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Abstract: This study aimed to discuss the influence of specimen sizes on the compressive strength pa-
rameters of wood, specifically focusing on their compression strength, elastic modulus, and Poisson’s
ratio. Therefore, three different-sized specimens (20 mm × 20 mm × 30 mm, 40 mm × 40 mm × 60 mm,
60 mm × 90 mm × 90 mm) were manufactured and tested in the longitudinal, radial, and tangen-
tial directions, following the standard testing method for acquiring the compressive strength of
wood. Subsequently, based on the experimental results, compressive parameters, failure mechanisms,
load–displacement curves, and stress–strain relationships were systematically analyzed for the three
different-sized specimens. Meanwhile, the influence of specimen size on the compressive strength
parameters of wood was also evaluated through finite element numerical simulations, utilizing the
obtained mechanical parameters. The results revealed a significant correlation between compressive
strength and specimen size, indicating a decrease in compressive strength with an increasing speci-
men size. Conversely, the elastic modulus and Poisson’s ratio exhibited less sensitivity to specimen
size changes. Notably, the compressive strength parameters derived from small-sized specimens
(20 mm × 20 mm × 30 mm) exhibited a lack of rationality, while those obtained from medium-sized
(40 mm × 40 mm × 60 mm), and large-sized specimens (60 mm × 90 mm × 90 mm) demonstrated
greater reliability, providing precise results in finite element numerical simulations.

Keywords: specimen size; wood; compressive strength; influence; finite element simulation

1. Introduction

In recent years, escalating concerns about environmental sustainability have spurred
an increased interest in sustainable materials for structural applications. The choice of
structural materials significantly influences the global environment, particularly in terms
of the greenhouse effect. Wood, with its ability to absorb carbon dioxide from the atmo-
sphere, is increasingly recognized as a natural and eco-friendly building material within
the construction industry [1]. However, unlike isotropic materials, such as steel, wood
exhibits anisotropic properties in the longitudinal (L), radial (R), and tangential (T) direc-
tions [2]. This characteristic necessitates the consideration of a greater number of physical
and mechanical parameters during numerical simulations, calculations, and analysis. Con-
sequently, the exploration of wood’s mechanical properties, the development of strength
criteria, and the establishment of constitutive models have garnered attention from numer-
ous researchers [3,4]. Despite extensive research on the mechanical behavior of wood, the
fundamental step of acquiring basic physical and mechanical properties remains crucial [5].
Wood, influenced by its growth patterns, is inherently porous and non-uniform. The vari-
ous physical and mechanical properties of wood are susceptible to change due to factors
such as tree species, age, distance from the heartwood, and the direction of applied force [6].
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Therefore, obtaining accurate physical and mechanical parameters for wood is of significant
importance for a deeper understanding and rational utilization of this versatile material.

According to Chinese standards, the acquisition of compressive strength and physical-
mechanical parameters of wood predominantly adheres to established technical regula-
tions [7–9]. These regulations prescribe the use of test specimens with dimensions of
30 mm × 20 mm × 20 mm. It is noteworthy that researchers, both in China and inter-
nationally, have employed varying specimen sizes in their studies on wood structures.
For instance, Mascia N. T. et al. [10] utilized 5 mm × 5 mm × 5 mm specimens to in-
vestigate the influence of the elastic modulus on the mechanical properties of wood.
Li L. et al. [11] employed specimens measuring 21 mm × 14 mm × 14 mm to determine
the radial and tangential elastic modulus of pine wood. In an examination of the bending
performance of glued laminated timber beams reinforced with FRP, specimens sized at
100 mm × 35 mm × 35 mm were utilized to obtain the compressive performance param-
eters of wood. Yang Na et al. [12] conducted axial compressive tests on red pine wood
using prism specimens measuring 40 mm × 20 mm × 20 mm to determine the elastic
constants of red pine wood while exploring non-linear constitutive models for wood under
compression. Additionally, Yue Kong et al. [13] investigated the influence of temperature
on wood compressive strength using specimens sized at 60 mm × 20 mm × 20 mm. While
researchers domestically and internationally have employed diverse specimen sizes in their
experiments and research, the current standard specimen size of 30 mm × 20 mm × 20 mm,
as specified by testing methods and technical regulations, may not adequately consider the
influence of growth patterns and annual ring variations. It is known that the compressive
strength of concrete changes based on specimen sizes and shapes [14], and the influence of
specimen size on the compressive strength of concrete has been extensively studied [15–19].
Mechanical parameters, such as the compressive strength of wood influenced by specimen
sizes, have not been thoroughly investigated. In recent years, Schlotzhauer P., etc., have
given significant attention to this issue [20]. Studies of the size effect on defect-free compres-
sion, bending, and tensile specimens were conducted for six European hardwood species:
maple (Acer spp.); birch (Betula pendula); beech (Fagus sylvatica); ash (Fraxinus excelsior); oak
(Quercus spp.); and lime (Tilia spp.). However, a consistent experimental conclusion was
not obtained, and only tests on the longitudinal compressive strength of wood were carried
out. Meanwhile, issues related to strength in different directions concerning the growth
ring in the cross-section have garnered attention [21–25]. The compressive properties of
FRP [26,27] confined wood have also been studied. Figure 1 illustrates that the dimensions
of the specimen’s cross-sectional side, when sawn along the lag, are approximately the
same as the width of one annual ring, as shown in Figure 1a. Conversely, if the specimens
are sawn in this manner, the dimension of the cross-sectional side is approximately the
same as the width of 2–3 annual rings, as shown in Figure 1b. The size of the compression
specimens will also impact the compressive strength parameter values of the wood.
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To address these concerns, this experiment aims to investigate the impact of specimen
size on the experiment results of compressive strength parameters for wood. The objec-
tive of this study is to discern variations in the mechanical properties of wood obtained
from different-size specimens to understand how specimen size influences the mechanical
parameter experiment results of wood. To establish a comprehensive understanding of
the relationship between the specimen size and wood mechanical properties experiment
results, a constitutive model expressing the stress–strain relationship was developed based
on the experimental data. Subsequently, finite element numerical simulations were em-
ployed to further explore the influence of specimen size on the get the rational compressive
strength parameter of wood. The outcomes of these experiments and simulations provide
insights into the significance of considering specimen size when evaluating the physical
and mechanical parameters of wood. The results suggest that specimen size indeed impacts
obtaining the rational compressive strength parameters of wood, indicating the potential
presence of a size effect.

The conclusions of this article can provide a strong reference for proposing a unified
size of wood compressive strength specimens. This is also important for the computational
analysis and finite numerical simulation of the axial compressive bearing capacity of
wooden column components, based on the rational compressive strength parameters
obtained according to the suggestion.

2. Test Program
2.1. Experimental Design

To investigate the influence of specimen size on the compressive strength of wood,
three sets of experiments were meticulously planned. Each set focused on assessing the
impact of specimen size on the longitudinal, radial, and tangential compressive strength
of Cinnamomum camphora wood, with all specimens sourced from the same origin. The
smaller annual width of the Cinnamomum camphora wood is 10–20 cm, and the bigger
annual width of the Cinnamomum camphora wood is 25–40 cm. The Cinnamomum cam-
phora wood was precisely sawn following the diagram in Figure 2 and was subsequently
subjected to oven drying to achieve the required moisture content for testing, set at 12%,
which was designed according to GB/T 1935-2009 [7] and GB/T 1939-2009 [8].
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According to GB/T 1939-2009 [8] and GB/T 50005-2017 [9], the basic specimens
(small-sized specimens) measuring 20 mm × 20 mm × 30 mm were obtained in the
longitudinal, radial, and tangential directions. Subsequently, medium-sized specimens
(specimen size 40 mm × 40 mm × 60 mm) and large-sized specimens (specimen size
60 mm × 90 mm × 90 mm) were produced with a proportional ratio of 1:2:3, relative to the
basic specimens in dimensions. A total of 6 specimens were prepared as one group for each
direction and size, resulting in a total of 54 specimens.
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2.2. Loading and Measurement Plan

The compressive tests were carried out utilizing a material mechanics universal testing
machine with an ultimate capacity of 300 kN, as shown in Figure 3. The load, strain, and
axial deformation were monitored using an electronic data acquisition system. Two axial
strain gauges and transverse strain gauges were mounted at the center of the specimens to
record strain during testing, as shown in Figure 4. Loading was applied using continuous
uniform displacement loading and the displacement loading rate of 2 mm/min was used.
The test was terminated when the specimen incurred large cracking damage, or a distinct
unloading phenomenon was observed. These data were collected to explore how specimen
size influences parameters, such as wood elastic modulus and Poisson’s ratio.
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3. Experimental Results
3.1. Experimental Phenomenon

The compressive strength experiments unveiled the influence of specimen size on fail-
ure patterns in the longitudinal, radial, and tangential directions. In longitudinal tests, both
small-sized (20 mm × 20 mm × 30 mm) and medium-sized (40 mm × 40 mm × 60 mm) spec-
imens displayed transverse cracks in the central part under increasing load, followed by lat-
eral movement before ultimate failure. Large-sized specimens (60 mm × 90 mm × 90 mm)
exhibited the formation of two diagonal cracks that intersected, resulting in vertical cracks
at the intersection point, leading to ultimate failure.

In radial compressive strength experiments, small-sized specimens showed failure due
to fiber misalignment, resulting in cracks perpendicular to the radial direction and shear fail-
ure. Medium-sized and large-sized specimens primarily developed cracks perpendicular
to the growth rings, leading to a typical compression failure mode.

In the tangential compressive strength tests, all three specimen sizes encountered
failure at the growth ring boundary in the specimen center. Initially, small cracks emerged,
and as the load increased, these cracks propagated along the growth rings, causing the
specimen to break into blocks. Larger specimens exhibited a more pronounced block
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formation, with an increased number of blocks displaying a buckling state. Moreover,
significant variations in failure modes were observed based on the specimen direction. In
longitudinal specimens, fine transverse cracks initially formed perpendicular to the grain
direction. These cracks gradually expanded as the load increased, spanning the entire
surface and leading to failure, as shown in Figure 5. Conversely, the radial compressive
strength experimental specimens exhibited an initial formation of small cracks perpendic-
ular to the growth rings, which expanded into larger cracks spanning the entire surface
with increased displacement, resulting in specimen separation and failure, as shown in
Figure 6. The tangential compressive strength experimental specimens demonstrated a
distinct failure mode compared to the other two directions. The first crack formed along the
growth rings, followed by the gradual formation of the second and third cracks along the
growth rings. These cracks progressively separated into individual blocks, and ultimately,
failure occurred as each block buckled, as shown in Figure 7.
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3.2. Load–Displacement Curve

The load–displacement curves for wood specimens in the longitudinal, radial, and
tangential directions have been obtained and are presented in Figure 8 (load–displacement
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curve for longitudinal compressive strength experiment), Figure 9 (radial load–displacement
curve for radial compressive strength experiment), and Figure 10 (load–displacement for
tangential strength experiment).
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Distinct characteristics are evident in the load–displacement relationship curves ob-
tained for the longitudinal compressive strength specimens, radial compressive strength
specimens, and tangential compressive strength specimens. Notably, the load–displacement
curve of the longitudinal compression specimen deviates significantly from those of the
radial and tangential specimens. The load–displacement relationship curve obtained for
the longitudinal compression specimen can be roughly divided into three stages. In the
initial loading stage, it demonstrates linear elastic behavior with a steep slope, indicating a
substantial linear increase in load with displacement. As the load continues to rise, a degree
of nonlinearity becomes apparent, accompanied with the development of small cracks in
the specimen, and the curve’s slope gradually decreases. Subsequently, the ultimate load is
reached, initiating a descending stage. Due to wood’s relatively high residual strength, the
curve can still maintain a horizontal or slowly decreasing trend.

For the tangential and radial compression specimens, the load–displacement curves
also exhibit three distinct stages. Initially, there is an initial linear elastic stage characterized
by a steep slope, indicating a significant increase in load with displacement. Following the
elastic stage, a plastic development stage is observed, where the load increases at a slower
rate with displacement, and the curve slope during this stage is smaller compared to the
initial elastic stage. Finally, a strengthening stage follows, where the slope of the curve
increases compared to the plastic stage, suggesting that the material is becoming stronger
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as the load is applied. However, beyond a certain point, the load suddenly decreases after
reaching the peak load.
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However, the load–displacement curves exhibited different distribution characteris-
tics, as observed in the longitudinal compressive strength specimens, radial compressive
strength specimens, and tangential compressive strength specimens of different sizes in
Figures 8–10. It becomes apparent that conducting compressive strength tests using small-
sized and large-sized specimens results in more scattered load–displacement curves for
longitudinal compressive strength specimens and radial compressive strength specimens,
compared to tests with medium-sized specimens. The load–displacement curves for tan-
gential compression tests of different sizes show that the curves tend to be consistent for
small, medium, and large specimens, with medium-sized specimens showing a slight
degree of variability, although not very pronounced. This variation may be attributed
to individual differences in the specimens. However, considering the load–displacement
curve characteristics in Figures 8–10, it could be concluded that the specimen size has an
apparent impact on the load–displacement relationship curves in compression strength
tests, with the load–displacement curves obtained from medium-sized specimens being
relatively reasonable.
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3.3. Compressive Strength

Based on the experimental tests, data regarding the longitudinal, radial, and tangen-
tial compression strength parameters of wood specimens with varying sizes have been
compiled. These data encompass measurements of compressive strength, elastic modulus,
and Poisson’s ratio. The organized data is presented in Tables 1–3, respectively.

Table 1. Longitudinal compressive strength parameters.

Specimen Size Compressive Strength (MPa) Average Compressive Strength (MPa)
(Coefficient of Variation) Elastic Modulus

Small-sized
16.43 29.93 33.40

(0.281)

E (MPa) 11,600
35.80 36.08 µLT 0.48
38.68 43.45 µLR 0.44

Medium-sized
23.88 29.05 29.59

(0.109)

E (MPa) 11,010
29.86 31.39 µLT 0.49
29.76 33.61 µLR 0.48

Large-sized
24.19 25.66 27.48

(0.085)

E (MPa) 10,040
27.48 27.94 µLT 0.48
28.72 30.89 µLR 0.42
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Table 2. Radial compressive strength parameters.

Specimen Size Compressive Strength (MPa) Average Compressive Strength (MPa)
(Coefficient of Variation) Elastic Modulus

Small-sized
4.88 5.18 6.03

(0.376)

E (MPa) 2390
6.85 5.43 µRT 0.65
8.73 5.13 µRL 0.11

Medium-sized
3.14 5.09 7.05

(0.382)

E (MPa) 2470
6.13 8.93 µRT 0.63
8.95 10.08 µRL 0.11

Large-sized
3.95 5.52 6.27

(0.212)

E (MPa) 2110
6.74 6.82 µRT 0.67
6.94 7.65 µRL 0.13

Table 3. Tangential compressive strength parameters.

Specimen Size Compressive Strength (MPa) Average Compressive Strength (MPa)
(Coefficient of Variation) Elastic Modulus

Small-sized
4.28 4.33 5.80

(0.296)

E (MPa) 1200
5.18 5.43 µTL 0.08
6.85 8.75 µTR 0.34

Medium-sized
3.11 3.73 6.57

(0.389)

E (MPa) 1380
7.11 7.57 µTL 0.06
8.89 8.99 µTR 0.37

Large-sized
3.06 3.58 4.81

(0.279)

E (MPa) 1220
4.54 5.19 µTL 0.06
6.16 6.35 µTR 0.35

Table 1 provides information on the average compressive strength values of wood for
longitudinal, revealing a noticeable decrease as the specimen size increases. Furthermore,
the data variability suggests that larger specimens exhibit smaller coefficients of variation,
indicating that the longitudinal compressive strength values obtained from larger speci-
mens are more stable and reliable than those from smaller specimens. The elastic modulus
also shows a trend in decreasing values with an increasing specimen size. However, the
impact of specimen size on Poisson’s ratios µLT and µRT are not very pronounced.

Table 2 provides data on the radial mechanical parameters of wood, revealing that
the higher average radial compressive strength was obtained from the medium-sized
specimens, which exhibited larger coefficients of variation. In comparison, a lower average
radial compressive strength with close values was obtained from the small-sized and
large-sized specimens. However, the largest-sized specimens have smaller coefficients
of variation. The elastic modulus also exhibited the same pattern, with a higher elastic
modulus obtained from the medium-sized specimens. However, the impact of specimen
sizes on obtaining Poisson’s ratios µRT and µRL are not very pronounced, similar to the
effect on the longitudinal mechanical parameters of wood.

Table 3 provides the tangential compressive strength parameters of wood, revealing
that the highest average tangential compressive strength was obtained from the medium-
sized specimens, which exhibited larger coefficients of variation. The small-sized specimens
had lower values for tangential compressive strength, while the large-sized specimens had
the lowest tangential compressive strength values with the smallest coefficients of variation.
Similarly, the highest elastic modulus was obtained from the medium-sized specimens.
The impact of specimen size on obtaining Poisson’s ratio is not very pronounced, similar to
the effect on the longitudinal and radial mechanical parameters of wood.

Table 3 provides data on the tangential compressive strength parameters of wood,
revealing that the highest average tangential compressive strength was obtained from
the medium-sized specimens, which exhibited larger coefficients of variation. The small-
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sized specimens had lower values for tangential compressive strength, while the large-
sized specimens had the lowest tangential compressive strength values with the smallest
coefficients of variation. Similarly, the highest elastic modulus was obtained from the
medium-sized specimens. The impact of specimen size on obtaining Poisson’s ratio is not
very pronounced, similar to the effect on the longitudinal and radial mechanical parameters
of wood.

Based on the above analysis, it could be concluded that the longitudinal compression
strength and the longitudinal elastic modulus decreases as the specimen size increases. This
is consistent with Weibull’s (1939) theory [24], which states that with increasing volume, the
strength decreases. To some extent, this validates the rationality of the experimental results
in this paper. The radial and tangential compressive strength and Poisson’s ratio did not
show a clear pattern with the increase in specimen size. However, the longitudinal, radial,
and tangential compressive strength of wood obtained from the large-sized specimens
exhibited the least variability. The highest radial and tangential elastic modulus was
obtained from the medium-sized specimens. Considering the comparison of specimen
sizes with the size of growth rings as shown in Figure 1, this may be attributed to the fact
that larger-sized specimens cover 2–3 growth ring sizes, resulting in less variability in the
test results, which can eliminate the issue of smaller-sized specimens only representing
the strength values of wood within a single growth ring. Therefore, it is advisable to use
larger-sized specimens to obtain the compressive strength for wood. However, further
confirmation is needed, such as finite element analysis based on the experimental data.

3.4. Stress–Strain Curve

Figures 11–13 depict stress–strain curves for different-size specimens in the longitudi-
nal, radial, and tangential directions. The stress–strain curves for longitudinal compression,
as shown in Figure 11, indicate that as the specimen size increases, the stress–strain curves
of all six specimens gradually converge. This convergence suggests that smaller speci-
mens yield more variable experimental results. Similarly, the stress–strain relationships
for radial and tangential compression, as presented in Figures 12 and 13, demonstrate
comparable trends. This observation emphasizes that the specimen size plays a role in
influencing the establishment of stress–strain relationships (constitutive models) for wood
under compression.

Figures 11–13 show that all the stress–strain curves highlighted similar trends in the
stress–strain behavior of wood specimens in these three directions. Initially, in the elastic
phase, all curves exhibit a linear increase in stress with strain. However, as the specimen
undergoes a phase transition into the plastic phase, the stress–strain relationship becomes
nonlinear. Therefore, based on the experimental data and using MATLAB (R2019a), the
stress–strain curves can be fitted into a four-stage stress–strain curve, as shown in Figure 14,
and the stress–strain curve equation can be expressed as follows:

σ = a1ε2 + b1ε + c1

(
ε < ε

ty
T

)
σ = a2ε + b2

(
ε

ty
T < σ < 0

)
σ = a3ε + b3

(
0 < σ < ε

cy
T

)
σ = a4ε2 + b4ε + c2

(
ε > ε

cy
T

)
(1)

where, σ
ty
T is the tensile yield stress, ε

ty
T is the tensile yield strain, σ

cy
T is the compressive

yield stress, and ε
cy
T is compressive yield strain. ai, bi and ci are the coefficients for the

stress–strain equation, The specific values are expressed in Tables 4–6.
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Table 4. Coefficients for the stress–strain curves of the longitudinal compression specimens.

Coefficient
Specimen Size

Small-Sized Medium-Sized Large-Sized

a1 8168.2 1478.7 3572.6
b1 1578.1 395.2 566.4
c1 4.0 −7.1 −2.5
a2 1197.7 913.9 791.3
b2 −1.4 −0.9 −0.3
a3 1745.2 1017.1 630.5
b3 0.3 0.4 0.1
a4 −3065.2 −3354.7 −4363.7
b4 424.5 666.3 686.6
c2 15.8 8.8 −0.1

εT
ty (×10−6) −1020 −1160 −870

εT
cy (×10−6) 1140 2010 1120
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Table 5. Coefficients for the stress–strain curves of the radial compression specimens.

Coefficient
Specimen Size

Small-Sized Medium-Sized Large-Sized

a1 401.2 491.2 195.9
b1 158.4 77.1 51.3
c1 −5.1 −3.2 −2.9
a2 906.3 494.2 303.9
b2 −0.9 −0.6 −1.0
a3 529.3 233.3 213.6
b3 3.1 0.6 1.1
a4 −1475.3 −4590.2 −418.6
b4 −1598.4 −1709.1 −928.0
c2 170.1 190.4 110.7

εT
ty (×10−6) 6.6 3.3 1.9

εT
cy (×10−6) −560 −630 −730
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Table 6. Coefficients for the stress–strain curve of the tangential compression specimens.

Coefficient
Specimen Size

Small-Sized Medium-Sized Large-Sized

a1 310.4 376.8 289.9
b1 77.3 64.4 56.9
c1 −3.0 −3.8 −1.2
a2 373.6 254.8 159.1
b2 −0.6 −0.4 −0.3
a3 600.6 184.1 158.6
b3 0.8 0.6 −0.3
a4 −1475.3 −4590.2 −418.6
b4 166.1 202.5 80.3
c2 3.8 3.3 1.0

εT
ty (×10−6) 3.8 3.3 1.0

εT
cy (×10−6) −800 −720 −850

4. Finite Element Analysis
4.1. Finite Element Model

To illustrate the impact of specimen size on obtaining effective compression strength
parameters, finite element numerical simulations were conducted using ABAQUS software
(V6.14.3). Longitudinal, radial, and tangential specimens of three different sizes were
modeled in these simulations. The finite element models employed 8-node solid C3D8R
elements for meshing and isotropic elastic constitutive models were applied in the elastic
phase. The boundary conditions of the model were designed as follows: a rigid loading
plate was used to apply displacement loading to the specimen model, and the loading
plate was connected to the specimen surface using surface-to-surface contact. A friction
coefficient of 0.3 was set for tangential contact between the loading plate and the specimen,
while a “hard” contact was used to describe the normal contact relationship between them.
The input physical properties from experiments and established stress–strain relationships
(constitutive models) were used to define the material behavior. In the plastic phase, Hill’s
yield criterion was utilized to simulate anisotropic mechanical behavior once the internal
stresses exceeded material strength [25]. Furthermore, to ensure consistent results with the
experiments, the displacement in the finite element models was simulated to match the
experimental displacements.

4.2. Finite Element Analysis of Results

The finite element numerical simulations utilized a computational approach to derive
the stress results for specimens of varying sizes in the longitudinal, radial, and tangential
directions. The computational results, closely aligned with the experimental findings, were
significant in understanding the stress behavior of the wood specimens. Stress distribution
maps for these specimens are shown in Figures 15 and 16.

Table 7 indicates the stress of the numerical simulation compared to the stress of
tests. As shown in Table 7, the discrepancy between stress values obtained through
numerical simulations and experimental measurements increases as the specimen size
decreases, with errors exceeding 15%, and tangential errors reaching 22.7%. Moderate-
sized specimens and large-sized specimens exhibit good agreement between numerical
simulation results and experimental data, with errors below 10%. In the case of moderate-
sized specimens, the error is 9.1% for longitudinal specimens and less than 3% for radial and
tangential specimens. The numerical simulation analysis also demonstrates that specimen
size influences the accuracy of obtaining accurate mechanical properties for wood under
compression. Small specimen sizes can result in significant errors.
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In conclusion, the comparison between numerical simulations and experimental
results underscores the significance of specimen size in compression strength testing for
wood. These data strongly supports the recommendation of utilizing moderate-sized
(40 mm × 40 mm × 60 mm) and large-sized specimens (60 mm × 60 mm × 90 mm) to
achieve more accurate physical properties and constitutive models.
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Table 7. The stress of the numerical simulation and experiment.

Specimen Specimen Direction Maximum Stress of
Simulation (MPa)

Maximum Stress of
Experiments (MPa) Error

Small size
longitudinal 44.81 38.60 16.1%

radial 54.66 65.80 17.0%
tangential 34.46 44.60 22.7%

Medium size
longitudinal 32.29 29.60 9.1%

radial 24.84 25.36 2.1%
tangential 24.25 23.63 2.6%

Large size
longitudinal 26.41 27.90 5.3%

radial 21.43 23.50 8.8%
tangential 22.80 21.78 4.7%

5. Conclusions

This study aimed to clarify the influence of specimen size on the compressive strength
of wood. Through a series of compression tests on wood, specimens in the longitudinal,
radial, and tangential directions, following the experiments, finite element numerical simu-
lations were employed to complement the experimental findings. The main conclusions
are as follows:

1. The size of the wood specimens has a significant impact on obtaining reasonable and
effective compression strength parameters, with the longitudinal specimens being
the most affected. The use of the moderate-sized specimens proposed in this paper
(40 mm × 40 mm × 60 mm) and large-sized specimens (60 mm × 60 mm × 90 mm)
provides more reasonable compression strength parameters.

2. It is suggested that the specimen size could be the moderate-sized specimens proposed
in this paper (40 mm × 40 mm × 60 mm). Current test methods and technical
specifications use small-sized specimens (20 mm × 20 mm × 30 mm) which only
reflect the compressive strength parameters of wood within a single growth ring,
leading to significant variability.

3. Using the moderate-sized (40 mm × 40 mm × 60 mm) camphorwood specimens,
mechanical properties for longitudinal, radial, and tangential compression strength,
stress–strain relationships (constitutive models) can be used in numerical simulations
for camphorwood components and structures, providing more accurate computa-
tional results.
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