3)

Machines 2024, 12, x FOR PEER REVIEW 6 of 24

2.3. Bidirectional Gated Recurrent Unit

GRUs [29] are the same as the LSTM network, which was proposed to address the

issues of long-term memory and gradient problems in traditional RNN networks during

backpropagation. These units are designed to process sequential data, particularly in con-

texts requiring the capture of long-term dependencies. GRU controls the flow of infor-

mation by introducing a gating mechanism, with its structure being shown in Figure 3.

For a sequence x = (x1, x2, x3, …, xt), where xt is the input at time step t, the update gate zt

determines the extent to which the hidden state from the previous time step ht−1 is retained

in the current time step:

()1[,]t z t t zz W h x b −= + (3)

The reset gate rt controls the influence of the previous time step’s hidden state ht−1 on

calculating the candidate hidden state
1t

h
−

 at the current time step:

 ()1,t r t t rr W h x b −= + (4)

The candidate hidden state
t

h is calculated based on the reset previous hidden state

and the current input, providing a candidate value for the new hidden state:

 1(,)t t t th tanh W r h x b−= + (5)

The final hidden state ht is determined through interaction with the update gate,

which dictates the proportion of the previous hidden state to be retained and the extent

of the new candidate hidden state to be incorporated:

() 11t t t t th z h z h−= − + (6)

where σ is the sigmoid activation function, used to control the flow of information; tanh is

the hyperbolic tangent activation function; ⨀ is the Hadamard product; Wz, Wr, and W are

the weight matrices for the respective gates; and bz, br, and b are the bias vectors.

Figure 3. The structure of a GRU.

BiGRU deploys two independent GRUs at each time point, one processing the for-

ward flow of the sequence and the other handling the backward flow, enabling it to encode

×

×

×

+

σ σ

ht-1

xt Update gate Reset gate

tanh

rt
zt

ht

 t

I-

Figure 3. The structure of a GRU.

The reset gate rt controls the influence of the previous time step’s hidden state ht−1 on
calculating the candidate hidden state h̃t−1 at the current time step:

rt = σ(Wr · [ht−1, xt] + br) (4)

The candidate hidden state h̃t is calculated based on the reset previous hidden state
and the current input, providing a candidate value for the new hidden state:

h̃t = tanh(W · [rt ⊙ ht−1, xt] + b) (5)

The final hidden state ht is determined through interaction with the update gate, which
dictates the proportion of the previous hidden state to be retained and the extent of the
new candidate hidden state to be incorporated:

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (6)

where σ is the sigmoid activation function, used to control the flow of information; tanh is
the hyperbolic tangent activation function; ⊙ is the Hadamard product; Wz, Wr, and W are
the weight matrices for the respective gates; and bz, br, and b are the bias vectors.

BiGRU deploys two independent GRUs at each time point, one processing the forward
flow of the sequence and the other handling the backward flow, enabling it to encode
both forward and backward information of a sequence simultaneously. This bidirectional
structure allows the model to understand the data from two directions, providing a more
comprehensive analysis of the sequence. Its structure is shown in Figure 4. The hidden

Machines 2024, 12, 341 7 of 23

states of both forward and backward directions can be calculated by the above Equations
(3)–(6). The overall hidden state at time point t is given by:

hBiGRU
t =

[
h f orward

t , hbackward
t

]
(7)

where h f orward
t is the forward hidden state at time t; hbackward

t is the hidden state at moment
t in the reverse direction.

Machines 2024, 12, x FOR PEER REVIEW 7 of 24

both forward and backward information of a sequence simultaneously. This bidirectional

structure allows the model to understand the data from two directions, providing a more

comprehensive analysis of the sequence. Its structure is shown in Figure 4. The hidden

states of both forward and backward directions can be calculated by the above equations

(3)–(6). The overall hidden state at time point t is given by:

,BiGRU forward backward

t t th h h = (7)

where
forward

th is the forward hidden state at time t;
backward

th is the hidden state at mo-

ment t in the reverse direction.

Figure 4. The structure of a BiGRU.

Compared with the network structure of LSTM, GRU only contains reset and update

gates, while LSTM has a forget gate, an input gate, and an output gate. This means that

GRU has fewer model parameters and a more streamlined network structure under the

premise of the same number of hidden units. Based on these advantages, this paper selects

BiGRU and designs it as a Seq2Seq structure, which can learn directly from the source

sequence to the target sequence without the need for manually designing complex fea-

tures. Additionally, the model can remember and utilize long-distance dependency infor-

mation in the input sequence.

2.4. Residual Network

The cornerstone of ResNet [30] is the residual block, which brings a structural contri-

bution by introducing a direct channel for information flow in deep networks. This design

allows the network’s original input to be directly transmitted to subsequent layers

through shortcut connections, thereby effectively facilitating the backpropagation of gra-

dients. In deep CNNs, the training process is prone to gradient vanishing or exploding as

the network depth increases. The introduction of residual blocks ensures that gradients

can be transmitted without obstacles, even in very deep networks, significantly enhancing

the model’s training efficiency and stability. The structural design of the residual block

allows each block to directly utilize information from previous layers, not solely relying

on the outcomes of the current layer’s processing. Specifically, a residual block can be de-

scribed as follows:

() ()H x F x x= + (8)

where H(x) is the final output mapping; F(x) is the residual mapping; and x is the identity

mapping.

In this paper, ResNeSt as an improved version of the residual block is also used, with

its structure being shown in Figure 5a [31]. It is used in parallel with a dilated convolu-

tional neural network, a structural arrangement that enables the ResNeSt block to more

Backward

propagation

 …

…

Output

layer

Forward

propagation

Input

layer

Vector

splicing

 …

…

Figure 4. The structure of a BiGRU.

Compared with the network structure of LSTM, GRU only contains reset and update
gates, while LSTM has a forget gate, an input gate, and an output gate. This means that
GRU has fewer model parameters and a more streamlined network structure under the
premise of the same number of hidden units. Based on these advantages, this paper selects
BiGRU and designs it as a Seq2Seq structure, which can learn directly from the source
sequence to the target sequence without the need for manually designing complex features.
Additionally, the model can remember and utilize long-distance dependency information
in the input sequence.

2.4. Residual Network

The cornerstone of ResNet [30] is the residual block, which brings a structural contri-
bution by introducing a direct channel for information flow in deep networks. This design
allows the network’s original input to be directly transmitted to subsequent layers through
shortcut connections, thereby effectively facilitating the backpropagation of gradients. In
deep CNNs, the training process is prone to gradient vanishing or exploding as the net-
work depth increases. The introduction of residual blocks ensures that gradients can be
transmitted without obstacles, even in very deep networks, significantly enhancing the
model’s training efficiency and stability. The structural design of the residual block allows
each block to directly utilize information from previous layers, not solely relying on the
outcomes of the current layer’s processing. Specifically, a residual block can be described
as follows:

H(x) = F(x) + x (8)

where H(x) is the final output mapping; F(x) is the residual mapping; and x is the iden-
tity mapping.

In this paper, ResNeSt as an improved version of the residual block is also used, with
its structure being shown in Figure 5a [31]. It is used in parallel with a dilated convolutional
neural network, a structural arrangement that enables the ResNeSt block to more effectively
supplement feature information that the main network might miss and helps to avoid the
problem of gradient explosion. Within it, the input features are first divided into multiple
cardinals, and each cardinal is further divided into radix groups; the convolution and
split-attention operations are performed separately, and then all outputs are concatenated
with another layer of convolutional outputs. The core of this process is called split-attention,
whose internal structure is shown in Figure 5b. Given a set of input tensors [X1, X2, . . .,

Machines 2024, 12, 341 8 of 23

Xr] with the dimensions [h × w × c], a global average pooling operation is applied to each
tensor Xi, which is:

Pi = GP(Xi) (9)

where i = 1, 2, . . ., r; subsequently, each Pi undergoes a fully connected operation followed
by a batch normalization (BN) operation, and is then activated:

Di = ReLU(BN(Dense(Pi))) (10)

then, for each output Di, three different fully connected operations are applied to generate
a set of attention weights:

Aij = Dense(Di) (11)

where j = 1, 2, 3; then, an r-Softmax operation is used to normalize the weights to obtain Sij.
Sij is used to weigh the input Xi, and all results are summed to obtain the final output, as
shown in (12) and (13).

Sij = rSo f tmax(Aij) (12)

Y =
r

∑
i=1

(Si1 × Xi + Si2 × Xi + Si3 × Xi) (13)

Machines 2024, 12, x FOR PEER REVIEW 8 of 24

effectively supplement feature information that the main network might miss and helps

to avoid the problem of gradient explosion. Within it, the input features are first divided

into multiple cardinals, and each cardinal is further divided into radix groups; the convo-

lution and split-attention operations are performed separately, and then all outputs are

concatenated with another layer of convolutional outputs. The core of this process is called

split-attention, whose internal structure is shown in Figure 5b. Given a set of input tensors

[X1, X2, …, Xr] with the dimensions [h × w × c], a global average pooling operation is ap-

plied to each tensor Xi, which is:

()i iP GP X= (9)

where i = 1, 2, …, r; subsequently, each Pi undergoes a fully connected operation followed

by a batch normalization (BN) operation, and is then activated:

((()))i iD ReLU BN Dense P= (10)

then, for each output Di, three different fully connected operations are applied to generate

a set of attention weights:

()ij iA Dense D= (11)

where j = 1, 2, 3; then, an r-Softmax operation is used to normalize the weights to obtain

Sij. Sij is used to weigh the input Xi, and all results are summed to obtain the final output,

as shown in (12) and (13).

()ij ijS rSoftmax A= (12)

()1 2 3

1

r

i i i i i i

i

Y S X S X S X
=

= + + (13)

The effectiveness of residual networks in various computer vision tasks has been

widely demonstrated.

Figure 5. Schematic diagram of ResNeSt and its internal attention structure: (a) Structure of ResNeSt;

(b) structure of split-attention.

X1 X2 Xr

+

Global pooling

Dense + BN + ReLU

DenseDense Dense

r-Softmax

+

…

× ××

Split 1

…

Split r

Conv

1×1

Conv

3×3

Split Attention

Cardinal k

Input

Concatenate

Conv 1×1

+

Conv

1×1

Conv

3×3

Split 1

…

Split r

Conv

1×1

Conv

3×3

Split Attention

Cardinal 1

Conv

1×1

Conv

3×3

…

(a) (b)

Figure 5. Schematic diagram of ResNeSt and its internal attention structure: (a) Structure of ResNeSt;
(b) structure of split-attention.

The effectiveness of residual networks in various computer vision tasks has been
widely demonstrated.

2.5. Attention Mechanisms for Convolutional Part

Attention mechanisms as an emerging layer have been proven to enable models to
focus more on the relevant parts of a task, thus achieving significant results in improv-
ing model performance. To avoid introducing excessive computational overhead while
ensuring performance enhancement, this paper adopts the SimAM attention mechanism
proposed by Yang et al. [32]. Its purpose is to emphasize important features closely related
to the task and suppress redundant features within the convolutional module. In contrast to
the existing attention modules, which are mainly based on channels and spatial dimensions,
the SimAM mechanism focuses on adjusting the weights of the feature maps to enhance
feature discriminability and does not add extra parameters to the original network. Its
specific structure is shown in Figure 6.

Machines 2024, 12, 341 9 of 23

Machines 2024, 12, x FOR PEER REVIEW 9 of 24

2.5. Attention Mechanisms for Convolutional Part

Attention mechanisms as an emerging layer have been proven to enable models to

focus more on the relevant parts of a task, thus achieving significant results in improving

model performance. To avoid introducing excessive computational overhead while en-

suring performance enhancement, this paper adopts the SimAM attention mechanism

proposed by Yang et al. [32]. Its purpose is to emphasize important features closely related

to the task and suppress redundant features within the convolutional module. In contrast

to the existing attention modules, which are mainly based on channels and spatial dimen-

sions, the SimAM mechanism focuses on adjusting the weights of the feature maps to en-

hance feature discriminability and does not add extra parameters to the original network.

Its specific structure is shown in Figure 6.

Figure 6. The structure of SimAM attention.

The SimAM attention mechanism is based on neuroscience theory, and its core is the

‘energy function’, which is expressed as:

() ()() ()()
1

2 2 2

1

1
; ; ; 1 1

1

M

t t t i t i t t t t

i

e w b y x w x b w b w
M

−

=

= − − + + − + +
−
 (14)

()

()
2 2

2

2 2

t

t

t t

t
w

t

− −
=

− + +
 (15)

()
1

2
t t tb t w= − + (16)

where et is the energy; wt and bt are the weighting and bias transformations; t and xi rep-

resent the target neuron and other neurons in a single channel of the input features, re-

spectively; i is the index in the spatial dimension; M is the number of neurons in that

channel; λ is a normalization parameter; and μt and σ2 are the mean and variance com-

puted for all neurons in the channel excluding t. This function quickly calculates the en-

ergy of each neuron, thereby determining its importance. Because SimAM is designed

with reference to the attention mechanism of mammals, it employs a scaling operator to

represent the brain’s gain effect X on neuronal responses, expressed as:

1
X sigmoid X

E
=

 (17)

where E groups all minimum energy differences across channels and spatial dimensions,

and then a sigmoid function is used to limit excessively large values in E. ⨀ is the Hada-

mard product. It is used to emphasize task-relevant important features and suppress re-

dundant features in the convolutional module.

Figure 6. The structure of SimAM attention.

The SimAM attention mechanism is based on neuroscience theory, and its core is the
‘energy function’, which is expressed as:

et(wt; bt; y; xi) =
1

M − 1

M−1

∑
i=1

(−1 − (wtxi + bt))
2 + (1 − (wt + bt))

2 + λw2
t (14)

wt =
−2(t − µt)

(t − µt)
2 + 2σ2

t + 2λ
(15)

bt = −1
2
(t + µt)wt (16)

where et is the energy; wt and bt are the weighting and bias transformations; t and xi
represent the target neuron and other neurons in a single channel of the input features,
respectively; i is the index in the spatial dimension; M is the number of neurons in that
channel; λ is a normalization parameter; and µt and σ2 are the mean and variance computed
for all neurons in the channel excluding t. This function quickly calculates the energy of each
neuron, thereby determining its importance. Because SimAM is designed with reference to
the attention mechanism of mammals, it employs a scaling operator to represent the brain’s
gain effect X̃ on neuronal responses, expressed as:

X̃ = sigmoid
(

1
E

)
⊙ X (17)

where E groups all minimum energy differences across channels and spatial dimensions,
and then a sigmoid function is used to limit excessively large values in E. ⊙ is the Hadamard
product. It is used to emphasize task-relevant important features and suppress redundant
features in the convolutional module.

2.6. Parallel Modelling Structure

As previously mentioned, CNNs and RNNs each have their unique advantages, but
different types of neural networks also have their limitations. A single module may struggle
to capture all information, limiting its effectiveness in complex applications. Therefore,
hybrid models that combine multiple network architectures are particularly crucial. These
models often integrate the advantages of various structures and can even, to some extent,
compensate for certain deficiencies.

The structure widely used by current researchers is the sequential stacking of networks;
two sequential stacking structures are shown in Figure 7. Different types of networks are
sequentially organized according to their feature extraction capabilities. Although this
structure has been proven to be effective to a certain extent, there are still challenges with
this sequential structure in series. Due to the inherent sequential dependency, the perfor-
mance of subsequent networks is largely limited by the feature extraction effectiveness of
preceding networks. This effect, known as ‘error accumulation’, can amplify minor errors
from one module to the next, significantly reducing overall performance. Furthermore, the
computational efficiency of the sequential structure model is inherently constrained by the
order of computation.

Machines 2024, 12, 341 10 of 23

Machines 2024, 12, x FOR PEER REVIEW 10 of 24

2.6. Parallel Modelling Structure

As previously mentioned, CNNs and RNNs each have their unique advantages, but

different types of neural networks also have their limitations. A single module may strug-

gle to capture all information, limiting its effectiveness in complex applications. Therefore,

hybrid models that combine multiple network architectures are particularly crucial. These

models often integrate the advantages of various structures and can even, to some extent,

compensate for certain deficiencies.

The structure widely used by current researchers is the sequential stacking of net-

works; two sequential stacking structures are shown in Figure 7. Different types of net-

works are sequentially organized according to their feature extraction capabilities. Alt-

hough this structure has been proven to be effective to a certain extent, there are still chal-

lenges with this sequential structure in series. Due to the inherent sequential dependency,

the performance of subsequent networks is largely limited by the feature extraction effec-

tiveness of preceding networks. This effect, known as ‘error accumulation’, can amplify

minor errors from one module to the next, significantly reducing overall performance.

Furthermore, the computational efficiency of the sequential structure model is inherently

constrained by the order of computation.

Figure 7. Common stacking order.

In response to these challenges, this study proposes a novel parallel network struc-

ture as shown in Figure 8. The structure adopts a multi-input strategy, where the original

features are input into the CNN part and the RNN part for independent feature learning,

respectively, after undergoing a simple pre-processing. Throughout the supervised model

training process, each input stream remains independent, avoiding mutual interference.

After a series of operations, all extracted features are eventually concatenated into a 1D

vector, preparing the ground for subsequent tool wear analysis.

Last

Sequence

RNN

Part

CNN

Part
Result

Pooling

Layers

RNN

Part
CNN

Part
Result

Input

Input

Sequential CNN-RNN Feature Extraction

Sequential RNN-CNN Feature Extraction

Figure 7. Common stacking order.

In response to these challenges, this study proposes a novel parallel network structure
as shown in Figure 8. The structure adopts a multi-input strategy, where the original
features are input into the CNN part and the RNN part for independent feature learning,
respectively, after undergoing a simple pre-processing. Throughout the supervised model
training process, each input stream remains independent, avoiding mutual interference.
After a series of operations, all extracted features are eventually concatenated into a 1D
vector, preparing the ground for subsequent tool wear analysis.

Machines 2024, 12, x FOR PEER REVIEW 11 of 24

Figure 8. Parallel network structure.

2.7. Proposed Model Structure

This paper proposes a novel model, ParaCRN-AMResNet, depicted in Figure 9. The

model consists of three main parts: the CNN part, the RNN part, and a fully connected

layer. The specific implementation process is as follows:

(1) The model employs wavelet transformation and concatenation to preprocess the sig-

nal, ensuring a comprehensive multi-scale feature input.

(2) It uses dilated CNN and ResNeSt blocks in a parallel layout to extract diverse scale

features without cross-interference. The integration of the SimAM attention mecha-

nism selectively focuses on crucial features, streamlining the feature set.

(3) A Seq2Seq BiGRU module is in parallel, aligned with the CNN layers. This configu-

ration efficiently captures temporal features, with a varying number of units in hid-

den layers to address different time scales.

(4) The outputs from the CNN and RNN segments are combined, which is followed by

a fully connected layer, to accurately predict tool wear.

The model’s parallel computing architecture allows for independent and effective

feature extraction, merging the benefits of dilated CNN and BiGRU. The SimAM attention

mechanism enhances focus on task-relevant features, improving the model’s sensitivity

and precision. The incorporation of ResNeSt blocks supplements the model, ensuring no

critical feature is overlooked. An increasing dilation rate in the dilated CNN captures de-

tailed features, ranging from localized to broader contextual information. Concurrently,

the BiGRU module, with its hidden layers gradually decreasing in size, adeptly captures

temporal information across varying scales, enhancing the model’s ability to process com-

plex time-series data.

In summary, the ParaCRN-AMResNet model encapsulates a blend of innovative

techniques and structures, enhancing its performance in tool wear prediction.

Figure 8. Parallel network structure.

2.7. Proposed Model Structure

This paper proposes a novel model, ParaCRN-AMResNet, depicted in Figure 9. The
model consists of three main parts: the CNN part, the RNN part, and a fully connected
layer. The specific implementation process is as follows:

(1) The model employs wavelet transformation and concatenation to preprocess the
signal, ensuring a comprehensive multi-scale feature input.

(2) It uses dilated CNN and ResNeSt blocks in a parallel layout to extract diverse scale fea-
tures without cross-interference. The integration of the SimAM attention mechanism
selectively focuses on crucial features, streamlining the feature set.

Machines 2024, 12, 341 11 of 23

(3) A Seq2Seq BiGRU module is in parallel, aligned with the CNN layers. This configura-
tion efficiently captures temporal features, with a varying number of units in hidden
layers to address different time scales.

(4) The outputs from the CNN and RNN segments are combined, which is followed by a
fully connected layer, to accurately predict tool wear.

Machines 2024, 12, x FOR PEER REVIEW 12 of 24

Figure 9. The detailed schematic diagram of ParaCRN-AMResNet.

3. Experiment

In this section, the primary focus encompasses the experimental conditions related

to tool wear data, the selection of parameters for the ParaCRN-AMResNet model, the as-

sessment of model noise resistance capability, and the ultimate prediction results.

3.1. Experiment Setup

Experiments are conducted using the IEEE PHM Challenge 2010 dataset [33] to vali-

date the performance of the proposed ParaCRN-AMResNet model. The specific layout of

the experimental setup is shown in Figure 10. The experiment utilized a Röders Tech RFM

760 CNC machine tool, and the selected tool was a three-flute carbide ball-end mill with

a cutting length of 108 mm. The workpiece material was stainless steel, and the relevant

cutting parameters are listed in Table 1. In order to measure the cutting forces, a three-

directional piezoelectric dynamometer from Kistler was installed between the machine

tool and the workpiece. At the same time, three Kistler accelerometers were mounted on

the workpiece to measure vibration signals, and an acoustic emission (AE) sensor was

used to capture elastic waves generated by stress changes. All of these sensor signals were

amplified and collected through a Kistler 5019A multi-channel charge amplifier and DAQ

Ni PCI1200 data acquisition card, with a sampling rate set at 50 kHz. After each cutting

operation, the wear of the mill’s flank face was measured using a Leica MZ12 microscope,

and this measurement served as the target value for each sample. The IEEE PHM Chal-

lenge 2010 dataset consists of six subsets (C1 to C6), and each subset contains data from 7

different sensor signals. Among these, subsets C1, C4, and C6 additionally include corre-

sponding tool wear measurements, while subsets C2, C3, and C5 do not contain such data.

Based on these considerations, this study selected subsets C1 and C6, which contain tool

wear data, as the training set and used the C4 subset as the test set for subsequent model

validation.

 …

…

…

…

Output

layer

Backward

propagation
Forward

propagation

Input

layer

Vector

splicing

BIGRU hidden_dim:128

Encoder Unit

Repeat Vector layer

Input

Input

ResNeSt

SimAM

Convolution

layer

Dilated rate:1

BNActivation

C
o

n
ca

ten
a

te

Convolution

layer

Dilated rate:2

Convolution

layer

Dilated rate:4

Convolution

layer

Dilated rate:8

ResNets
GAP1D Dense

Output 1

Input

Output 2

C
o

n
ca

te
n

a
te

Result

 …

…

…

…

Output

layer

Backward

propagation
Forward

propagation

Input

layer

Vector

splicing

BIGRU hidden_dim:64

 …

…

…

…

Output

layer

Backward

propagation
Forward

propagation

Input

layer

Vector

splicing

BIGRU hidden_dim:32

Decoder Unit

 …

…

…

…

Output

layer

Backward

propagation
Forward

propagation

Input

layer

Vector

splicing

BIGRU hidden_dim:16

Figure 9. The detailed schematic diagram of ParaCRN-AMResNet.

The model’s parallel computing architecture allows for independent and effective
feature extraction, merging the benefits of dilated CNN and BiGRU. The SimAM attention
mechanism enhances focus on task-relevant features, improving the model’s sensitivity
and precision. The incorporation of ResNeSt blocks supplements the model, ensuring no
critical feature is overlooked. An increasing dilation rate in the dilated CNN captures
detailed features, ranging from localized to broader contextual information. Concurrently,
the BiGRU module, with its hidden layers gradually decreasing in size, adeptly captures
temporal information across varying scales, enhancing the model’s ability to process
complex time-series data.

In summary, the ParaCRN-AMResNet model encapsulates a blend of innovative
techniques and structures, enhancing its performance in tool wear prediction.

3. Experiment

In this section, the primary focus encompasses the experimental conditions related
to tool wear data, the selection of parameters for the ParaCRN-AMResNet model, the
assessment of model noise resistance capability, and the ultimate prediction results.

3.1. Experiment Setup

Experiments are conducted using the IEEE PHM Challenge 2010 dataset [33] to vali-
date the performance of the proposed ParaCRN-AMResNet model. The specific layout of
the experimental setup is shown in Figure 10. The experiment utilized a Röders Tech RFM
760 CNC machine tool, and the selected tool was a three-flute carbide ball-end mill with
a cutting length of 108 mm. The workpiece material was stainless steel, and the relevant

Machines 2024, 12, 341 12 of 23

cutting parameters are listed in Table 1. In order to measure the cutting forces, a three-
directional piezoelectric dynamometer from Kistler was installed between the machine
tool and the workpiece. At the same time, three Kistler accelerometers were mounted on
the workpiece to measure vibration signals, and an acoustic emission (AE) sensor was
used to capture elastic waves generated by stress changes. All of these sensor signals were
amplified and collected through a Kistler 5019A multi-channel charge amplifier and DAQ
Ni PCI1200 data acquisition card, with a sampling rate set at 50 kHz. After each cutting
operation, the wear of the mill’s flank face was measured using a Leica MZ12 microscope,
and this measurement served as the target value for each sample. The IEEE PHM Challenge
2010 dataset consists of six subsets (C1 to C6), and each subset contains data from 7 different
sensor signals. Among these, subsets C1, C4, and C6 additionally include corresponding
tool wear measurements, while subsets C2, C3, and C5 do not contain such data. Based on
these considerations, this study selected subsets C1 and C6, which contain tool wear data,
as the training set and used the C4 subset as the test set for subsequent model validation.

Machines 2024, 12, x FOR PEER REVIEW 13 of 24

Figure 10. Experimental setup.

Table 1. Cutting parameters.

Property Values

Y-depth of cut 0.125 mm

Z-depth of cut 0.2 mm

Feed rate 1555 mm/min

3.2. ParaCRN-AMResNet Traning and Testing Procedure

To build and assess the performance of the training and testing models, the data used

are an already labeled dataset. During the training period for supervised model hyperpa-

rameter optimization, considering that the task is tool wear prediction, the loss function

was set as the mean squared error (MSE), which is defined as:

()
2

1

1
i

n

i predi
MSE y y

n =
= − (18)

where n is the number of samples; yi is the actual value of the i sample; and
ipredy is the

predicted value for the i sample.

Adaptive moment estimation (Adam) was chosen as the optimizer, known for accel-

erating gradient descent, thereby enabling efficient and robust training acceleration [34].

The activation function selected was Swish [35], which is expressed as follows:

() ()Swish x x x = (19)

where x is the input, σ is the sigmoid function, and β is an adjustable parameter, which

for the sake of simplifying calculations was set to 1 in this paper. Compared with other

activation functions, the Swish function is smoother and can effectively assist the opti-

mizer in updating weights. The initial learning rate was set to 0.0005, the batch size was

chosen as 16, the number of training epochs was fixed at 100, and dropout was set at 0.4.

The model construction, training, and testing were all implemented using Python 3.10.12

and Keras 2.11.0, with the Keras backend being Tensorflow-gpu 2.11.0, on an Intel(R)

Xeon(R) Gold 5318Y CPU @ 2.10 GHz processor and NVIDIA A100 PCIe 40 GB graphics

card. The server’s operating system was Ubuntu 20.04.

Figure 10. Experimental setup.

Table 1. Cutting parameters.

Property Values

Y-depth of cut 0.125 mm
Z-depth of cut 0.2 mm

Feed rate 1555 mm/min

3.2. ParaCRN-AMResNet Traning and Testing Procedure

To build and assess the performance of the training and testing models, the data
used are an already labeled dataset. During the training period for supervised model
hyperparameter optimization, considering that the task is tool wear prediction, the loss
function was set as the mean squared error (MSE), which is defined as:

MSE =
1
n∑n

i=1

(
yi − ypredi

)2
(18)

where n is the number of samples; yi is the actual value of the i sample; and ypredi
is the

predicted value for the i sample.
Adaptive moment estimation (Adam) was chosen as the optimizer, known for acceler-

ating gradient descent, thereby enabling efficient and robust training acceleration [34]. The
activation function selected was Swish [35], which is expressed as follows:

Swish(x) = x · σ(βx) (19)

Machines 2024, 12, 341 13 of 23

where x is the input, σ is the sigmoid function, and β is an adjustable parameter, which
for the sake of simplifying calculations was set to 1 in this paper. Compared with other
activation functions, the Swish function is smoother and can effectively assist the optimizer
in updating weights. The initial learning rate was set to 0.0005, the batch size was chosen
as 16, the number of training epochs was fixed at 100, and dropout was set at 0.4. The
model construction, training, and testing were all implemented using Python 3.10.12 and
Keras 2.11.0, with the Keras backend being Tensorflow-gpu 2.11.0, on an Intel(R) Xeon(R)
Gold 5318Y CPU @ 2.10 GHz processor and NVIDIA A100 PCIe 40 GB graphics card. The
server’s operating system was Ubuntu 20.04.

3.3. Data Preprocessing

In the C1 and C6 datasets, 80% of the data were used for the training set, while
the remaining 20% served as the validation set. Due to the sampling frequency set at
50 kHz, a large amount of data were generated in each cutting process, significantly
increasing the time of model training. To alleviate this issue, a downsampling method
was employed to extract 5000 equidistant data points from each signal for sequential
concatenation. Additionally, signal processing utilized the Daubechies wavelet (db4) and a
2-level decomposition wavelet transform, enabling the model to capture both the general
trends and the detailed information within the signal. Furthermore, the flank face wear
values of the milling tool, measured after actual cutting operations, were used as sample
labels to construct the tool wear dataset.

3.4. Evaluation Criteria

Four regression metrics were selected for the quantitative evaluation of the model’s
predictive performance: mean absolute error (MAE), MSE, mean absolute percentage error
(MAPE), and coefficient of determination r-squared (R2). The standard formulas for MSE,
MAPE, and R2 are as follows:

MAE =
1
n

n

∑
i=1

∣∣∣yi − ypredi

∣∣∣ (20)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ypredi

yi

∣∣∣∣ (21)

R2 = 1 −
∑n

i=1

(
yi − ypredi

)2

∑n
i=1

(
yi − 1

n ∑n
i=1 yi

)2 (22)

The following experiments were repeated three times, and the final metrics are the
average values of these three trials.

3.5. Hyperparameter Optimization

For the proposed ParaCRN-AMResNet network, its performance is primarily in-
fluenced by five key hyperparameters: (1) the dilation rate Dr in dilated convolution;
(2) cardinality in ResNeSt, represented by Nc, which specifies the number of feature groups,
with the radix set to 1 considering the volume of training data and computational effi-
ciency; (3) the number of ResNeSt blocks Ns; (4) the number of ResNet blocks Nr; and
(5) the number of units in the BiGRU hidden layer, Nh. The dilation rate directly affects the
ability of the convolution module to perceive and capture temporal information, while the
middle three parameters are directly linked to the model’s computational efficiency and
representational and noise resistance capability; the number of units in the BiGRU layer
influences the model’s information storage capacity. To thoroughly assess the impact of
these five hyperparameters, experiments were conducted.

Machines 2024, 12, 341 14 of 23

3.5.1. Selection of Dilation Rate

In dilated CNN, the dilation rate is used to increase the receptive field of the convolu-
tion operation, which means it directly impacts the convolution layer’s ability to capture
information in the data, thus affecting the model’s perception of the entire dataset. How to
balance the richness and scale of the features captured by the convolutional layer was the
focus of this experiment. The dilation rates for the four convolution layers were limited
to three options: [1, 1, 1, 1], [1, 2, 4, 8], and [1, 3, 6, 9]. Additionally, the cardinality Nc in
ResNeSt was tentatively set to 3 and the number of stacking layers Ns to 10; the number of
ResNet stacking layers Nr was tentatively set to 4, and the number of units in the BiGRU
hidden layer Nh was set to 128. Other parameter settings can be found in Table 2.

Table 2. The provided ParaCRN-AMResNet model parameters.

Item Value/List

Epoch 100
Batch size 16

Learning rate 0.0005
Optimization function Adam

Activation function Swish
Length of the time-series 5000

Number of the time-series 945
Filter size 5

Filter number 128
Dilation rate [1, 1, 1, 1], [1, 2, 4, 8], [1, 3, 6, 9]

Neuron number in BiGRU unit [64, 128, 256, 512]
Stacking number of ResNets unit [2, 4, 6, 8]
Stacking number of ResNeSt unit [8, 10, 12, 14]

The number of cardinalities [2, 3, 7]
The number of neurons in the dense layer 128

Dropout rate in dilated CNN 0.4
Method of feature fusion Concatenate

Method of padding Same

The experimental results are shown in Table 3. It showcases the model’s response to
different dilation rate configurations, with the [1, 2, 4, 8] setting demonstrating a notable
enhancement in predictive performance. This configuration yields the most favorable
outcomes in terms of MAE, MSE, MAPE, and R2 metrics.

Table 3. Experimental results of model performance under different Dr.

Dr MAE MSE R2 MAPE

[1, 1, 1, 1] 3.8684 29.18 0.9801 4.0195%
[1, 2, 4, 8] 2.6015 15.1921 0.9897 2.7997%
[1, 3, 6, 9] 4.4606 41.5637 0.9717 4.7167%

These metrics indicate the smallest discrepancy between the predicted values and the
actual values, suggesting that the model performs best under this dilation rate configuration.
This also highlights the importance of appropriately selecting dilation rates for optimizing
the performance of CNNs. Specifically, the configuration of dilation rates [1, 2, 4, 8] most
effectively balances the scope of feature capture and the preservation of detail, ensuring
that the model can comprehensively and accurately process the critical information within
the data. Consequently, [1, 2, 4, 8] will be chosen as the dilation rates for the convolutional
layers in subsequent experiments.

3.5.2. Selection of Cardinality

In the ResNeSt architecture, cardinality is used to specify how many different groups
to split the feature channel into. Increasing the number of cardinalities allows each group to

Machines 2024, 12, 341 15 of 23

specialize in learning specific features or attributes in the input data, enabling the model to
capture the diversity and complexity of the data more finely. However, a higher cardinality
value also leads to a linear increase in computational cost and may even result in decreased
performance due to increased network complexity. Therefore, it is necessary to find a
balance between computational cost and model performance. Given that the data have
seven feature channels, the range for cardinality Nc was set between [2, 3, 7]. Additionally,
the number of stacking layers Ns in ResNeSt was set to 10, the number of stacking layers
Nr in ResNets to 4, and the number of units in the BiGRU hidden layer Nh to 128. Other
parameter settings can be found in Table 2. The final experimental results are shown in
Table 4.

Table 4. Experimental results of model performance under different Nc.

Nc MAE MSE R2 MAPE

2 3.8600 29.3686 0.9794 4.0383%
3 2.6015 15.1921 0.9897 2.7997%
7 4.6292 41.9538 0.9715 4.6604%

As shown in Table 4, when Nc is set to 3, the model achieves the lowest values in MAE,
MSE, and MAPE and the highest in R2. When Nc = 7, the model’s performance is slightly
inferior to the setting of Nc = 2. It is noteworthy that the computation time per epoch for
Nc = 7 is 108 s, which represents a significant increase in computational cost compared with
55 s for Nc = 3 and 50 s for Nc = 2.

The results indicate that while increasing cardinality can enhance the model’s ability to
capture the diversity and complexity of input data, a higher cardinality value also linearly
increases computational costs and may even lead to performance degradation due to
increased network complexity. Therefore, a balance must be struck between computational
cost and model performance. Considering both model performance and computational
efficiency, setting the cardinality Nc to 3 is identified as the most appropriate choice.

3.5.3. Selection of ResNeSt Stacking Number

The number of stacking layers Ns in ResNeSt not only affects the model’s ability to
supplement and extract temporal features but also directly relates to computational costs
and the risk of overfitting. To determine the optimal value for Ns, a series of experiments
are conducted. Based on preliminary results, the range of values for this parameter is
limited to [8, 10, 12, 14]. Temporarily, the number of stacking layers Nr in ResNets is set to
4, and the number of units in the BiGRU hidden layer Nh is set to 128. Other parameter
settings can be found in Table 2. The final experimental results are shown in Table 5.

Table 5. Experimental results of model performance under different Ns.

Ns MAE MSE R2 MAPE

8 3.3891 23.5464 0.9840 3.7081%
10 2.6015 15.1921 0.9897 2.7997%
12 3.5141 23.6523 0.9839 3.7366%
14 4.8587 43.2362 0.9706 4.8708%

According to the data in Table 5. When the number of stacked layers Ns in the ResNeSt
architecture is set to 10, the model exhibits its best predictive performance. The specific
performance metrics are as follows: MAE: 2.6015, MSE: 15.1921, R2:0.9897, MAPE: 2.7997%.

The experimental results underscore the critical importance of optimizing Ns in the
design process of this model. Specifically, the model needs to strike a balance between en-
hancing the capability to extract temporal features and controlling computational resource
consumption to avoid overfitting. Among all tested configurations, setting Ns to 10 not
only significantly optimized the model’s prediction accuracy but also demonstrated an

Machines 2024, 12, 341 16 of 23

effective compromise between increasing the depth of the model structure and maintaining
computational efficiency. Therefore, 10 is determined as the best choice for Ns to be used in
subsequent experiments.

3.5.4. Selection of ResNets Stacking Number

The number of stacking layers Nr in ResNets and Ns in ResNeSt similarly impact the
model, primarily with respect to the learning of model feature hierarchies and the efficiency
of model convergence. Based on the data from preliminary experiments, the range for Nr is
set to [2, 4, 6, 8]. Similarly, the number of units in the BiGRU hidden layer Nh is set to 128.
The settings for the other parameters can be found in Table 2.

As shown in Table 6, increasing the number of Nr does not lead to an improvement in
model performance; instead, a decrease in performance is observed. The model exhibits its
best performance when Nr is set to 4.

Table 6. Experimental results of model performance under different Nr.

Nr MAE MSE R2 MAPE

2 3.6867 35.3543 0.9745 3.5255%
4 2.6015 15.1921 0.9897 2.7997%
6 3.6133 31.6816 0.9785 3.7820%
8 5.0007 47.1499 0.9679 4.7343%

The phenomenon shown in the Table 6 can likely be attributed to the increased
complexity of the model, which becomes a burden in the presence of an insufficient
number of training samples, leading to overfitting and a reduction in generalization ability.
Therefore, finding a balance between model complexity and performance is particularly
crucial. When Nr = 4, all performance indicators are at their best, making this setting the
optimal choice for subsequent experiments.

3.5.5. Selection of BiGRU Hidden Layers Number

The model with a higher number of hidden layers Nh in BiGRU shows better perfor-
mance in three aspects: temporal and sequential feature extraction, information storage,
and model capacity. However, a higher number of Nh also affects the training speed and
practicality of deploying the model, making it more difficult to interpret. Therefore, an
appropriate value for Nh must be chosen based on experimental results. Based on expe-
rience, the range for Nh is set to [64, 128, 256, 512]. Other parameters of the model are in
accordance with Table 2. The specific experimental results are presented in Table 7.

Table 7. Experimental results of model performance under different Nh.

Nh MAE MSE R2 MAPE

64 4.7822 39.4534 0.9732 5.1045%
128 2.6015 15.1921 0.9897 2.7997%
256 5.3561 47.4445 0.9677 5.9055%
512 5.2891 58.2212 0.9604 5.4853%

From Table 7, it can be observed that when Nh = 128, the model demonstrates strong
temporal and information storage capabilities, reaching its optimal capacity at this setting.
When Nh exceeds this value, MAE, MSE, and MAPE all increase and R2 decreases.

When Nh = 128, it balances the model’s performance with the practicality of its training
and deployment, avoiding overfitting issues that could arise from having too many hidden
layers. Additionally, this setting ensures that the model has sufficient capacity to effectively
process time-series data without sacrificing operational efficiency. Further considering the
runtime of the model for each epoch, Nh = 128 is ultimately selected as the optimal number
of hidden layers in BiGRU for use in subsequent experiments.

Machines 2024, 12, 341 17 of 23

3.6. Ablation Study

To verify the necessity and impact of each component in the proposed ParaCRN-
AMResNet model, a series of ablation experiments were conducted.

Initially, to validate the necessity of integrating the CNN and RNN modules, these
two modules were individually removed from ParaCRN-AMResNet and tested separately.
Then, ResNeSt was removed from the CNN module to evaluate its contribution to sup-
plementing feature information. Subsequently, ResNet was removed from the model to
assess its contribution to computational optimization. To further validate the importance
of the residual structure in the model, both ResNeSt and ResNet were removed simulta-
neously, creating the ParaCRN-AM model. Additionally, a model without the attention
mechanism was constructed by removing all attention mechanisms from the CNN module
to assess their contribution during the convolution process. To ensure the effectiveness of
the parallel structure, the CNN and RNN modules were concatenated sequentially, forming
two sequential stacking models: CNN-RNN and RNN-CNN. Furthermore, to evaluate the
differences in temporal information capture between BiGRU and traditional GRU, BiGRU
in the original model was replaced with GRU, named GRU-AMResNet for experimentation.
The number of hidden layer units in the RNN module was fixed to create the FixRNN
model to assess the effectiveness of the structure designed for capturing temporal features
of different scales. All of these experimental models were ensured to have parameters
consistent with ParaCRN-AMResNet.

As shown in Table 8, all deep learning network structures demonstrate relatively
accurate predictive performance in the task of tool wear prediction. Notably, the proposed
ParaCRN-AMResNet model achieves a standout performance with an MAE of 2.6015, MSE
of 15.1921, R2 value of 0.9897, and MAPE of 2.7997%.

Table 8. Summary of the performance of different models.

Model MAE MSE R2 MAPE

Without RNN 7.8019 113.6746 0.9227 7.9843%
Without CNN 7.3734 88.3356 0.9399 7.3206%

Without ResNeSt 5.3170 53.2287 0.9638 5.1565%
Without ResNet 5.2976 51.2169 0.9652 4.9864%
ParaCRN-AM 7.3900 83.1821 0.9435 7.6285%

Without attention 8.093 117.9771 0.9198 7.7312%
CNN-RNN 9.3849 144.3835 0.9019 8.9123%
RNN-CNN 11.4813 213.6568 0.8548 10.9744%

GRU-AMResNet 5.1335 51.4938 0.9650 4.8982%
FixRNN 7.5067 97.0103 0.9340 7.8128%

ParaCRN-AMResNet 2.6015 15.1921 0.9897 2.7997%

Through the comparative analysis of metrics across distinct models and the model
proposed herein, it is evidenced that the incorporation of residual blocks designed to ap-
prehend features that might be omitted by dilated convolution neural network significantly
augments the performance of the model. Furthermore, the introduction of the overall resid-
ual block structure into the network notably enhances model performance. The adoption
of an attention convolution block structure is demonstrably pivotal to the model’s success,
as evidenced by the inferior performance metrics of the without attention model. The per-
formance of the FixRNN model underscores the importance of capturing temporal features
at different scales, aiding the model in understanding multi-scale information from various
periods. The overall structure of the model significantly impacts its performance, as seen in
the CNN-RNN and RNN-CNN models, which show a marked decrease in performance,
even more so than the without attention model, further validating the superiority of the
proposed parallel structure.

Additionally, considering safety, Figure 11 shows the comparison of predicted and
actual wear values on the cutting blades with the greatest wear for the ParaCRN-AMResNet,

Machines 2024, 12, 341 18 of 23

without RNN, without CNN, without attention, and ParaCRN-AM models. Aligned with
the metrics presented in Table 8, variations in the accuracy of predictions across these
models are evident, with the proposed ParaCRN-AMResNet model achieving the highest
proximity to the actual values. These results underscore the model’s superior capability in
capturing temporal features at varying scales and its efficiently designed parallel structure,
positioning the ParaCRN-AMResNet model ahead of other reference models in terms of
overall performance.

Machines 2024, 12, x FOR PEER REVIEW 19 of 24

models are evident, with the proposed ParaCRN-AMResNet model achieving the highest

proximity to the actual values. These results underscore the model’s superior capability

in capturing temporal features at varying scales and its efficiently designed parallel struc-

ture, positioning the ParaCRN-AMResNet model ahead of other reference models in

terms of overall performance.

Figure 11. The comparative results of tool wear values: actual measurements versus predictions by

various deep learning models: (a) the ParaCRN-AMResNet model, (b) the without RNN model, (c)

the without CNN model, (d) the without attention model, (e) the ParaCRN-AM model.

3.7. Comparative Experiments

To more comprehensively assess the performance of the model, PR-AUC [36], CGRU-

IConvGRU-A [37], ConvLSTM-Att [24], and MDMCNN-BiLSTM [38] were used as bench-

marks for comparison. The experimental settings follow those described in the original

literature, using MAE and R2 as performance metrics. All results are presented in Table 9.

Table 9. Summary of the performance of different models.

Model MAE R2

PR-AUC 4.6196 0.9718

CGRU-IConvGRU-A 4.4210 0.9660

ConvLSTM-Att 3.9613 0.9723

MDMCNN-BiLSTM 7.5429 0.9347

ParaCRN-AMResNet 2.6015 0.9897

An analysis of the data from Table 9 clearly indicates that the proposed model signif-

icantly outperforms the comparison group on key performance metrics. Compared with

Figure 11. The comparative results of tool wear values: actual measurements versus predictions
by various deep learning models: (a) the ParaCRN-AMResNet model, (b) the without RNN model,
(c) the without CNN model, (d) the without attention model, (e) the ParaCRN-AM model.

3.7. Comparative Experiments

To more comprehensively assess the performance of the model, PR-AUC [36], CGRU-
IConvGRU-A [37], ConvLSTM-Att [24], and MDMCNN-BiLSTM [38] were used as bench-
marks for comparison. The experimental settings follow those described in the original
literature, using MAE and R2 as performance metrics. All results are presented in Table 9.

Table 9. Summary of the performance of different models.

Model MAE R2

PR-AUC 4.6196 0.9718
CGRU-IConvGRU-A 4.4210 0.9660

ConvLSTM-Att 3.9613 0.9723
MDMCNN-BiLSTM 7.5429 0.9347

ParaCRN-AMResNet 2.6015 0.9897

Machines 2024, 12, 341 19 of 23

An analysis of the data from Table 9 clearly indicates that the proposed model sig-
nificantly outperforms the comparison group on key performance metrics. Compared
with traditional sequential structure-based models such as PR-AUC, ConvLSTM-Att, and
MDMCNN-BiLSTM, which are prone to accumulating errors during data transmission,
thereby affecting prediction accuracy, the introduced ParaCRN-AMResNet model employs
a parallel architecture design. This design enables independent parallel processing of
various features, effectively preventing the common problem of error accumulation associ-
ated with sequential processing. Such parallel processing not only significantly enhances
computational efficiency but also reduces the decline in predictive accuracy caused by error
propagation. Although the CGRU-IConvGRU-A model also utilizes a parallel structure, the
sequential arrangement of its internal CNN and GRU components does not fully eliminate
inter-module interference.

Furthermore, compared with the 1D CNN used by CGRU-IConvGRU-A, ConvLSTM-
Att, and MDMCNN-BiLSTM, the ParaCRN-AMResNet’s implementation of DCNN exhibits
superior performance in processing time-series data, benefiting from its wider receptive
field and deeper feature abstraction capabilities. While the comparison models attempt
to capture multi-scale features using convolutional kernels of various sizes, the inherent
limitations of their receptive fields render their performance inferior to that of ParaCRN-
AMResNet. Although the PR-AUC model employs DCNN to capture time-series features,
ParaCRN-AMResNet combines DCNN with a BiGRU structure. This integration allows the
model to more effectively capture features across different temporal scales. The introduction
of BiGRU enhances the model’s ability to capture long-term temporal dependencies, which
is challenging to achieve with DCNN alone. Additionally, the multi-dimensional BiGRU in
ParaCRN-AMResNet, based on a Seq2Seq structure, contrasts sharply with the fixed-size
RNN architectures in other models, enabling the mentioned model to more effectively
capture and utilize long-distance dependencies in time-series data.

Unlike the approach of ConvLSTM-Att and MDMCNN-BiLSTM models, which
emphasize features at the end of the model using an attention mechanism, ParaCRN-
AMResNet opts to integrate a ResNeSt structure and SimAM attention mechanism within
the parallel convolutional component to supplement potentially missed features. The
use of the SimAM attention mechanism does not add extra parameters, thereby avoid-
ing additional computational burden and further optimizing the model’s performance
and efficiency.

3.8. Noise Resistance Experiment

Considering that real manufacturing environments are often accompanied by strong
noise, it becomes crucial to assess the stability and prediction accuracy of high-performance
models in such contexts. To this end, a series of noise interference experiments were
designed to verify the noise resistance capability of the proposed model. Specifically, to
simulate extreme working conditions, Gaussian white noise with signal-to-noise ratios
(SNRs) of −1 dB, −3 dB, −5 dB, −7 dB, and −9 dB was added to the original signals.
Furthermore, models such as ParaCRN-AM, without attention, CNN-RNN, and RNN-
CNN were selected as controls to assess their performance durability under different noise
conditions. The evaluation criteria were still based on the four metrics: MAPE, MAE,
RMSE, and R2. The detailed experimental results are presented in Figure 12.

The data in Figure 12 reveal a clear trend: as the intensity of the noise increases, the
predictive performance of all models shows a declining trend. However, among all models
examined, ParaCRN-AMResNet stands out in its performance. Remarkably, even under
extreme conditions with an SNR of −9 dB, the model still provides satisfactory prediction
results, with corresponding MAE, MSE, R2, and MAPE values of 13.8012, 282.4792, 0.8080,
and 14.2770%, respectively.

Machines 2024, 12, 341 20 of 23
Machines 2024, 12, x FOR PEER REVIEW 21 of 24

Figure 12. The comparative performance of various models at different SNRs: (a) MAE of different

models across various SNRs; (b) MAPE of different models across various SNRs; (c) MSE of different

models across various SNRs; (d) R2 of different models across various SNRs.

The data in Figure 12 reveal a clear trend: as the intensity of the noise increases, the

predictive performance of all models shows a declining trend. However, among all mod-

els examined, ParaCRN-AMResNet stands out in its performance. Remarkably, even un-

der extreme conditions with an SNR of −9 dB, the model still provides satisfactory predic-

tion results, with corresponding MAE, MSE, R2, and MAPE values of 13.8012, 282.4792,

0.8080, and 14.2770%, respectively.

The ParaCRN-AMResNet model is able to mine and correlate more sensitive features

from signals mixed with noise, demonstrating exceptional noise resistance capability. Fur-

thermore, the superiority of the parallel-structured model over the CNN-RNN sequential

model further confirms that the proposed parallel structure can successfully avoid mutual

interference between modules. In contrast, the performance of the RNN-CNN model in

an SNR = −1 dB environment is even worse than a simple mean prediction; hence, its data

were not included in Figure 12. The performance comparison between the without atten-

tion model and ParaCRN-AMResNet further verifies that the introduced attention module

can help the model capture key features in noisy environments. Additionally, the perfor-

mance of the ParaCRN-AM model compared with ParaCRN-AMResNet demonstrates the

ability of the residual block structure to help the model capture additional useful infor-

mation in harsh environments.

In summary, Figure 13 further compares the predictive results of the ParaCRN-AM-

ResNet model with the actual outcomes, both in the presence and absence of −9 dB noise.

Despite the intense background noise, the predictive results still accurately capture the

trend of tool wear. This undoubtedly demonstrates the immense industrial application

value of the ParaCRN-AMResNet model.

Figure 12. The comparative performance of various models at different SNRs: (a) MAE of different
models across various SNRs; (b) MAPE of different models across various SNRs; (c) MSE of different
models across various SNRs; (d) R2 of different models across various SNRs.

The ParaCRN-AMResNet model is able to mine and correlate more sensitive features
from signals mixed with noise, demonstrating exceptional noise resistance capability. Fur-
thermore, the superiority of the parallel-structured model over the CNN-RNN sequential
model further confirms that the proposed parallel structure can successfully avoid mutual
interference between modules. In contrast, the performance of the RNN-CNN model in an
SNR = −1 dB environment is even worse than a simple mean prediction; hence, its data
were not included in Figure 12. The performance comparison between the without attention
model and ParaCRN-AMResNet further verifies that the introduced attention module can
help the model capture key features in noisy environments. Additionally, the performance
of the ParaCRN-AM model compared with ParaCRN-AMResNet demonstrates the ability
of the residual block structure to help the model capture additional useful information in
harsh environments.

In summary, Figure 13 further compares the predictive results of the ParaCRN-
AMResNet model with the actual outcomes, both in the presence and absence of −9 dB
noise. Despite the intense background noise, the predictive results still accurately capture
the trend of tool wear. This undoubtedly demonstrates the immense industrial application
value of the ParaCRN-AMResNet model.

Machines 2024, 12, 341 21 of 23Machines 2024, 12, x FOR PEER REVIEW 22 of 24

Figure 13. The prediction of the ParaCRN-AMResNet model with and without −9 dB noise.

4. Conclusions

In this paper, a novel hybrid deep learning model, ParaCRN-AMResNet, is proposed

for the prediction of tool wear. The raw signals are decomposed using wavelet analysis as

input data. Subsequently, the model enhances the discernibility of temporally sensitive

features through the incorporation of the SimAM attention layer, further employing di-

lated convolutional neural networks and the ResNeSt structure to capture temporally sen-

sitive features across various scales. BiGRU is incorporated into the model, working in

parallel with dilated CNN to capture time-series information. A GAP layer is applied to

reduce redundant spatial features and enhance the model’s interpretability. These fea-

tures are fused and used to predict tool wear. The results of conducted ablation experi-

ments, comparative trials, and noise resistance capability tests indicate that:

(1) The parallel structure ensures that each feature extraction pathway operates correctly

without interference from others. This approach avoids the impact of the former

model on subsequent models.

(2) The use of dilated CNN effectively captures the intrinsic temporal correlations within

time-series data, and ResNeSt additionally supplements crucial information for the

convolutional component. Meanwhile, BiGRU with different sizes can effectively

capture meaningful representations across various temporal dimensions.

(3) Experimental validation demonstrates that ParaCRN-AMResNet outperforms other

deep learning models in tool wear prediction, achieving MAE, MSE, R2, and MAPE

values of 2.6015, 15.1921, 0.9897, and 2.7997%, respectively.

While this study was validated on a single dataset, potentially limiting the generali-

zability of the model’s predictive accuracy across different conditions or datasets, and the

training duration of the model hinders its immediate deployment in practical settings,

future research will focus on how to effectively extend the model’s applicability through

transfer learning. By transferring knowledge acquired on a specific task to related but dis-

tinct tasks, this approach not only aims to enhance the model’s adaptability but also sig-

nificantly reduce the required training time and resources. This research direction seeks

to amplify the practicality of the ParaCRN-AMResNet model, offering more flexible and

efficient solutions for the advancement of intelligence in manufacturing.

The primary objective of this paper is not to propose an immediately applicable so-

lution but rather to explore a promising approach aimed at enhancing the generalization

Figure 13. The prediction of the ParaCRN-AMResNet model with and without −9 dB noise.

4. Conclusions

In this paper, a novel hybrid deep learning model, ParaCRN-AMResNet, is proposed
for the prediction of tool wear. The raw signals are decomposed using wavelet analysis
as input data. Subsequently, the model enhances the discernibility of temporally sensitive
features through the incorporation of the SimAM attention layer, further employing dilated
convolutional neural networks and the ResNeSt structure to capture temporally sensitive
features across various scales. BiGRU is incorporated into the model, working in parallel
with dilated CNN to capture time-series information. A GAP layer is applied to reduce
redundant spatial features and enhance the model’s interpretability. These features are
fused and used to predict tool wear. The results of conducted ablation experiments,
comparative trials, and noise resistance capability tests indicate that:

(1) The parallel structure ensures that each feature extraction pathway operates correctly
without interference from others. This approach avoids the impact of the former
model on subsequent models.

(2) The use of dilated CNN effectively captures the intrinsic temporal correlations within
time-series data, and ResNeSt additionally supplements crucial information for the
convolutional component. Meanwhile, BiGRU with different sizes can effectively
capture meaningful representations across various temporal dimensions.

(3) Experimental validation demonstrates that ParaCRN-AMResNet outperforms other
deep learning models in tool wear prediction, achieving MAE, MSE, R2, and MAPE
values of 2.6015, 15.1921, 0.9897, and 2.7997%, respectively.

While this study was validated on a single dataset, potentially limiting the general-
izability of the model’s predictive accuracy across different conditions or datasets, and
the training duration of the model hinders its immediate deployment in practical settings,
future research will focus on how to effectively extend the model’s applicability through
transfer learning. By transferring knowledge acquired on a specific task to related but
distinct tasks, this approach not only aims to enhance the model’s adaptability but also
significantly reduce the required training time and resources. This research direction seeks
to amplify the practicality of the ParaCRN-AMResNet model, offering more flexible and
efficient solutions for the advancement of intelligence in manufacturing.

The primary objective of this paper is not to propose an immediately applicable
solution but rather to explore a promising approach aimed at enhancing the generalization

Machines 2024, 12, 341 22 of 23

performance of tool wear prediction models. By accurately predicting tool wear in real-time,
proactive maintenance of CNC machining tools has been facilitated.

Author Contributions: The first author, L.G., was responsible for writing this paper, designing
the experimental process, and analyzing the experiment results. The corresponding author, Y.W.,
was responsible for determining the overall logical structure of the paper and guiding the entire
experiment. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

References
1. Mohanraj, T.; Yerchuru, J.; Krishnan, H.; Nithin Aravind, R.S.; Yameni, R. Development of Tool Condition Monitoring System in

End Milling Process Using Wavelet Features and Hoelder’s Exponent with Machine Learning Algorithms. Measurement 2021,
173, 108671. [CrossRef]

2. Zhu, K.; Zhang, Y. A Generic Tool Wear Model and Its Application to Force Modeling and Wear Monitoring in High Speed
Milling. Mech. Syst. Signal Process. 2019, 115, 147–161. [CrossRef]

3. Ren, H.; Guo, W.; Jiang, P.; Wan, X. An Integrated Approach of Active Incremental Fine-Tuning, SegNet, and CRF for Cutting Tool
Wearing Areas Segmentation with Small Samples. Knowl.-Based Syst. 2021, 218, 106838. [CrossRef]

4. Li, X.; Liu, X.; Yue, C.; Liang, S.Y.; Wang, L. Systematic Review on Tool Breakage Monitoring Techniques in Machining Operations.
Int. J. Mach. Tools Manuf. 2022, 176, 103882. [CrossRef]

5. Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; Sharma, V.S.; Gupta, M.K.; Kuntoğlu, M. Artificial Intelligence Systems for Tool
Condition Monitoring in Machining: Analysis and Critical Review. J. Intell. Manuf. 2023, 34, 2079–2121. [CrossRef]

6. Mohamed, A.; Hassan, M.; M’Saoubi, R.; Attia, H. Tool Condition Monitoring for High-Performance Machining Systems—A
Review. Sensors 2022, 22, 2206. [CrossRef]

7. Lecun, Y. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
8. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
10. Kumar, M.P.; Dutta, S.; Murmu, N.C. Tool Wear Classification Based on Machined Surface Images Using Convolution Neural

Networks. Sādhanā 2021, 46, 130. [CrossRef]
11. Lim, M.L.; Derani, M.N.; Ratnam, M.M.; Yusoff, A.R. Tool Wear Prediction in Turning Using Workpiece Surface Profile Images

and Deep Learning Neural Networks. Int. J. Adv. Manuf. Technol. 2022, 120, 8045–8062. [CrossRef]
12. García-Pérez, A.; Ziegenbein, A.; Schmidt, E.; Shamsafar, F.; Fernández-Valdivielso, A.; Llorente-Rodríguez, R.; Weigold, M.

CNN-Based in Situ Tool Wear Detection: A Study on Model Training and Data Augmentation in Turning Inserts. J. Manuf. Syst.
2023, 68, 85–98. [CrossRef]

13. Zhang, X.; Shi, B.; Feng, B.; Liu, L.; Gao, Z. A Hybrid Method for Cutting Tool RUL Prediction Based on CNN and Multistage
Wiener Process Using Small Sample Data. Measurement 2023, 213, 112739. [CrossRef]

14. Brili, N.; Ficko, M.; Klančnik, S. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural
Network during the Turning Process. Sensors 2021, 21, 1917. [CrossRef]

15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
16. Shah, M.; Vakharia, V.; Chaudhari, R.; Vora, J.; Pimenov, D.Y.; Giasin, K. Tool Wear Prediction in Face Milling of Stainless Steel

Using Singular Generative Adversarial Network and LSTM Deep Learning Models. Int. J. Adv. Manuf. Technol. 2022, 121, 723–736.
[CrossRef]

17. Li, X.; Liu, X.; Yue, C.; Liu, S.; Zhang, B.; Li, R.; Liang, S.Y.; Wang, L. A Data-Driven Approach for Tool Wear Recognition and
Quantitative Prediction Based on Radar Map Feature Fusion. Measurement 2021, 185, 110072. [CrossRef]

18. Mahmood, J.; Luo, M.; Rehman, M. An Accurate Detection of Tool Wear Type in Drilling Process by Applying PCA and One-Hot
Encoding to SSA-BLSTM Model. Int. J. Adv. Manuf. Technol. 2022, 118, 3897–3916. [CrossRef]

19. Marani, M.; Zeinali, M.; Songmene, V.; Mechefske, C.K. Tool Wear Prediction in High-Speed Turning of a Steel Alloy Using Long
Short-Term Memory Modelling. Measurement 2021, 177, 109329. [CrossRef]

20. Bilgili, D.; Kecibas, G.; Besirova, C.; Chehrehzad, M.R.; Burun, G.; Pehlivan, T.; Uresin, U.; Emekli, E.; Lazoglu, I. Tool Flank Wear
Prediction Using High-Frequency Machine Data from Industrial Edge Device. Procedia CIRP 2023, 118, 483–488. [CrossRef]

21. Marei, M.; Li, W. Cutting Tool Prognostics Enabled by Hybrid CNN-LSTM with Transfer Learning. Int. J. Adv. Manuf. Technol.
2022, 118, 817–836. [CrossRef]

22. Chaowen, Z.; Jing, J.; Chi, C. Research on Tool Wear Monitoring Based on GRU-CNN. In Proceedings of the 2021 6th International
Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9 April 2021; IEEE: Xi’an, China, 2021;
pp. 729–733. [CrossRef]

https://doi.org/10.1016/j.measurement.2020.108671
https://doi.org/10.1016/j.ymssp.2018.05.045
https://doi.org/10.1016/j.knosys.2021.106838
https://doi.org/10.1016/j.ijmachtools.2022.103882
https://doi.org/10.1007/s10845-022-01923-2
https://doi.org/10.3390/s22062206
https://doi.org/10.1109/5.726791
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s12046-021-01654-9
https://doi.org/10.1007/s00170-022-09257-2
https://doi.org/10.1016/j.jmsy.2023.03.005
https://doi.org/10.1016/j.measurement.2023.112739
https://doi.org/10.3390/s21051917
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s00170-022-09356-0
https://doi.org/10.1016/j.measurement.2021.110072
https://doi.org/10.1007/s00170-021-08200-1
https://doi.org/10.1016/j.measurement.2021.109329
https://doi.org/10.1016/j.procir.2023.06.083
https://doi.org/10.1007/s00170-021-07784-y
https://doi.org/10.1109/ICSP51882.2021.9408717

Machines 2024, 12, 341 23 of 23

23. Si, Z.; Si, S.; Mu, D. Efficient Tool Wear Prediction in Manufacturing: BiLPReS Hybrid Model with Performer Encoder. Arab. J. Sci.
Eng. 2024. [CrossRef]

24. Li, R.; Ye, X.; Yang, F.; Du, K.-L. ConvLSTM-Att: An Attention-Based Composite Deep Neural Network for Tool Wear Prediction.
Machines 2023, 11, 297. [CrossRef]

25. Bazi, R.; Benkedjouh, T.; Habbouche, H.; Rechak, S.; Zerhouni, N. A Hybrid CNN-BiLSTM Approach-Based Variational Mode
Decomposition for Tool Wear Monitoring. Int. J. Adv. Manuf. Technol. 2022, 119, 3803–3817. [CrossRef]

26. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the 4th International Conference on
Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016; ACL: San Juan, Puerto Rico, 2016; p. 10061. [CrossRef]

27. Chang, S.; Zhang, Y.; Han, W.; Yu, M.; Guo, X.; Tan, W.; Cui, X.; Witbrock, M.; Hasegawa-Johnson, M.A.; Huang, T.S. Dilated
Recurrent Neural Networks. In Proceedings of the 31st International Conference on Neural Information Processing Systems
(NIPS’17), Red Hook, NY, USA, 6 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 76–86. [CrossRef]

28. Lin, M.; Chen, Q.; Yan, S. Network In Network. In Proceedings of the International Conference on Learning Representations
(ICLR), Banff, AB, Canada, 14–16 April 2014; OpenReview.net. ACL: Banff, AB, Canada, 2014. [CrossRef]

29. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; ACL: Doha, Qatar, 2014; pp. 1724–1734. [CrossRef]

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Las Vegas, NV, USA, 2016;
pp. 770–778. [CrossRef]

31. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-Attention
Networks. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
New Orleans, LA, USA, 19–20 June 2022; IEEE: New Orleans, LA, USA, 2022; pp. 2735–2745. [CrossRef]

32. Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In
Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11863–11874.

33. 2010 PHM Society Conference Data Challenge 2010. Available online: https://phmsociety.org/phm_competition/2010-phm-
society-conference-data-challenge/ (accessed on 10 August 2023).

34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [CrossRef]
35. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [CrossRef]
36. Hahn, T.V.; Mechefske, C.K. Self-Supervised Learning for Tool Wear Monitoring with a Disentangled-Variational-Autoencoder.

Int. J. Hydromechatron. 2021, 4, 69–98. [CrossRef]
37. Yang, J.; Wu, J.; Li, X.; Qin, X. Tool Wear Prediction Based on Parallel Dual-Channel Adaptive Feature Fusion. Int. J. Adv. Manuf.

Technol. 2023, 128, 145–165. [CrossRef]
38. He, Z.; Liu, Y.; Pang, X.; Zhang, Q. Wear Prediction of Tool Based on Modal Decomposition and MCNN-BiLSTM. Processes 2023,

11, 2988. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13369-024-08943-5
https://doi.org/10.3390/machines11020297
https://doi.org/10.1007/s00170-021-08448-7
https://doi.org/10.48550/arXiv.1511.07122
https://doi.org/10.48550/arXiv.1710.02224
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.2004.08955
https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/
https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1710.05941
https://doi.org/10.1504/IJHM.2021.10035377
https://doi.org/10.1007/s00170-023-11832-0
https://doi.org/10.3390/pr11102988

	Introduction
	Proposed Methodological Framework
	Dilated CNN
	Global Average Pooling
	Bidirectional Gated Recurrent Unit
	Residual Network
	Attention Mechanisms for Convolutional Part
	Parallel Modelling Structure
	Proposed Model Structure

	Experiment
	Experiment Setup
	ParaCRN-AMResNet Traning and Testing Procedure
	Data Preprocessing
	Evaluation Criteria
	Hyperparameter Optimization
	Selection of Dilation Rate
	Selection of Cardinality
	Selection of ResNeSt Stacking Number
	Selection of ResNets Stacking Number
	Selection of BiGRU Hidden Layers Number

	Ablation Study
	Comparative Experiments
	Noise Resistance Experiment

	Conclusions
	References

