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Abstract: Narcissus L. is a renowned plant genus with a notable center of diversity and is primarily
located in the Mediterranean region. These plants are widely recognized for their ornamental value,
owing to the beauty of their flowers; nonetheless, they also hold pharmacological importance. In
Europe, pharmaceutical companies usually use the bulbs of Narcissus pseudonarcissus cv. Carlton to
extract galanthamine, which is one of the few medications approved by the FDA for the palliative
treatment of mild-to-moderate symptoms of Alzheimer’s disease. The purpose of this study was to
evaluate the potential of these plants in Alzheimer’s disease. The alkaloid extract from the leaves
of different species of Narcissus was obtained by an acid-base extraction work-up -procedure. The
biological potential of the samples was carried out by evaluating their ability to inhibit the enzymes
acetyl- and butyrylcholinesterase (AChE and BuChE, respectively). The species N. jacetanus exhibited
the best inhibition values against AChE, with IC50 values of 0.75 ± 0.03 µg·mL−1, while N. jonquilla
was the most active against BuChE, with IC50 values of 11.72 ± 1.15 µg·mL−1.

Keywords: acetylcholinesterase; Amaryllidaceae; alkaloids; Alzheimer’s disease; butyrylcholinesterase;
Narcissus

1. Introduction

Narcissus L. is a well-known plant genus that belongs to the Amaryllidaceae family,
specifically within the Amaryllidoideae subfamily [1]. These plants, commonly referred to
as daffodils, are highly favored in gardens and serve as a significant commercial crop [2].
This genus encompasses around 100 wild species, primarily concentrated in southwestern
Europe, with a significant center of diversity in the Iberian Peninsula—where 90% of all
species are present, especially in Spain, and extend throughout North Africa [2–4].

The native habitats of the Narcissus species exhibit remarkable diversity, encompassing
a broad spectrum of landscapes that span from lowland to mountainous regions. This
genus includes a rich tapestry of environments, including verdant grasslands, rugged
scrublands, serene woodlands, meandering riverbanks, and secluded rocky crevices [2].
The presentation of blooms exhibited by the majority of these species is a characteristic
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feature observed during late winter and spring. However, there are a limited number of
species that deviate from this pattern and blossom during the autumnal season [5,6].

The hybridization of some of these species has led to the development of commercial
Narcissus cultivars, which, in most instances, are larger and more robust than their wild
ancestors [2,7]. This genus stands out as the main choice among commercial bulb planters,
showcasing remarkable importance in various horticultural and commercial contexts [8]
in Western Europe, being cultivated since the 16th century in the Netherlands. Currently,
the United Kingdom, the Netherlands, and the United States are the main producing
countries of Narcissus bulbs. Until the late nineties, Narcissus bulb production was oriented
only towards ornamental use, but since 1999, the purpose of extracting galanthamine
from these bulbs started to play an important and growing role [9]. Therefore, although
the cultivation of Narcissus for ornamental purposes has had a long tradition, leading to
extensive knowledge of its growing and breeding, as well as the production of large stocks
of raw materials, only a few of the numerous cultivars developed could be cultivated
in significant amounts and quality for chemical extraction [2]. This question has been
successfully solved by in vitro cultivation [10].

The medicinal properties of the Narcissus species have been documented in the liter-
ature for many years. Hippocrates of Kos (460-370 BCE), the father of modern medicine,
advocated the use of oil from the Narcissus species to alleviate symptoms that today would
be recognized as cancer [11]. Dioscorides, in the 1st century, mentions some of their medici-
nal properties due to the presence of alkaloids, as well as the sedative and narcotic effects
of their aroma [12]. In recent decades, the genus Narcissus has provided a range of useful
or potentially valuable compounds, of which galanthamine has been extensively studied.
Galanthamine hydrobromide is one of the few medicines available used for the palliative
treatment of symptoms derived from Alzheimer’s disease, owing to its ability to inhibit the
enzyme acetylcholinesterase. This alkaloid—specifically Amaryllidaceae alkaloid—was
first isolated in 1952 from the species Galanthus woronowii and received the FDA’s approval
in 2001 [13,14]. Pharmaceutical companies concentrated their search for galanthamine on
the Amaryllidoideae subfamily, as it is the exclusive natural source of this metabolite [2,15].
For Narcissus cultivars, different studies have been carried out on variations in galan-
thamine content in bulbs, depending on their geographical origin or changes due to the
addition of fungicides [16,17]. Torras-Claveria and co-workers [18] investigated the galan-
thamine content and bioactivity of more than one hundred Narcissus cultivars, highlighting
those with higher galanthamine content and higher acetylcholinesterase inhibitory activity.
In Central and Western Europe, the extraction of galanthamine is mainly derived from
Narcissus pseudonarcissus cv. Carlton. Meanwhile, in Eastern Europe, Leucojum aestivum,
known as snowflakes, serves as a key source, and it has been used in the past, although its
collection for this purpose is currently not possible, as this species is in decline. In China,
the red-tubed lily, Lycoris radiata, contributes to galanthamine production as well [9].

Amaryllidaceae alkaloids are unique structures originating from the Amaryllidoideae
subfamily, covering a diverse group of compounds that exhibit interesting biological
properties. Currently, there are more than 650 structures of Amaryllidaceae alkaloids
reported in the literature [19]. While significant progress has been made in recent years, the
comprehensive exploration of the diversity of structures, reactions, and genes within the
Amaryllidaceae family remains ongoing. All of these metabolites originate from the aro-
matic amino acids L-phenylalanine (L-Phe) and L-tyrosine (L-Tyr), which, through distinct
enzymatic reactions, ultimately lead to the formation of norbelladine [20,21]. The enzyme
norbelladine 4′-O-methyltransferase catalyzes the production of 4′-O-methylnorbelladine,
which is considered the main common precursor to Amaryllidaceae alkaloids [21]. The ox-
idative phenolic coupling of 4′-O-methylnorbelladine leads to the three main skeleton types
that form the bases for the extensive structural diversity of Amaryllidaceae alkaloids. The
ortho-para’ coupling of 4′-O-methylnorbelladine results in the formation of the lycorine- and
homolycorine-type skeletons, para-para’ originates the crinine-, haemanthamine-, tazettine-,
narciclasine- and montanine-type structures, and para-ortho’ gives the galanthamine-type
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skeleton [22]. Since the initial isolation of the alkaloid lycorine from Narcissus pseudonarcis-
sus in 1877, significant advancements have been achieved in the study of Amaryllidaceae
plants. Nevertheless, they continue to represent a relatively underexplored source of
phytochemicals [3]. Generally, within each plant, a variety of related alkaloids is present,
consisting of a few dominant metabolites and multiple minor compounds with varying
substituent positions [3].

The historical bond between Amaryllidaceae and medicine stands as a testament to
the enduring allure and profound significance of these remarkable compounds within the
realm of human health and well-being. In the present day, continued research into Amaryl-
lidaceae alkaloids promises to unveil further insights into their potential applications and
therapeutic benefits. In this way, the aim of this study was to describe the potential dif-
ferent wild species of Narcissus L. collected in Spain against Alzheimer’s disease through
cholinesterase inhibition assays.

2. Materials and Methods
2.1. Plant Material

Fifteen different species of Narcissus L. were provided from the Iberian Narcissus
Collection of the Torretes Biological Research Station—Botanical Garden of the UA, in
Alicante, Spain. All the samples were collected during the flowering season, April 2023.
The origins of the species are different localities of the Iberian Peninsula, as described in
Table 1 and Figure 1. All the species were authenticated by botanists Dr. Segundo Ríos
and Dr. Vanessa Martínez-Francés. Most wild daffodils are distributed in small, scattered
populations, in very specific and fragile microhabitats such as wetlands, rocky areas,
and deciduous forests [2,23–26]. These populations with very small numbers (less than
1000 individuals) have a small surface area (often less than 1 ha), making them extremely
vulnerable to changes due to natural (climate change, predation, etc.) or anthropogenic
causes (land use, grazing, collecting, etc.), which endanger their survival [27,28].

Table 1. Narcissus sample coding, biogeographical distribution, and province of collection. Biogeo-
graphical units: Baet: Baetic, CircMed: Circummediterranean, Iber: Iberic, Iber/LAlp: Iberic/Latealpine,
Iber/NAfric: Iberic/Northafrican, Med Occ: Mediterranean occidental; political regions of origin: AND:
Andalucía, AR: Aragón, CL: Castilla León, CLM: Castilla-La Mancha, VAL: Valencian region, BAS:
Basque region. Biogeographical units according to [29].

Code Species Section Biogeographical
Distribution Origin

A N. assoanus Dufour ex Schult. and Schult.f. Jonquillae DC. Med Occ Huesca (AR)
B N. jacetanus Fern.Casas Pseudonarcissus DC. Iber/LAlp Huesca (AR)
C N. vasconicus (Fern.Casas) Fern.Casas Pseudonarcissus DC. Iber/LAlp Vitoria (BAS)
D N. minor L. Pseudonarcissus DC. Iber/LAlp León (CL)
E N. confusus Pugsley Pseudonarcissus DC. Iber/LAlp Salamanca (CL)
F N. asturiensis (Jord.) Pugsley Pseudonarcissus DC. Iber/LAlp Salamanca (CL)
G N. hedraeanthus (Webb and Heldr.) Colmeiro Bulbocodium (Salisb.) DC. Iber/NAfric Albacete (CLM)
H N. alcaracensis S.Ríos, D.Rivera, Alcaraz and Obón Nevadensis Zonn. Baet Albacete (CLM)
I N. bujei (Fern.Casas) Fern.Casas Pseudonarcissus DC. Baet Albacete (CLM)
J N. pallidulus Graells Ganymedes (Salisb.) Schultes f. Iber Albacete (CLM)
K N. tazetta L. Tazettae DC. CircMed Alicante (VAL)
L N. jonquilla L. Jonquillae DC. Iber Toledo (CLM)
M N. genesii-lopezii Fern.Casas Pseudonarcissus DC. Iber Cuenca (CLM)
N N. yepesii S.Ríos, D.Rivera, Alcaraz and Obón Nevadensis Zonn. Baet Jaén (AND)
O N. nevadensis Pugsley Nevadensis Zonn. Baet Granada (AND)

The ecology of many species from the Pseudonarcissus DC. section, as N. asturien-
sis, N, jacetanus, N. minor, and N. vasconicus are perennial grasslands of external fringe
woodlands. Other species, such as N. bujei and N. genesii-lopezii, are present in peren-
nial mesophytic grasslands, and N. confusus is present in the secondary mesoforests of
deciduous oaks (Table 1).
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F = N. asturiensis; G = N. hedraeanthus; H = N. alcaracencis; I = N. bujei; J = N. pallidulus; K = N. tazetta; 
L = N. jonquilla; M = N. genesii-lopezii; N = N. yepesii; O = N. nevadensis. species name when we refer 
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phytic grasslands, and N. confusus is present in the secondary mesoforests of deciduous 
oaks (Table 1). 

More ecological diversity is observed in the Nevadensis Zonn. section. N. nevadensis 
grows in the secondary mesoforests of deciduous oaks and the perennial grasslands of 
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trine and helophyte communities dominated by Carex hispida, and N. yepesii is present in 
meadows and chionophilous grassland vegetation (Table 1). 

N. jonquilla, from section Jonquillae DC., grows in lacustrine and riverine helophyte 
graminoid communities, while N. assoanus grows in perennial succulent grassland in 
rocky, open communities. The representative of the Bulbocodium section, N. hedraeanthus, 
is present in meadows and chionophilous grassland vegetation. From the Ganymedes sec-
tion, N. pallidulus grows in perennial mesophytic grasslands and bare sandy soils, and N. 
tazetta of section Tazettae DC. has been collected from gardens where it was cultivated 
(Table 1). Although ornamental domestication of the genus Narcissus by the United King-
dom and Holland began in the 16th century [7,24], today there is still continuous extrac-
tion of wild bulbs in Spain, Portugal, and North Africa to satisfy the global private collect-
ing market, to obtain new disease-resistant genes in commercial bulbs, and to satisfy the 
demand for galanthamine by pharmaceutical companies. Despite the scarce data on the 
populations and conservation status of most of the species, the information collected for 
some of them has allowed for their inclusion in the IUCN Red List, considered a critical 
indicator of the health of biodiversity. Two species of section Nevadensis Zonn. Analyzed 
in this work, N. alcaracensis and N. nevadensis, and another of section Pseudonarcissus DC., 
N. bujei, have been assessed as Endangered (EN) in the IUCN list [30–32]. Another species 
of this first mentioned section, N. yepesii, has been evaluated and classified as Vulnerable 
(VU) [33]. 

N. asturiensis and N. hedraeanthus are listed under Least Concern (LC), with no other 
major conservation measures recommended [34,35]. N. pallidulus, although not men-
tioned, is included in N. triandrus, which is assessed as Least Concern (LC), considering 
its wide distribution, with large and stable populations; it is unlikely that existing threats 

Figure 1. The local collection of the different species of Narcissus in Spain according to Table 1 codes.
Source: Google Earth. A = N. assoanus; B = N. jacetanus; C = N. vasconicus; D = N. minor; E = N. confusus;
F = N. asturiensis; G = N. hedraeanthus; H = N. alcaracencis; I = N. bujei; J = N. pallidulus; K = N. tazetta;
L = N. jonquilla; M = N. genesii-lopezii; N = N. yepesii; O = N. nevadensis. species name when we refer to.

More ecological diversity is observed in the Nevadensis Zonn. section. N. nevadensis
grows in the secondary mesoforests of deciduous oaks and the perennial grasslands of
external fringe woodlands. The existing populations of N. alcaracensis develop on lacus-
trine and helophyte communities dominated by Carex hispida, and N. yepesii is present in
meadows and chionophilous grassland vegetation (Table 1).

N. jonquilla, from section Jonquillae DC., grows in lacustrine and riverine helophyte
graminoid communities, while N. assoanus grows in perennial succulent grassland in rocky,
open communities. The representative of the Bulbocodium section, N. hedraeanthus, is
present in meadows and chionophilous grassland vegetation. From the Ganymedes section,
N. pallidulus grows in perennial mesophytic grasslands and bare sandy soils, and N. tazetta
of section Tazettae DC. has been collected from gardens where it was cultivated (Table 1).
Although ornamental domestication of the genus Narcissus by the United Kingdom and
Holland began in the 16th century [7,24], today there is still continuous extraction of wild
bulbs in Spain, Portugal, and North Africa to satisfy the global private collecting market,
to obtain new disease-resistant genes in commercial bulbs, and to satisfy the demand for
galanthamine by pharmaceutical companies. Despite the scarce data on the populations
and conservation status of most of the species, the information collected for some of them
has allowed for their inclusion in the IUCN Red List, considered a critical indicator of the
health of biodiversity. Two species of section Nevadensis Zonn. Analyzed in this work,
N. alcaracensis and N. nevadensis, and another of section Pseudonarcissus DC., N. bujei, have
been assessed as Endangered (EN) in the IUCN list [30–32]. Another species of this first
mentioned section, N. yepesii, has been evaluated and classified as Vulnerable (VU) [33].

N. asturiensis and N. hedraeanthus are listed under Least Concern (LC), with no other
major conservation measures recommended [34,35]. N. pallidulus, although not mentioned,
is included in N. triandrus, which is assessed as Least Concern (LC), considering its wide
distribution, with large and stable populations; it is unlikely that existing threats will cause
them to seriously decrease in the near future [36]. However, it should be added that the
different species of Section Ganymedes (Salisb.) Schultes f. studied in [37] have not been
taken into consideration in the preparation of this manuscript, and different problems
are present regarding each of them, both with respect to population size and natural and
anthropogenic issues, requiring, therefore, a new review.
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Only the leaves were collected for biological assays. The use of leaves instead of bulbs
for biological activity studies ensures the maintenance of the Iberian Daffodil Collection,
allowing for its reproduction. Moreover, depending on the phenological stage of the plant,
the alkaloid content and, therefore, the biological activity, may vary from bulb tissue to
leaf tissue, and sometimes leaves may contain more alkaloids and be more active than
bulbs [18,38].

2.2. Alkaloid Extracts Preparation

For the evaluation of the bioactivity, purified alkaloid extracts were performed. The
species were meticulously processed as follows: First, they were cut into pieces and dried at
a controlled temperature of 40 ◦C. Afterward, the dried plant material was finely powdered
using a rotary blade mill, specifically a stainless-steel grinder (Taurus, Oliana, Spain). To
extract the desired compounds, 1 g of the resulting powder was subjected to a maceration
process with methanol at 25◦ for three days. During this period, the solvent was replaced
each day using 3 × 50 mL aliquots and submitted to an ultrasonic bath (20 min, 4 daily
intervals). Following methanolic extraction, the mixture was meticulously strained, and the
solvent was carefully evaporated under reduced pressure, leaving behind crude extracts.
These crude extracts were subsequently acidified using 30 mL of a 2% (v/v) sulfuric acid
solution, lowering the pH to 2. After acidification, an ethyl acetate treatment (using
3 × 50 mL) was employed to eliminate neutral materials. The next step involved adjusting
the pH of the remaining aqueous solution to a range of 9–10, achieved by the addition of
a 25% (v/v) ammonium hydroxide solution. The volume of the ammonium hydroxide
solution employed was the quantity required to achieve the aforementioned pH. Finally,
the alkaloids were extracted with ethyl acetate (using 3 × 50 mL). After evaporation of the
solvent, the dried alkaloid extract (AE) was obtained.

2.3. Cholinesterase Inhibitory Activity

Levels of ACh and BuCh decrease in patients with Alzheimer’s disease. Inhibition
of AChE and BuChE has been shown to maintain ACh and BuCh levels in the brain,
reducing disease progression [13,39]. The activity of Narcissus extracts inhibiting these
enzymes can be assessed with colorimetric AChE and BuCHE inhibition assays, based
on the formation of thiobenzoate anion (yellow) following the reaction of thiocholine and
2,2′-dinitro-5′-dinitro-5′-dithiobenzoic acid when the enzymes are active.

The inhibition activity of AChE and BuChE was assessed using the method described
by Ellman and co-workers [40], with certain adaptations, as outlined by López and co-
workers [41]. Enzyme stock solutions containing 518U of AChE from Electrophorus electricus
(Merck, Darmstadt, Germany) and BuChE from equine serum (Merck, Darmstadt, Ger-
many) were prepared and subsequently stored at −20 ◦C. 5,5-Dithiobis (2-nitrobenzoic
acid) (DTNB), S-butyrylthiocholine iodide (BTCI), and acetylthiocholine iodide (ATCI)
were supplied by Merck (Darmstadt, Germany). The reaction was initiated by mixing
50 µL of AChE or BuChE (both enzymes were employed at a concentration of 6.24 U in
phosphate buffer (8 mM K2HPO4, 2.3 mM NaH2PO4, 0.15 NaCl, pH 7.5)) and 50 µL of
the alkaloid extract dissolved in the same buffer solution. Immediately, the plates were
incubated for 30 min at 25◦. Finally, 100 µL of the substrate solution (comprising 0.1 M
Na2HPO4, 0.5 M DTNB, and 0.6 mM ATCI or 0.24 mM BTCI in Millipore water, adjusted
to pH 7.5) were introduced. Ten minutes later, the absorbance was measured at 405 nm
using a Labsystem microplate reader (Helsinki, Finland). The activity of the enzymes was
estimated as percentages in relation to a control (which consisted of a buffer without any
inhibitor). Galanthamine served as a positive control. The galanthamine concentrations
used for this positive control were the following: 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 2.0 µg·mL−1

for AChE; and 1, 4, 6, 8, 10, 12, and 15 µg·mL−1 for BuChE. The calibration curves of
samples A (0.1, 1.0, 3.0, 5.0, 7.0, 10, and 15 µg·mL−1), B, E and L (0.05, 0.1, 0.5, 1.0, 3.0, 5.0,
and 10 µg·mL−1), C (0.1, 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 µg·mL−1), D and G (1.0, 2.5, 5.0, 7.5,
10, 15, and 25 µg·mL−1), F (5.0, 10, 15, 25, 50, 75, and 100 µg·mL−1), H (5.0, 10, 15, 20, 25, 50,
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and 75 µg·mL−1), I (1.0, 2.0, 3.0, 4.0, 5.0, 7.0, and 10.0 µg·mL−1), K (1.0, 10, 25, 50, 75, 100,
and 125 µg·mL−1), M and O (0.1, 0.5, 1.0, 3.0, 5.0, 7.0, and 10.0 µg·mL−1), and N (5.0, 7.5,
10, 15, 25, 50, and 75 µg·mL−1) were applied to obtain the IC50 values against the AChE
enzyme. To obtain the IC50 values against BuChE, the following curves were used: C and
K (10, 25, 50, 75, 100, 125, and 150 µg·mL−1), E (1, 5, 10, 15, 25, 50, and 75 µg·mL−1), G,
H, I, L, M and O (1, 10, 35, 50, 75, 100, and 125 µg·mL−1), and N (10, 25, 50, 100, 125, and
150 µg·mL−1). Analysis of the cholinesterase’s inhibitory data was conducted using Prism
10 software.

2.4. Statistical Evaluation

The inhibition of the cholinesterase activity of the Narcissus species was assessed using
three separate assays. The PRISM software was used to analyze the results. The data
are presented as the average ± standard deviation (SD). The significance of the results
is represented versus the control (Gal), and it is indicated as follows: **** p < 0.0001,
*** p < 0.001, ** p < 0.01, and ns (not significant). A one-way ANOVA test was performed
following Dunnet’s multiple comparison test, comparing the differences with respect to the
outcome of galanthamine with both AChE and BuChE.

3. Results and Discussion

The alkaloid extracts from all the Narcissus species collected in Spain were obtained
through acid-base extraction, as described in Section 2.2. The yield of each species is
available in Table 2. The average income value was 1.32%, with the highest value at 6.14%
(sample N) and the lowest at 0.47% (sample B), which represent the species N. yepesii and
N. jacetanus, respectively.

Table 2. Yield of alkaloid extracted, obtained from the Narcissus species.

Samples Dry Weight (g) Alkaloid Extract (mg) Yield (%)

A 1.00080 8.93 0.89
B 1.00114 4.69 0.47
C 1.00046 6.05 0.60
D 1.00050 4.95 0.49
E 1.00032 14.54 1.45
F 1.00035 9.79 0.98
G 0.88253 6.83 0.77
H 1.00069 10.66 1.07
I 1.00125 18.83 1.88
J 1.00137 10.17 1.02
K 1.00103 8.38 0.84
L 1.00094 15.32 1.53
M 1.00099 6.85 0.68
N 1.00037 61.43 6.14
O 1.00066 9.27 0.93

A = N. assoanus; B = N. jacetanus; C = N. vasconicus; D = N. minor; E = N. confusus; F = N. asturiensis;
G = N. hedraeanthus; H = N. alcaracencis; I = N. bujei; J = N. pallidulus; K = N. tazetta; L = N. jonquilla; M = N.
genesii-lopezii; N = N. yepesii; O = N. nevadensis.

In vitro assessments were carried out to examine the inhibitory potential of the fifteen
alkaloid extracts from Narcissus leaves against the enzymes AChE and BuChE. Among
these plant samples, fourteen demonstrated activity against AChE, while only nine ex-
hibited activity against BuChE (see Figures 2 and 3). As was expected, all the species
evaluated herein presented better results against AChE than BuChE. The species N. jac-
etanus (sample B) showed the best inhibition values against AchE, with IC50 values of
0.75 ± 0.03 µg·mL−1, while N. jonquilla (sample L) was the most active against BuChE,
with IC50 values of 11.72 ± 1.15 µg·mL−1. The species N. jacetanus and N. jonquilla are
illustrated in Figures 4 and 5, respectively. The samples N. assoanus, N. minor, N. confuses,
and N. jonquilla also presented noteworthy activity against AChE, with values of IC50 of
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0.99 ± 0.06, 0.81 ± 0.10, 1.04 ± 0.07, and 1.88 ± 0.05 µg·mL−1, respectively. Regarding
BuChE inhibition activity, N. confusus and N. genesii-lopezii also presented high and relevant
activity, with IC50 of 12.83 ± 0.87 and 11.98 ± 0.93 µg·mL−1, respectively. Thus, N. jonquilla
stands out for being the species of Narcissus with the highest global cholinesterase activity
inhibition, followed by N. confusus and N. jonquilla.
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Considering their biological potential, it is important to account for the potential
synergistic interactions among Amaryllidaceae alkaloids in plant extracts [42]. These
interactions, previously reported to contribute to acetylcholinesterase (AChE) inhibition,
should be taken into consideration when explaining the anticholinesterase potential of
certain Amaryllidaceae species [42].

Among other samples, Havlasová and co-authors [43] evaluated the inhibitory potential
of N. jonquilla var. henriquesii against AChE and obtained IC50 values of 32.6 ± 4.3 µg·mL−1,
while for galanthamine, it was 1.7 ± 0.06 µg·mL−1 [43]. As documented in the literature,
the galanthamine-type skeleton, specifically the alkaloids galanthamine and sanguinine,
are commonly active against AChE and BuChE [41]. In the literature, a great amount
of galanthamine-type structures is reported, such as galanthamine, lycoramine, and nar-
wedine in the species N. jonquilla, representing about 65% of its alkaloid profiling [4,44].
Furthermore, haemanthamine, tazettine, jonquailine, and narciclasine- and lycorine-type
structures were also described in this plant species [4,44,45]. Furthermore, the majority of
the reported alkaloids of N. jonquilla have been studied in terms of molecular modelling
in front of AChE and BuChE, and data reported in the literature support the fact that
they could be responsible for the especially high activity of this species inhibiting BuChE
and AChE. Galanthamine has been reported to have good docking scores for BuCHE
and ACHE [46–50]. Lycoramine has been reported to have molecular docking values of
−8.84, −9.08, −8.87, −8.64, and−8.41 kcal·mol−1 for the human acetylcholinesterase X-ray
crystals 4EY5, 4EY6, 4Ey7, 4M0E, and 4M0F, respectively, while values for galanthamine
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were −8.59, −8.75, −9.83, −7.90, and −8.74 kcal·mol−1, according to Tallini et al., 2022 [50].
Narwedine has been reported to have better scores (−9.15, −9.70, −10.41, −8.69, and
−9.72 kcal·mol−1) than lycoramine and galanthamine [50].

The AChE inhibition activity of the species N. assoanus, N. jacetanus, N. bujei, N. vas-
conicus, and N. pallidulus have also been described by López and co-authors. However, no
activity has been described for the latter two species [41]. Previous publications indicate
that the alkaloid composition of the species N. assoanus includes assoanine, oxoassoanine,
pseudolycorine, 1-O-acetylpseudolycorine, and 2-O-acetylpseudolycorine [51,52]. The
species N. jacetanus has been previously documented to contain the compounds assoanine,
oxoassoanine, pseudolycorine, and lycorine [53]. According to the literature, the com-
pounds assoanine and oxoassoanine, which belong to a lycorine-type skeleton, are active
against AChE, with IC50 values of 3.87± 0.24 and 47.21± 1.13 µM, respectively, while pseu-
dolycorine exhibits poor activity [41]. According to prior publications, the alkaloid lycorine
exhibits a very weak in vitro activity against AChE and BuChE, with IC50 values higher
than 200 µM [41,54]. However, lycorine showed good energy values concerning docking
studies with enzymes, with scores of 60.9444 for AChE (1EVE) and 52.7924 for BuChE
(homology model) (scores corresponding to galanthamine were 65.4656 and 53.0089) [46].

Cortes et al., 2018 [47] obtained scores of −8.99, −8.87, and −8.94 kcal·mol−1 (energy
of protein ligand interaction between lycorine and 1DX6 and 4EY7 from AChE, and 4BDS
from BuCHE, respectively), while values corresponding to galanthamine were −10.10,
−10.20, and −8.23 kcal·mol−1, respectively. León et al., 2021 [48] reported binding values
for lycorine to AChE (1DX6) and BuChE (4BDS) of−8.82 and−8.94 kcal·mol−1, respectively,
while values corresponding to galanthamine were−10.10 and−8.23 kcal·mol−1. Rojas-Vera
et al., 2021 [49], estimated lycorine binding values of −8.89 and −8.38 kcal·mol−1 for AChE
(4EY7 and 5HF5) and −7.74 kcal·mol−1 for BuChE (1P0I), while values corresponding to
galanthamine were−9.92,−8.97, and−7.40 kcal·mol−1, respectively. Tallini et al., 2018 [54]
reported lycorine binding values of −8.82 and −8.94 kcal·mol−1 for AchE (1DX6) and
BuChE (4BDS), respectively, while scores corresponding to galanthamine were −9.55 and
−8.23 kcal·mol−1, respectively.

Regarding the molecular modelling of assoanine and oxoassoanine vs. AchE, they
did not show great interaction with AchE in terms of electrophilicity, with values of
0.0026 and 0.0036 eV, respectively, (galanthamine electrophilicity values corresponded
to 8.5725 eV). In relation to the molecular electrostatic potential (MEP) of assoanine and
oxoassoanine, values of negative (−0.08705 and −0.06995 u.a.) and positive (0.03474 and
0.05755 u.a.) regions (which represent the probability to conduct and suffer, respectively,
nucleophilic attacks) are not as high as other Amaryllidaceae alkaloids with AChE inhibition
properties such as galanthamine (−0.06995 and 0.05755 u.a. negative and positive regions,
respectively), hydroxygalanthamine (−0.06822 and 0.06648 u.a.), or sanguinine (−0.07504
and 0.06400 u.a.) [55]. However, it must be considered that no other molecular modeling
studies have been found in the literature regarding these two compounds; therefore, more
studies should be performed to obtain a global idea of the characterization of the interaction
of these compounds with AChE and BuChE.

The alkaloids homolycorine, lycorenine, haemanthamine, 8-O-demethylhomolycorine, O-
methyllycorenine, crinamine, masonine, tazettine, O-methyloduline, 11-O-acetylhaemanthamine,
and bujeine have been documented as constituents of the species N. bujei [56]. Additionally,
four alkaloids have been reported in the species N. vasconicus, which are vasconine,
lycorine, homolycorine, and 8-O-acetylhomolycorine [57].

As shown in Table 3, the alkaloid extract of N. pallidulus (sample J) was the only
extract inactive against both cholinesterases. Previous studies have documented the pres-
ence of different structures from the Sceletium type in the section Ganymedes (Salisb.)
Schultes f. [37,58]. This scaffold is the only group of alkaloids that is not exclusive to the
monocotyledon subfamily Amaryllidoideae, being typical structures of the genus Sceletium
that belongs to the dicotyledonous family Aizoaceae [4,37,59]. According to the litera-
ture, the following alkaloids have been described in this plant species: haemanthamine,
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lycorine, lycorenine, homolycorine, galanthamine, tazettine, mesembrine, mesembrenol,
mesembrenone, 2-oxomesembrenone, 7,7a-dehydromesembrenone, 2-oxoepimesembrenol,
6-epimesembrenol, 6-epimesembranol, and 4′-O-demethylmesembrenone [58,60].

Table 3. IC50 values of AChE and BuChE inhibitory activity of the Narcissus species collected in
Spain. Values expressed in µg·mL−1. A = N. assoanus; B = N. jacetanus; C = N. vasconicus; D = N. minor;
E = N. confusus; F = N. asturiensis; G = N. hedraeanthus; H = N. alcaracencis; I = N. bujei; K = N. tazetta;
L = N. jonquilla; M = N. genesii-lopezii; N = N. yepesii; O = N. nevadensis; Gal = galanthamine.

Samples Species AChE BuChE

A N. assoanus 0.99 ± 0.06 >100
B N. jacetanus 0.75 ± 0.03 >100
C N. vasconicus 2.98 ± 0.51 23.14 ± 0.58
D N. minor 0.81 ± 0.10 >100
E N. confusus 1.04 ± 0.07 12.83 ± 0.87
F N. asturiensis 34.28 ± 2.06 >100
G N. hedraeanthus 5.73 ± 0.36 29.23 ± 3.84
H N. alcaracencis 9.54 ± 1.26 59.60 ± 2.61
I N. bujei 6.14 ± 0.68 34.86 ± 1.75
J N. pallidulus >100 >100
K N. tazetta 3.68 ± 0.36 >100
L N. jonquilla 1.88 ± 0.05 11.72 ± 1.15
M N. genesii-lopezii 5.28 ± 0.64 11.98 ± 0.93
N N. yepesii 10.63 ± 0.08 87.20 ± 3.01
O N. nevadensis 7.03 ± 1.49 31.68 ± 0.49

Gal 0.46 ± 0.03 5.13 ± 0.48
Gal: galanthamine.

Considering the inhibitory potential of the samples against both enzymes (Figures 2 and 3),
the species N. confusus, N. jonquilla, and N. genesii-lopezii showed remarkable results, with
IC50 values of 1.04 ± 0.07, 1.88 ± 0.05, and 5.28 ± 0.64 µg·mL−1, respectively, against
AChE, and 12.83 ± 0.87, 11.72 ± 1.15, and 11.98 ± 0.93 µg·mL−1, respectively, against
BuChE. López and co-authors [41] evaluated the activity of the alkaloid extract of twenty-
six species of Narcissus and reported that the best results were obtained for N. confusus,
which presented a high amount of galanthamine [41]. The literature documents the ex-
istence of various structures within the alkaloid composition of the species N. confusus,
which are ismine, 11,12-dehydroanhydrolycorine, galanthamine, 3-O-acetylgalanthamine,
N-demethylgalanthamine, N-formylgalanthamine, narwedine, 8-O-methylleucotamine,
haemanthamine, haemanthidine, tazettine, pretazettine, 6-O-methylpretazettine, epimacro-
nine, homolycorine, 8-O-demethylhomolycorine, 9-O-demethylhomolycorine, and also
narciclasine-, and lycorine-type alkaloids [4,61–63]. As indicated in the literature, the
chemical diversity of this species presents challenges to its viability as a consistent source
of galanthamine on an industrial scale [15].

Various alkaloids have been documented in the alkaloid composition of N. tazetta,
including galanthamine, sanguinine, narwedine, demethylmaritidine, anhydrolycorine,
O-methylnorbelladine, pancratinine C, lycorine, 9-O-methylpseudolycorine, pseudoly-
corine, 1-O-acetyl-3-O-methylnarcissidine, 11, hydroxygalanthine, narcissidine, 9-O-
demethyl-2alfa-hydroxyhomolycorine, ismine, tazettine, lycorenine, lycorine, masonine,
3-epimacronine, 1,2-dihydroclidanthine, assoanine, hippeastrine, and 4,5-ethylene-8,9-
dimethoxy-6-phenanthridone [64–66]. Karakoyun and colleagues detailed an analysis of
the anticholinesterase potential of alkaloids isolated from the species N. tazetta [65]. Their
findings revealed 11-hydroxygalanthamine and narcissidine as important compounds with
inhibitory effects against AChE, with IC50 values of 0.67 and 1.85 µM, respectively, while
galanthamine showed IC50 values of 0.14 µM [65].

Viladomat and co-authors [67] identified haemanthamine, haemanthidine, tazettine,
3-epimacronine, ismine, and risperidona in the alkaloid composition of N. asturiensis [67].
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The alkaloid type composition of N. alcaracensis, N. yepesii, N. genesii-lopezii, N. hedraeanthus,
and N. jonquilla was determined by [4]. The alkaloid composition of N. alcaracensis and
N. yepesii is dominated by alkaloid lycorine-type compounds. These species also contain
haemanthamine- and homolycorine-type compounds. Pancracine- and galanthamine-type
alkaloids have also been reported in N. yepesii [4]. N. genesi-lopezii composition is dominated
by homolycorine-type alkaloids, although the presence of galanthamine-, haemanthamine-,
and lycorine-type alkaloids is also reported. The alkaloid composition of N. hedraeanthus
is dominated by haemanthamine-type alkaloids. However, this species also contains
narciclasine-, galanthamine-, tazettine-, and lycorine-type alkaloids [4].

No information about the alkaloid profile of the species N. minor and N. nevadensis has
been found in the literature. Regarding the alkaloid composition and anti-cholinesterase
activity of certain species not listed in Table 3, Lisa-Molina and co-workers [6] evaluated
the alkaloid profiling of ten samples of Narcissus, totaling nine different species (N. obsoletus,
N. deficiens, N. serotinus, N. cavanillesii, N. viridiflorus, N. elegans, N. papyraceus, N. bul-
bocodium, N. blancoi) collected in Spain [6]. The authors detected thirty alkaloids among
these samples, with two of them not being identified [6]. According to their results, the
lycorine-type skeleton was the most diverse group detected among the samples, with these
structures being observed in all of the species, except in N. viridiflorus and N.bulbocodium [6].
The authors also evaluated the AChE inhibitory activity of ten extracts of Narcissus, with
seven of them able to act against this enzyme [6]. The best results were observed for the
species N. obsoletus, which exhibited a substantial concentration of galanthamine in its
alkaloid profile and showed IC50 values of 0.92 ± 0.06 µg·mL−1 [6]. Among all the species
evaluated by them, N. obsoletus and N. blancoi were the only species that showed the pres-
ence of alkaloids from the galanthamine-type scaffold [6]. Furthermore, thirteen known and
three new Amaryllidaceae alkaloids were isolated from Narcissus pseudonarcissus cv. Carlton
by Mamun and co-authors [68]. Two of them were named carltonine A and carltonine
B. The authors evaluated these new alkaloids in vitro against both cholinesterases, which
showed a significant and selective inhibitory activity against BuChE, displaying IC50 values
of 0.91 ± 0.02 and 0.031 ± 0.001 µM, correspondingly [68]. Twenty-one Amaryllidaceae
alkaloids of various structural types and one new alkaloid, named narcimatuline, were
obtained from the bulbs of Narcissus pseudonarcissus L. cv. Dutch Master by Hulcová and
co-workers [69]. According to their results, narcimatuline showed interesting multipotent
biological profiling, presenting properties against BuChE, prolyl oligopeptidase (POP), and
glycogen synthase kinase-3β (GSK-3β) enzymes, with respective IC50 values of 5.9 ± 0.2,
29.2 ± 1.0, and 20.7 ± 2.4 µM [69].

4. Conclusions

In Europe, the species Narcissus plays a very important role for pharmaceutical com-
panies as a source of galantamine. However, many species of this genus have not yet been
studied. In this work, we describe the anticholinesterase potential of fifteen species of Nar-
cissus collected in Spain, with seven of them being the first report of their biological activity
(N. minor, N. asturiensis, N. hedraeanthus, N. alcaracensis, N. genesii-lopezii, N. yepesii and
N. nevadensis). Some of these species showed interesting activity against AChE (N. jacetamus,
N. assoanus, N. minor, N. confusus and N. jonquilla) and BuChE (N. jonquilla, N. confusus,
N. genesii-lopezii). The species N. jonquilla and N. confusus show remarkable activity against
both enzymes; therefore, they stand out as possible candidates for further studies and
for determining their alkaloid composition. This study contributes to underlining the
importance of Amaryllidaceae species as a source of important bioactive molecules.
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