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Abstract: Pediatric sarcomas, rare malignancies of mesenchymal origin, pose diagnostic and thera-
peutic challenges. In this review, we explore the role of radiomics in reshaping our understanding of
pediatric sarcomas, emphasizing methodological considerations and applications such as diagnostics
and predictive modeling. A systematic review conducted up to November 2023 identified 72 papers
on radiomics analysis in pediatric sarcoma from PubMed/MEDLINE, Web of Knowledge, and Scopus.
Following inclusion and exclusion criteria, 10 reports were included in this review. The studies,
predominantly retrospective, focus on Ewing sarcoma and osteosarcoma, utilizing diverse imaging
modalities, including CT, MRI, PET/CT, and PET/MRI. Manual segmentation is common, with a
median of 35 features extracted. Radiomics Quality Score (RQS) and Methodological Radiomics
Score (METRICS) assessments reveal a consistent emphasis on non-radiomic features, validation
criteria, and improved methodological rigor in recent publications. Diagnostic applications dominate,
with innovative studies exploring prognostic and treatment response aspects. Challenges include
feature heterogeneity and sample size variations. The evolving landscape underscores the need for
standardized methodologies. Despite challenges, the diagnostic and predictive potential of radiomics
in pediatric oncology is evident, paving the way for precision medicine advancements.

Keywords: pediatric sarcoma; radiomics; diagnostic imaging; methodological rigor; Radiomics
Quality Score (RQS); Methodological Radiomics Score (METRICS); imaging modalities; prognostic
assessment; precision medicine

1. Introduction

Pediatric sarcomas, a complex array of rare malignancies originating from mesenchy-
mal tissues, continue to pose significant challenges in diagnosis and treatment [1,2]. Among
the common types are rhabdomyosarcoma, osteosarcoma, and Ewing sarcoma. Each sub-
type presents unique challenges in diagnosis and treatment, highlighting the need for
tailored approaches to address the diverse spectrum of pediatric sarcomas [2]. These
tumors often require multidisciplinary management involving surgery, chemotherapy,
and/or radiation therapy to achieve optimal outcomes for affected patients. Further re-
search into the molecular and genetic mechanisms underlying these tumors is essential
for developing targeted therapies and improving survival rates in pediatric sarcoma pa-
tients [1]. Despite advancements in conventional imaging techniques, the intricacies of
these tumors demand innovative solutions. Radiomics, a rapidly expanding field at the
intersection of medical imaging and advanced data analytics, presents a promising avenue
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for unraveling the complexities of pediatric sarcomas [3,4]. Radiomics involves the extrac-
tion and analysis of a large number of quantitative features from medical images, including
intensity, shape, texture, and spatial relationships, which are then subjected to sophisti-
cated computational algorithms [3]. By discerning subtle patterns and associations within
imaging data that may not be perceptible to the naked eye, radiomics holds the potential to
provide valuable insights into the underlying biology, heterogeneity, and prognostic factors
of pediatric sarcomas [4].

In this comprehensive review, we undertake an extensive appraisal of the current land-
scape of radiomics in the field of pediatric sarcomas, exploring its potential to reshape our
understanding of these malignancies and refine clinical management strategies. The quality
of radiomics studies represents a pivotal landmark for advancing radiomic research and
future clinical applications. To this end, the Radiomics Quality Score (RQS), proposed by
Lambin et al. as a robust tool for evaluating the quality of radiomics studies, was applied to
evaluate the reliability and reproducibility of radiomic findings [5]. Anchored in 16 items
related to the key steps of the radiomic workflow, the RQS offers a structured framework to
critically assess methodological rigor, ensuring a comprehensive evaluation of the reliability
and reproducibility of radiomic findings.

Acknowledging the dynamic nature and current development in the field of radiomics,
we further extend our exploration to include the recently released quality assessment tool,
the Methodological Radiomics Score (METRICS) [6]. Developed by an international con-
sortium of domain experts, the METRICS employs a flexible format covering all method-
ological variations, providing a well-constructed framework for assessing the quality of
radiomic research papers. EuSoMII, the European Society of Medical Imaging Informatics
(https://www.eusomii.org/; accessed on 1 March 2024), has endorsed METRICS as a
valuable tool for evaluating the methodological quality of radiomics studies. We aim to
incorporate both the RQS and METRICS to offer a comprehensive view of radiomics studies
in the field of pediatric sarcomas, providing insights into the methodological quality and
rigor of these studies.

Our manuscript aims to contribute to the ongoing discourse surrounding the integra-
tion of radiomics into routine clinical practice for pediatric sarcomas. By incorporating both
the RQS and METRICS, we aspire to provide a holistic evaluation of radiomics studies,
specifically within the context of pediatric sarcomas, offering a nuanced perspective on
their quality and potential impact in guiding therapeutic decisions for pediatric sarcoma
patients. Our ultimate objective is to foster a deeper understanding of the field, thereby
facilitating the translation of radiomics from theoretical promise to tangible improvements
in pediatric oncology outcomes.

2. Materials and Methods
2.1. Systematic Search Strategy

A systematic review was conducted to identify original research papers pertaining
to radiomics analysis in pediatric sarcoma, published up to November 2023. The search
encompassed the PubMed/MEDLINE (n = 26), Web of Knowledge (n = 17), and Scopus
(n = 29) databases. The search strategy employed the following terms: (histogram) OR
(texture) OR (textural) OR (radiomics)) AND (sarcoma [MeSH Terms]) AND (pediatric).
This review was performed in accordance with the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines.

2.2. Eligibility Criteria and Study Selection

The selection of studies for inclusion in this review aimed to comprehensively evaluate
the application of radiomics in pediatric sarcomas. The following eligibility criteria were
predefined to ensure the relevance and quality of the included literature:

1. Publication Type: Peer-reviewed journal articles reporting original research studies
were included. Conference abstracts, editorials, letters, and reviews were excluded.

https://www.eusomii.org/
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2. Study Design: Studies employing radiomics methodology for the analysis of medical
imaging data in pediatric patients with sarcomas were eligible for inclusion. Both
retrospective and prospective studies were considered.

3. Population: Studies involving pediatric patients (aged ≤ 18 years) diagnosed with
sarcomas of various subtypes, including but not limited to osteosarcoma, Ewing
sarcoma, rhabdomyosarcoma, and liposarcoma, were included.

4. Outcome Measures: Studies reporting on the application of radiomic features ex-
tracted from medical imaging modalities such as MRI, CT, or PET/CT and PET/MRI
for the diagnosis, prognosis, treatment response assessment, or predictive modeling
of pediatric sarcomas were included.

5. Language: Studies published in English were considered for inclusion in this review.

2.3. Data Extraction

Data extraction involved collecting various details from the included studies focusing
on pediatric sarcomas. These details encompassed authors’ names, the year of publi-
cation, and the title of the publication. The full manuscripts were assessed to retrieve
additional critical information. This included discerning the study type as either retro-
spective or prospective and determining the total number of patients included. Moreover,
specific details regarding the type of sarcomas (e.g., Ewing sarcoma, osteosarcoma, rhab-
domyosarcoma, etc.), imaging modalities employed (such as CT, MRI and/or PET/CT,
PET/MRI), single or multiple sequence modalities applied for feature extraction, the soft-
ware utilized for segmentation and imaging analysis, the segmentation method (manual,
semiautomated and fully automated), and the total number of radiomic features extracted
were documented.

To enhance clarity, the studies were further categorized based on their primary in-
vestigative objectives. These objectives encompassed diagnostic studies, which included
radiomics analyses for differential diagnosis and the prediction of tumor histopathological
differentiation. Additionally, studies focusing on prognostic factors, aiming to predict early
recurrence and survival outcomes, as well as those investigating treatment responses, were
grouped for comprehensive analysis.

2.4. Analysis of the Quality Based on Radiomics Quality Score (RQS)

The methodological quality of the studies included in our analysis underwent thor-
ough assessment by a panel of three expert reviewers: G.A., a nuclear medicine special-
ist with 7 years of experience, and M.F. and T.F., both accomplished radiologists with
3 and 1 years of experience, respectively. Employing the RQS framework, as proposed
by Lambin et al. [5], our evaluation aimed to scrutinize the methodological robustness of
each study.

The RQS serves as a comprehensive tool designed to gauge the methodological
strength of radiomics studies, as extensively detailed in previous research [4,7–9]. Compris-
ing 16 distinct items, it encompasses critical facets of study design, image acquisition and
preprocessing, feature extraction, feature selection, model building, and validation meth-
ods. Each item within the RQS is evaluated against predefined criteria, with higher scores
reflecting superior methodological quality. The total RQS (ranging from −8 to + 36) and
the percentage of the total score (0–100%) were recorded from all three readers. In instances
where discrepancies arose among the three reviewers, consensus was reached through
majority decision-making, ensuring a rigorous and consistent evaluation process.

2.5. Analysis of the Methodological Radiomics Score (METRICS)

The METRICS is a quality scoring tool for evaluating the methodological rigor of
radiomics studies (https://metricsscore.github.io/metrics/METRICS.html; accessed on
1 March 2024) [6]. It consists of 30 items within 9 categories that assess various aspects of
study methodology, including study design, image acquisition and preprocessing, feature
extraction, feature selection, model building, and validation techniques. Each item is

https://metricsscore.github.io/metrics/METRICS.html


Diagnostics 2024, 14, 832 4 of 14

scored based on predefined criteria, with higher scores indicating better methodological
quality. The 30 items in METRICS offer a comprehensive assessment of the key components
necessary for robust radiomics research. The total METRICS, expressed as a percentage, is
calculated as a representation of the overall methodological quality of a radiomics study.
The METRICS percentage value ranges from 0 to 100 and is derived from the sum of
individual item scores divided by the maximum possible score. This percentage score
provides a quantitative measure of the methodological quality, allowing for comparative
analysis across different studies.

To facilitate interpretation, the METRICS percentage is categorized into five arbitrary
categories representing gradually increasing quality:

• Very Low Quality (0 ≤ score < 20%): Radiomics studies falling within this cate-
gory exhibit very low methodological quality, indicating significant deficiencies in
study methodology.

• Low Quality (20 ≤ score < 40%): Studies categorized as low quality demonstrate an
improvement over very low quality but still exhibit notable shortcomings in method-
ological rigor.

• Moderate Quality (40 ≤ score < 60%): Studies in the moderate quality category indicate
a satisfactory level of methodological rigor, with noticeable improvements compared
to low-quality studies.

• Good Quality (60 ≤ score < 80%): Studies classified as good quality demonstrate
a significantly improved level of methodological rigor, with strong adherence to
established guidelines and standards.

• Excellent Quality (80 ≤ score ≤ 100%): Studies achieving excellent quality represent
the highest level of methodological rigor, exhibiting exceptional adherence to best
practices and standards in radiomics research.

2.6. Statistical Analysis

The level of inter-rater agreement of RQS total percentages among three independent
raters was assessed using Fleiss’ Kappa statistic, suitable for multiple raters [10]. It is
commonly used when dealing with more than two raters and provides a measure of
agreement that considers chance agreement among all raters. The inter-rater agreement
for the scoring categories of the METRICS was assessed using Cohen’s Kappa statistic,
suitable for two raters. Cohen’s Kappa provides a measure of agreement that adjusts for the
possibility of chance agreement between raters, thus providing a more robust assessment
of inter-rater reliability. The interpretation of both Fleiss’ Kappa and Cohen’s Kappa values
is as follows: values less than 0 were categorized as no agreement, 0.01–0.20 as slight
agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as
substantial agreement, and 0.81–1.00 as almost perfect agreement.

Additionally, the total METRICS was evaluated using the intraclass correlation co-
efficient (ICC) with 95% confidence intervals (CIs). The ICC was calculated based on an
absolute agreement with a 2-way mixed-effect model, which accounts for both systematic
and random variations among readers. The interpretation of ICC values followed estab-
lished guidelines: poor agreement for ICC < 0.50, moderate agreement for ICC = 0.50–0.75,
good agreement for ICC = 0.75–0.90, and excellent agreement for ICC > 0.90.

3. Results
3.1. Study Selection

Initially, a total of 72 papers were identified using the specified search terms. Sub-
sequently, 26 duplicate articles were excluded, resulting in 46 unique articles for further
evaluation. Among these, 31 articles were excluded based on predefined criteria: 6 were
review articles, 22 were studies that were unrelated to radiomics, 2 were not focused on
pediatric populations, 1 was not written in English, and 2 were centered on volumetric
diffusion-weighted imaging (DWI) analysis, with an additional article focused on deep
learning and another one involving methods that deviate from the standard radiomics
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approach in terms of feature extraction and analysis techniques. Finally, following the
application of inclusion and exclusion criteria, a total of 10 reports were included in the
review process (refer to Figure 1 for the selection process flowchart) [11–20].
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3.2. Characteristics of Included Studies

The characteristics of the included studies are summarized in Table 1. These studies
were published between 2017 and 2023. Among the included publications, the year 2017
had the fewest publications (n = 1), while 2022 had the greatest number of studies (n = 4).
All of the studies were retrospective in nature and predominantly focused on Ewing
sarcoma (EWS) and osteosarcoma (OST). The imaging modalities utilized in the included
studies were CT (three studies), MRI (four studies), PET/CT (two studies), and PET/MRI
(two studies). Two studies used multiple sequence modalities for feature extraction.
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Table 1. Study characteristics.

First Author Year Title Study
Design #

Sample
Size Tumor Type Analysis

Strategy * Software Radiomic
Feature Feature Type Sequences Imaging

Modality Segmentation **
Primary

Investigative
Objectives

Bailly et al. [13] 2017

Prognostic Value of FDG-PET
Indices for the Assessment of

Histological Response to
Neoadjuvant Chemotherapy

and Outcome in Pediatric
Patients with Ewing Sarcoma

and Osteosarcoma

R 62
Ewing

sarcoma,
osteosarcoma

U; M

PLANE-T1Onco-
Solution; https:

//www.dosisoft.
com/products/
planet-onco/

9

Heterogeneity
(GLCM, GLRLM,

and GLSZM),
Shape features

single [18F]FDG
PET/CT 3D, A prognostic

Cho et al. [15] 2019

Computerized Texture Analysis
of Pulmonary Nodules in

Pediatric Patients with
Osteosarcoma: Differentiation
of Pulmonary Metastases from

Non-Metastatic Nodules

R 16 Osteosarcoma U MISSTA; in-house
software program 12

first-order,
second-order
texture, and
morphologic

features

single CT 2D, M diagnostic

Lin et al. [18] 2020

A Delta-Radiomics Model for
Preoperative Evaluation of

Neoadjuvant Chemotherapy
Response in High-Grade

Osteosarcoma

R 191 Osteosarcoma M

ITK-SNAP; http:
//www.itksnap.

org/pmwiki/
pmwiki.php

68
Intensity, texture,

and wavelet
features

single CT 3D, M treatment
response

Sarioglu et al. [19] 2020

MRI-Based Texture Analysis for
Differentiating Pediatric

Craniofacial
Rhabdomyosarcoma from

Infantile Hemangioma

R 15

Craniofacial
rhab-

domyosar-
coma

U LifeX; https://
www.lifexsoft.org 38 texture features multiple MRI 2D, M diagnostic

Ding et al. [16] 2020

MRI-Based Radiomics in
Distinguishing Kaposiform

Hemangioendothelioma (KHE)
and Fibro-Adipose Vascular

Anomaly (FAVA) in Extremities:
A Preliminary

Retrospective Study

R 30
Kaposiform
hemangioen-
dothelioma

M 3D Slicer; https:
//www.slicer.org 107

Shape and first-
and second-order

features
single MRI 3D, M diagnostic

Giraudo et al. [17] 2022

Radiomic Features as
Biomarkers of Soft Tissue

Paediatric Sarcomas:
preliminary results of a

PET/MR study

R 18

Soft tissue
sarcomas

(mainly rhab-
domyosarco-

mas)

U 3D Slicer; https:
//www.slicer.org 33

First- and
second-order

features
single [18F]FDG

PET/MRI 3D, M diagnostic

Aydos et al. [12] 2022

Prognostic Value of
Fluorodeoxyglucose Positron

Emission Tomography-Derived
Metabolic Parameters and

Textural Features in
Pediatric Sarcoma

R 43

Osteosarcoma,
Ewing

sarcoma,
rhab-

domyosar-
coma

U; M LifeX; https://
www.lifexsoft.org 15

Histogram,
GLRLM, GLCM,

NGLDM, DLZLM
single [18F]FDG

PET/CT 3D, SA prognostic

https://www.dosisoft.com/products/planet-onco/
https://www.dosisoft.com/products/planet-onco/
https://www.dosisoft.com/products/planet-onco/
https://www.dosisoft.com/products/planet-onco/
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.lifexsoft.org
https://www.lifexsoft.org
https://www.slicer.org
https://www.slicer.org
https://www.slicer.org
https://www.slicer.org
https://www.lifexsoft.org
https://www.lifexsoft.org
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Table 1. Cont.

First Author Year Title Study
Design #

Sample
Size Tumor Type Analysis

Strategy * Software Radiomic
Feature Feature Type Sequences Imaging

Modality Segmentation **
Primary

Investigative
Objectives

Bouhamama
et al. [14] 2022

Prediction of Histologic
Neoadjuvant Chemotherapy
Response in Osteosarcoma

Using Pretherapeutic
MRI Radiomics

R 176 Osteosarcoma ML; DL

ITK-SNAP; http:
//www.itksnap.

org/pmwiki/
pmwiki.php

342 Size, shape, and
texture features single MRI 3D, M treatment

response

Yang et al. [20] 2022

Novel Computer-Aided
Diagnostic Models on

Multimodality Medical Images
to Differentiate

Well-Differentiated
Liposarcomas from Lipomas

Approached by Deep
Learning Methods

R 58
Well-

differentiated
liposarcoma

U; M;
ML; DL

ITK-SNAP http:
//www.itksnap.

org/pmwiki/
pmwiki.php

851
First-order; shape
and second-order

features
multiple CT; MRI 3D, M diagnostic,

prognostic

Aydos et al. [11] 2023

Quantitative and Visual
Analyses of the Effect of

Activity Reduction on Image
Metrics and Quality in 18F-FDG

PET/MRI in
Pediatric Oncology

R 19 Sarcoma U LifeX; https://
www.lifexsoft.org 32

Histogram,
GLRLM, GLCM,

NGLDM, DLZLM
single [18F]FDG

PET/CT 3D, SA

other
(reduced

injected tracer
activities)

Abbreviations: [18F]FDG PET/CT: fluorodeoxyglucose positron emission tomography/computed tomography; CT: computed tomography; DLZLM: dependence size zone matrix;
GLCM: gray-level co-occurrence matrix; GLRLM: gray-level run-length matrix; GLSZM: gray-level size zone matrix; MISSTA, medical imaging solution for segmentation and texture
analysis; MRI: magnetic resonance imaging; NGLDM: neighboring gray-level dependence matrix. # Study design: R = retrospective; P = prospective. * Analysis strategy: U = univariate
feature analysis, M = multivariate prediction models, ML = machine learning, DL = deep learning. ** ROI segmentation method: M = manual, SA = semiautomatic, A = automatic.

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.lifexsoft.org
https://www.lifexsoft.org
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In the reviewed studies, the extraction of radiomic features was predominantly con-
ducted using widely employed software tools such as LifeX, ITK-SNAP, and 3D-Slicer
for the robust analysis of texture features. The majority of the studies included region-of-
interest (ROI) segmentation methods, with manual segmentation being the most commonly
employed method (n = 7), followed by two studies that used semiautomated methods and
one study that utilized a fully automated method.

The studies included in this review covered a total of 628 participants. The sample
size across the studies ranged from 15 to 176 participants, with a median of 62 participants.
In terms of feature extraction, a median of 35 features were extracted across the studies.
The majority of the articles reported a limited number of features, with only two articles
extracting 851 [20] and 342 [14] features. Most of the studies focused on feature extraction
from primary tumors, while one study analyzed lung metastases [15]. Based on the
primary investigative objectives, five papers were focused on diagnostic purposes, three on
prognostic assessment, two on treatment response evaluation, and one additional paper
focused on other aspects such as reduced injected tracer activities [11].

3.3. Quality Assessment Using RQS

The inter-rater agreement among the three independent raters for the RQS total
percentage using Fleiss’ Kappa yielded a substantial agreement (Kappa = 0.478) among the
raters. The high z-value (7.71) and low p-value (p < 0.05) indicated significant agreement
beyond chance.

The incorporated studies demonstrated a median RQS of 6.5 points, equivalent to
18.1% when expressed as a percentage (Figure 2). The scores ranged from 3 to 20, represent-
ing a spectrum from 8.3% to 55.6%, respectively. Figure 3 provides a detailed breakdown of
these scores. Notably, four criteria, namely discrimination statistics, the potential clinical
utility, retrospective design, and a well-documented image protocol, were consistently
scored higher across the studies. Conversely, three criteria, namely feature reduction or
adjustment for multiple testing, validation and detection, and the discussion of biological
correlates, were less frequently met.
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the assessment of variability and central tendency among the studies. Study names are listed on the
y-axis, and RQSs are indicated on the x-axis [11–20].
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Figure 3. The heatmap illustrates the RQS criteria for different studies. Each row represents a study,
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while the study names are on the right side of the heatmap [11–20].

A trend observed across some studies involved the incorporation of non-radiomic
features into the analysis (criterion 6), often compared to established gold standards
(criterion 13). Notably, studies conducted in 2022 and 2023 placed particular emphasis
on the validation criterion (criterion 12).

3.4. Methodological Rigor Assessment Using METRICS

The assessment of inter-rater agreement in this study utilized Cohen’s kappa coefficient
for the determination of agreement on quality categories within the METRICS framework.
The results revealed a robust level of agreement between the two readers, with a statistically
significant Cohen’s kappa coefficient of 0.833 (z = 3.69, p-value = 0.000228). This finding
underscores a high degree of consensus in the qualitative categorization of the reviewed
papers. Table 2 provides a comparison of the total METRICS and quality categories assigned
by two readers (Reader 1 and Reader 2) for each study.

Table 2. A comparison of the total METRICS and quality categories assigned by two readers (Reader
1 and Reader 2) for each author’s study.

Reader 1 Reader 2

First Author Total METRICS Quality
Category Total METRICS Quality

Category

Bailly C (2017) [13] 43.6 Moderate 52.5 Moderate

Cho YJ (2019) [15] 59.6 Moderate 55.6 Moderate

Lin P (2020) [18] 68.6 Good 71.3 Good

Sarioglu FC (2020) [19] 54.6 Moderate 48.8 Moderate

Giraudo C (2022) [17] 53.9 Moderate 65.7 Good

Ding Y (2022) [16] 60.5 Good 64.9 Good

Aydos U (2022) [12] 55.6 Moderate 57.6 Moderate

Bouhamama A (2022) [14] 80.3 Excellent 82.4 Excellent

Yang Y (2022) [20] 80.0 Excellent 84.7 Excellent

Aydos U (2023) [11] 59.0 Moderate 57.6 Moderate
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In addition, the inter-rater agreement for the total METRICS was evaluated through
the application of the ICC. The outcome of this analysis indicated a noteworthy level of
concordance between the two raters, as evidenced by a substantial ICC value of 0.886.
The statistical significance of this coefficient was established with a very low p-value
(p = 7.12 × 10−5), affirming the robustness of the observed agreement. The 95% confidence
interval for ICC values, ranging from 0.627 to 0.97, provides additional insight into the
precision of the ICC estimate. This interval suggests a high level of confidence in the
reliability and consistency of the total METRICS assessments made by the two readers.
The Bland–Altman plot (Figure 4) illustrates the agreement between two readers (Reader 1
and Reader 2) for assessing the total METRICSs.
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Figure 4. The Bland–Altman plot illustrates the agreement between two readers (Reader 1 and
Reader 2) for assessing the total METRICS. Each data point represents the difference in scores between
the two readers (Reader 1 and Reader 2) plotted against the mean of the scores from both readers.
The red line represents the mean difference between the scores, while the green dashed lines indicate
the 95% limits of agreement (mean difference ± 1.96 * standard deviation of differences). Points
falling within the limits of agreement suggest good agreement between the readers, while points
outside the limits indicate potential discrepancies.

The analysis of quality categories within the METRICS framework across the reviewed
publications reveals the following patterns: The majority of the publications are predomi-
nantly classified as “moderate”, representing the most prevalent quality category assigned
by both readers. By contrast, fewer papers fall into the “excellent” category [14,20], indicat-
ing a lower frequency of publications achieving the highest quality assessment. Notably,
an interesting temporal trend emerges when considering the quality categories over the
years. The “excellent” category appears to have witnessed an increase in representation in
more recent publications, suggesting an improvement in the methodological and reporting
standards of studies within the 2022–2023 timeframe.

Examining the median total METRICS provides additional insights. The publications
show a median score of 59.3, with the range spanning from 43.6 to 80.3. The lowest score of
43.6 suggests the presence of publications with moderate methodological quality [13], while
the highest score of 80.3 indicates the existence of studies attaining an excellent quality
rating [20]. This wide range underscores the diversity in the methodological rigor of the
included papers, showcasing variances in the overall quality of radiomics research within
the assessed dataset.
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4. Discussion

The primary objective of this systematic review is to evaluate the evolving landscape
of radiomics in pediatric sarcoma patients, addressing methodological considerations and
exploring key applications such as diagnostics and predictive modeling. The rigorous selec-
tion process led to the inclusion of 10 studies, offering a snapshot of the current landscape
of pediatric sarcoma radiomics research. The included studies span a timeframe from 2017
to 2023, showcasing a growing interest in the application of radiomics in pediatric oncology
over the years. This temporal evolution is highlighted by a notable surge in publications,
particularly evident in 2022, which emerged as the year with the highest number of studies
included in this review. The studies predominantly adopt a retrospective design and focus
primarily on Ewing sarcoma and osteosarcoma, aligning with the prevalent malignancies
in the pediatric population [21]. Notably, a variety of imaging modalities are employed,
ranging from CT and MRI to PET/CT and PET/MRI, reflecting the diverse technological
landscape in pediatric oncologic imaging. The integration of multiple sequence modalities
for feature extraction in a small subset of studies [19,20] further exemplifies the nuanced
and multifaceted approach employed by researchers in characterizing pediatric tumors.

4.1. Methodological Transparency

A pivotal aspect of the included studies lies in their commitment to methodological
transparency. Manual segmentation emerges as the predominant method for region-of-
interest (ROI) delineation. The overall patient dataset, encompassing 628 participants,
exhibits a wide range of sample sizes, emphasizing the variability in study populations
across the pediatric sarcoma radiomic landscape. Feature extraction, a cornerstone in
radiomics research, reveals a median of 35 features extracted across the studies. While the
majority of the articles adhere to a focused selection of features, a few studies stand out, ex-
tracting a notably higher number of features. This diversity in feature selection underscores
the methodological heterogeneity within the field, thus necessitating a comprehensive
interpretation of results.

Quality assessment using the RQS unfolds a detailed picture of the strengths and
limitations of the included studies [22]. The inter-rater agreement among independent
raters attests to the consistent application of the RQS tool, emphasizing its utility in promot-
ing standardized quality evaluation. The examination of RQSs reveals specific criteria in
which studies demonstrate excellence and areas that require improvement. The observed
trends, such as the consistent emphasis on non-radiomic features and the growing attention
to validation criteria in more recent years, highlight the evolving landscape of pediatric
oncologic radiomics research.

The evaluation of methodological rigor through the METRICS framework not only
reaffirms the reliability of the included studies but also demonstrates a high level of
agreement between readers, as indicated by Cohen’s kappa coefficient and the ICC. This
robust and consistent qualitative and quantitative evaluation is further exemplified in the
detailed comparison of total METRICSs and quality categories assigned by the two readers,
enhancing the overall reliability of the study assessments. In comparison to the RQS, the
METRICS framework appears more reliable, as evidenced by the demonstrated high level
of inter-rater agreement [23].

4.2. Primary Investigative Objectives

This review encompasses studies with a primary focus on diagnostic applications,
showcasing the pivotal role of radiomics in characterizing pediatric tumors across diverse
imaging modalities such as CT, MRI, PET/CT, and PET/MRI. Notably, Sarioglu et al. uti-
lized MRI texture analysis (TA) to distinguish pediatric craniofacial rhabdomyosarcoma
from infantile hemangioma (IH). Their findings highlighted the potential of TA, particularly
the gray-level zone length matrix parameters, as predictors for rhabdomyosarcoma [19].
Similarly, Ding et al. conducted a radiomics analysis to differentiate Kaposiform heman-
gioendothelioma (KHE) and fibro-adipose vascular anomaly (FAVA) in extremities [16].
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Their MRI-based radiomic model demonstrated significant differentiating capacity. Gi-
raudo et al. presented a PET/MR-based application of radiomics for pediatric soft tissue
sarcoma, revealing the discriminative power of specific radiomic features in classifying
tumors of different grades and histotypes [17]. Radiomics was applied not only for pri-
mary tumors but also for metastases, as demonstrated by Cho et al., who focused on CT
imaging for the differentiation of pulmonary metastases in children with osteosarcoma.
They introduced a 3D radiomic technique with superior diagnostic performance compared
to conventional measurements [15].

Extending beyond diagnostic applications, Yang et al. incorporated prognostic assess-
ment in their study. Their multimodality imaging-derived models, utilizing computer-aided
diagnostic (CAD) methods, demonstrated robust predictive performance for identifying
well-differentiated liposarcoma (WDLPS) and lipoma [20]. They employed both hand-
crafted radiomics analysis and deep learning techniques, emphasizing the potential of
advanced methodologies in prognostic evaluation. Further addressing prognostic aspects,
Bailly et al. evaluated the FDG-PET-derived radiomic metrics for a homogeneous pediatric
Ewing sarcoma and osteosarcoma population [13]. Although no prognostic value was
found for Ewing sarcoma, a shape feature (elongation) in osteosarcoma proved significant
for both progression-free and overall survival.

Predicting treatment response through radiomics has emerged as a crucial aspect of
pediatric oncology, offering insights into the effectiveness of therapeutic interventions.
In this context, Lin P et al. developed a delta-radiomic signature-based nomogram for
evaluating preoperative chemotherapeutic response in high-grade osteosarcoma, which
outperforms single-CT-based radiomic signatures [18]. Similarly, Bouhamama et al. focused
on predicting neoadjuvant chemotherapy response using MRI-based radiomics, achieving
high predictive accuracy [14]. The exploration of treatment response in these studies
contributes to both prognostication and the ongoing refinement of radiomic applications in
pediatric oncology.

Collectively, the studies underscore the diagnostic and predictive potential of ra-
diomics in pediatric sarcoma research. The shared emphasis on discrimination statistics
across studies enhances diagnostic precision. Noteworthy contributions from Yang et al.,
Bailly et al., Lin P et al., and Bouhamama et al. highlight significant associations in prognos-
tic evaluation and innovative approaches for treatment response assessment [13,14,18,20].
The varied imaging modalities and advanced techniques employed underscore radiomics’
evolving role in comprehensively understanding and managing pediatric tumors.

4.3. Current Landscape, Challenges, and Opportunities

The contemporary landscape of pediatric oncologic radiomics research is character-
ized by a pressing need for standardized methodologies and increased methodological
transparency. As the field continues to expand, there is a growing recognition of the impor-
tance of incorporating non-radiomic features into the analysis, aligning with the broader
trend of integrating multidimensional data for a holistic understanding of pediatric tumors.
The observed temporal trend toward emphasizing validation criteria in more recent stud-
ies underscores the field’s commitment to enhancing the reliability and reproducibility
of radiomic findings. The continuous evolution of imaging modalities and technologi-
cal advancements necessitates an adaptive approach to feature extraction, ensuring that
radiomics research remains at the forefront of precision medicine in pediatric oncology.

While the included studies showcase commendable efforts, challenges such as the
heterogeneity in feature selection, sample sizes, and the need for standardized reporting
persist. These challenges present opportunities for future research to focus on establishing
consensus guidelines, fostering collaboration, and refining methodological frameworks.

In conclusion, this systematic review provides a comprehensive assessment of the
evolving role of radiomics in pediatric oncology. By examining the methodological land-
scape and exploring key applications such as diagnostics and predictive modeling, we
have shed light on the potential of radiomics to enhance clinical decision-making and
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patient care in pediatric sarcoma patients. The observed trends underscore the growing
interest and utility of radiomics in characterizing tumor heterogeneity and predicting
treatment response. However, while the promising findings showcased in the reviewed
studies suggest a promising future for radiomics in pediatric oncology, challenges such as
standardization, validation, and integration into clinical practice remain. Moving forward,
concerted efforts are warranted to address these challenges and fully leverage the clinical
potential of radiomics as a valuable tool for personalized medicine in pediatric sarcomas.

Author Contributions: Conceptualization and supervision: G.A., D.C., E.N. and D.V.; methodology:
A.M., R.F., F.P.C. and D.C.; data curation: G.A., L.T. and M.F.; formal analysis and software: G.A.,
T.F., M.F. and S.C.F.; writing—original draft preparation: G.A.; writing—review and editing: G.A.,
S.C.F., A.M., D.C., E.N. and D.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the conclusions of this article will be made
available by the authors upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sandler, G.; Yokoi, A.; Hayes-Jordan, A. An Update in the Management of Pediatric Sarcoma. Curr. Opin. Pediatr. 2019, 31, 368–377.

[CrossRef] [PubMed]
2. Williams, R.F.; Fernandez-Pineda, I.; Gosain, A. Pediatric Sarcomas. Surg. Clin. N. Am. 2016, 96, 1107–1125. [CrossRef] [PubMed]
3. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.;

Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis.
Eur. J. Cancer 2012, 48, 441–446. [CrossRef] [PubMed]

4. Crombé, A.; Fadli, D.; Italiano, A.; Saut, O.; Buy, X.; Kind, M. Systematic Review of Sarcomas Radiomics Studies: Bridging the
Gap between Concepts and Clinical Applications? Eur. J. Radiol. 2020, 132, 109283. [CrossRef]

5. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.;
Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin.
Oncol. 2017, 14, 749–762. [CrossRef] [PubMed]

6. Kocak, B.; Akinci D’Antonoli, T.; Mercaldo, N.; Alberich-Bayarri, A.; Baessler, B.; Ambrosini, I.; Andreychenko, A.E.; Bakas, S.;
Beets-Tan, R.G.H.; Bressem, K.; et al. METhodological RadiomICs Score (METRICS): A Quality Scoring Tool for Radiomics
Research Endorsed by EuSoMII. Insights Imaging 2024, 15, 8. [CrossRef] [PubMed]

7. Zhong, J.; Hu, Y.; Si, L.; Jia, G.; Xing, Y.; Zhang, H.; Yao, W. A Systematic Review of Radiomics in Osteosarcoma: Utilizing
Radiomics Quality Score as a Tool Promoting Clinical Translation. Eur. Radiol. 2021, 31, 1526–1535. [CrossRef]

8. Di Salle, G.; Tumminello, L.; Laino, M.E.; Shalaby, S.; Aghakhanyan, G.; Fanni, S.C.; Febi, M.; Shortrede, J.E.; Miccoli, M.;
Faggioni, L.; et al. Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis.
Radiol. Artif. Intell. 2023, 6, e220257. [CrossRef] [PubMed]

9. Gitto, S.; Cuocolo, R.; Huisman, M.; Messina, C.; Albano, D.; Omoumi, P.; Kotter, E.; Maas, M.; Van Ooijen, P.; Sconfienza, L.M.
CT and MRI Radiomics of Bone and Soft-Tissue Sarcomas: An Updated Systematic Review of Reproducibility and Validation
Strategies. Insights Imaging 2024, 15, 54. [CrossRef]

10. Fleiss, J.L. Measuring Nominal Scale Agreement among Many Raters. Psychol. Bull. 1971, 76, 378–382. [CrossRef]
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