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Abstract: Traditional Chinese buildings serve as a carrier for the inheritance of traditional culture
and national characteristics. In the context of rural revitalization, achieving the 3D reconstruction of
traditional village buildings is a crucial technical approach to promoting rural planning, improving
living environments, and establishing digital villages. However, traditional algorithms primarily tar‑
get urban buildings, exhibiting limited adaptability and less ideal feature extraction performance for
traditional residential buildings. As a result, guaranteeing the accuracy and reliability of 3D models
for different types of traditional buildings remains challenging. In this paper, taking JingpingVillage
inWestern Hunan as an example, we propose a method that combines multiple algorithms based on
the slope segmentation of the roof to extract feature lines. Firstly, the VDVI and CSF algorithms are
used to extract the building and roof point clouds based on the MVS point cloud. Secondly, accord‑
ing to roof features, village buildings are classified, and a 3D roof point cloud is projected into 2D
regular grid data. Finally, the roof slope is segmented via slope direction, and internal and external
feature lines are obtained after refinement through Canny edge detection and Hough straight line
detection. The results indicate that the CSF algorithm can effectively extract the roofs of I‑shaped,
L‑shaped, and U‑shaped traditional buildings. The accuracy of roof surface segmentation based on
slope exceeds 99.6%, which is significantly better than the RANSAC algorithm and the region seg‑
mentation algorithm. This method is capable of efficiently extracting the characteristic lines of roofs
in low‑rise buildings within traditional villages. It provides a reference method for achieving the
high‑precision modeling of traditional village architecture at a low cost and with high efficiency.

Keywords: traditional village; roof feature line; slope segmentation; cloth simulation filter; UAV

1. Introduction
In January 2022, the Chinese government introduced “the 14th Five‑Year Plan” with

the aim of strengthening the digital economy through the integrated development of new
smart cities and digital villages. As the most important artificial features, the 3D model of
buildings is not only important data support for the planning and construction of smart
cities and digital villages but also provides important technical means for the deformation
monitoring of buildings [1], the protection of historical buildings [2], as well as virtual re‑
ality and augmented reality [3]. Therefore, it is crucial to realize accurate and automated
3D reconstruction [4]. The storage of the 3D geometric data of real‑world buildings in
digital models within computer systems has become more important in fields such as ur‑
ban planning, intelligent buildings [5,6], digital cities, and project management. Currently,
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more than 200 cities in China, including Beijing and Shanghai, are engaged in the develop‑
ment of 3Dmodels. Nevertheless, the development of accurate 3Dmodels in rural regions
of China has been hindered by obstacles such as the complexities of data collecting, ex‑
orbitant expenses, and the need for extensive coverage of vast areas. This has presented
substantial challenges to the advancement of rural living conditions and the digitalization
of rich cultural assets. Rural buildings play a vital role in digital villages, serving as an
essential element for in‑depth study and interactive operations in this research field.

Due to the rapid advancement of dense matching technology and aerial triangulation
methods, the fully automated photogrammetric processing of nadir and oblique imagery
obtained from low‑altitude unmanned aerial vehicles (UAVs) has become more accurate
and intelligent [7]. The point clouds generated by multi‑view stereo (MVS) have become
the main source of 3D geographic information acquisition [8], which provides important
support for 3Dmodeling [9], point cloud segmentation [10], topographicmapping [11], dis‑
aster monitoring [12], and resource management [13]. Unlike LiDAR point clouds, MVS
point clouds have the benefits of being more cost‑effective, more efficient, and contain‑
ing surface texture information [14]. Due to their characteristics, these models are well‑
suited for creating 3D representations ofmodest buildings. This offers a possible option for
quickly and effectively reconstructing real‑world structures in rural regions, particularly
when it comes to classic buildings. MVS point clouds provide the opportunity to create
very accurate models, allowing for the preservation and depiction of architectural heritage
with great precision. This capacity has significant potential for expanding the field of rural
spatial documentation and making a valuable contribution to the digital preservation of
cultural resources.

At present, significant progress has been made in the research on building structures
at both the domestic and international levels, covering the fields of structural analysis [15],
mechanical properties [16,17] and structural monitoring [18], and 3D reconstruction.
Within the realm of 3D model reconstruction, the process can be primarily categorized
into two types: geometric model reconstruction and semantic model reconstruction [19].
The process of geometric model reconstruction relies exclusively on the utilization of un‑
processed point cloud data, leading to the creation of rudimentary models that contain
solely geometric information. On the other hand, semantic model reconstruction not only
includes geometric information but also involves the recognition of semantic features, in‑
cluding location, orientation, color, texture, shape, and specific attributes that enable the
segmentation of building structures. In semantic model reconstruction, feature line extrac‑
tion is a key operation in geometric model processing. The feature points, lines, and sur‑
faces of a building are important parameters for describing and reconstructing the build‑
ing, while the feature lines can be regarded as a link between the feature points and the
feature surfaces [20], which contain information about the boundary contours of each slope
of the roof. Precisely extracting the roof lines of structures is essential for the precise re‑
construction of a 3D model of a building. This has become a pressing issue that requires
immediate resolution.

Feature line extraction has two main components: exterior outline lines and internal
roof feature lines. The extraction of edge outlines is often dependent on high‑resolution
remote sensing photos and aerial LiDAR point cloud data from the perspective of data
sources. Furthermore, study approaches predominantly encompass a priori knowledge
principles and advanced machine learning techniques. The former primarily emphasizes
fundamental architectural elements such as spectra, textures, shapes, and spatial interac‑
tions to enhance the extraction process [21–23]. These methods heavily rely on the quality
of imagery and point cloud data and demonstrate good detection performance only for
specific types or certain regions of buildings. Since the 1980s and 1990s, machine learning
technology has seen rapid development and has played an important role in the fields of
architectural design [24], feature extraction [25], and structural health monitoring [26,27].
Some researchers have achieved notable advancements in classifying different land fea‑
tures by utilizing techniques such as K‑nearest neighbors, support vector machines, de‑
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cision trees, and others. These methods have created new opportunities for categorizing
land features and have yielded encouraging outcomes. Deep learning has gained signif‑
icant attention in recent years, leading to a growing interest in neural network models,
including Mask R‑CNN [28], FCN [29], and PointNet [30]. Regardless of whether it is the
initial phases of machine learning or the more recent progress in deep learning, there have
been notable enhancements in the precision and effectiveness of land feature identification.
Nevertheless, these techniques still necessitate extensive labeled datasets in order to train
classifiers. Annotating data requires substantial human resources, time, and effort [31],
and most datasets available are mostly centered on urban areas, with limited representa‑
tion of rural regions. This constraint impedes the advancement of efficient and universally
applicable models for identifying the terrain features in rural regions. Immediate action
is necessary to rectify this deficiency and facilitate the accessibility of varied datasets that
encompass rural environments.

Meanwhile, the process of identifying internal feature lines mostly depends on the
use of airborne LiDAR point cloud data. This involves several phases, including segment‑
ing the point cloud data related to roofs, fitting planes, extracting contours, and ensuring
regularity. Several techniques are employed, such as the Hough transform [32,33], region‑
growing algorithm [34,35], clustering method [36,37], and RANSAC [38,39]. However,
these algorithms frequently and significantly depend on normal vectors and curvature
thresholds, which may lead to false planes and threshold sensitivity [40]. In addition, the
topological relationship between each plane needs to be judged during plane fitting and
contour line extraction. Moreover, research in this field often relies on publicly available
datasets such as those provided by ISPRS or airborne LiDAR point cloud data [41]. The
primary focus of these studies is to meet the requirements for the 3D reconstruction of
large urban buildings according to the LoD300 specification. As a result, these datasets
and research objectives are not compatible with the modeling requirements of small rural
buildings.

Traditional villages serve as significant repositories of historical and cultural memory
for the Chinese population. They encapsulate thewisdom of production and existence, the
crystallization of vernacular art, and the distinctive qualities of the nation’s regions. There‑
fore, these are essential objectives for digital preservation in the attempts to conserve cul‑
tural assets. Liu and Deng introduced digital protection as a novel method for preserving
historical and cultural towns and villages [42]. However, there have been limited stud‑
ies conducted on the 3D reconstruction of traditional villages. Although some researchers
have utilizedUAV tilt photography to accomplish the immediate 3Ddigital preservation of
villages [43], this method faces challenges in producing accurate 3D models due to the in‑
tricate architectural designs and the presence of mountains and hills in typical traditional
villages. Unlike urban buildings and general rural buildings, traditional villages are af‑
fected by the natural environment and social and cultural factors, and most of the ancient
dwellings are mainly low‑rise buildings with wooden or brick structures. The roofs are di‑
vided into dozens of sloping roof forms such as hard hills, hiatus, rolled sheds, etc. Several
single buildings are combined to form a triad. Several monolithic buildings are combined
to form unique Chinese courtyard structures, such as triple and quadrangle courtyards,
with clear internal and external partitions and distinctive spatial layouts. In the western
Hunan of China, most of the traditional villages are located in remote areas, and they are
mainly ancient buildings of the Ming and Qing dynasties or ethnic minority villages, with
one to three‑story hard and overhanging roofs, constituting very characteristic one‑entry,
two‑entry, and three‑entry courtyards. At present, there are fewer studies on the 3D re‑
construction of traditional villages and even fewer on semantic reconstruction. On the one
hand, since most of the traditional villages are located in hilly areas, it is difficult to collect
remote sensing images and point cloud data, and the publicly available Lidar point cloud
datasets are fewer in number and have poorer accuracy. Whether based on images or point
clouds, the algorithms described in the previous section are less adaptable to the extraction
of the traditional village buildings, making it difficult to accurately identify buildings and
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their roofs and, even more so, to effectively extract the feature lines. On the other hand,
due to the complexity of the building structure, the accuracy of the 3D model automati‑
cally generated from the photographs obtained using UAV tilt photography is poor, which
makes it difficult to ensure the accuracy and reliability of the 3D models of different types
of traditional buildings, and it is not possible to interact with them, which is detrimental
to further analyses and processing at a later stage. Considering this, the current study fo‑
cuses on Jingping Village, a typical traditional village in Western Hunan. The MVS point
clouds generated using UAV tilt photography technology are processed using various al‑
gorithms, such as the visible‑band difference vegetation index (VDVI), cloth simulation
filter (CSF), and slope segmentation algorithms. This allows for the isolation and segmen‑
tation of building point clouds, roof point clouds, and roof slopes in a sequential manner.
Subsequently, the Canny algorithm andHough transform are employed to extract the roof
feature lines. By employing this approach, it is possible to achieve the accuratemodeling of
different building typologies in traditional village settings. This ensures a basic guarantee
for the design of rural living spaces and the establishment of digital village infrastructure,
thereby promoting the revival and renewal of rural areas.

In this paper, the second section primarily discusses the technical approach andmeth‑
ods used in this study. The third section showcases the results obtained at each stage us‑
ing the aforementioned methods and compares our approach with two alternative meth‑
ods, thereby validating the superiority or inferiority of our proposed method. Finally, the
fourth section concludes the paper by highlighting its limitations and suggesting future
research directions.

2. Methods
For the unique traditional Chinese village buildings, the article needs to consider the

following 2 challenges: one is to solve the point cloud data problem, and the other is to
adopt a new method to compensate for the inability of previous algorithms to accurately
delineate the roof surface of low‑slope buildings, so as to accurately extract the feature
lines. For this reason, we designed the following line of research. Firstly, high‑resolution
orthophotos and raw color point cloud data were generated by processing the raw data
from tilt photography using the aerial triangulation method. Secondly, the building point
cloud was extracted using the VDVI and CSF algorithms, and the building morphology
was classified into types based on the orthophoto. A single example of each building type
was selected for the roof feature line extraction experiment, and then the roof point cloud
was extracted using the CSF algorithm. Finally, the roof point cloud was converted into
regular grid data, and the slope direction of the different faces was calculated, followed
by reclassification to obtain the final roof slope direction. The final roof feature line was
obtained using Canny edge detection and Hough line detection. Figure 1 illustrates the
technological method.
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2.1. Building Point Cloud Extraction
The extraction of the building point cloudwas achieved using a hierarchical approach

that involved progressive classification. The point cloud data was pre‑processed, and then
the VDVI and CSF algorithms were used to eliminate the vegetation and ground point
cloud. Finally the building point cloud is extracted.

2.1.1. VDVI
Wang analyzed the spectral characteristics of green vegetation and non‑vegetation on

the unmanned aerial vehicle imagery and constructed a vegetation index (VDVI) by ob‑
serving the differences in reflectance between the bands [44]. It combines the reflectance
of vegetation in the green light band and the absorption in the red and blue light bands,
and its form is similar to that of NDVI, which can better distinguish vegetation from non‑
vegetation. The index has achieved significant applications in vegetation information ex‑
traction based onvisible‑bandUAVremote sensing, such as desert vegetation extraction [45]
andwheat cover calculation [46]. The value range of the distribution was observed to have
clear bimodal features. The segmentation threshold was defined as the minimum value
in the valley between the two peaks of the bimodal distribution. Vegetation indices that
exceeded the specified threshold were categorized as vegetation, and those that fell below
the threshold were classified as non‑vegetation. The formula for calculating the VDVI is
as follows:

VDVI =
2G − (R + B)
2G + (R + B)

(1)

where R, G, and B are the red, green, and blue band values, respectively.

2.1.2. CSF Algorithm
The CSF algorithm was proposed by Zhang Wu Ming in 2016 and is widely recog‑

nized by scholars for its simple model, few algorithmic parameters, fast iteration speed,
and high filtering accuracy [47]. On the one hand, some scholars compared the algorithm
with traditional point cloud filtering and found that the algorithm has obvious advantages
on flat terrain [48]. On the other hand, in order to adapt to terrain areas with different
degrees of undulation, some scholars combined it with other filtering methods, such as
based on irregular triangular mesh [49] and surface interpolation [50], which in turn im‑
proved the filtering accuracy. The underlying principle involves modeling a virtual cloth
draped over irregular terrain where gravity causes it to change shape and descend, as il‑
lustrated in Figure 2. By adjusting the stiffness of the virtual cloth, the final output can
be either a DSM or DTM. The position of each particle on the “cloth” is determined by
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the internal forces and gravity, resulting in constrained vertical movement, as depicted in
Figure 3. In accordance with Figure 3b, the gravitational force first induces particle de‑
scent. Once these particles drop below the ground level, they are denoted as immovable
and affixed to their respective positions in Figure 3c. Subsequently, inter‑particle forces
align each point by utilizing neighboring points to exert an upward tension, leading to
a vertical displacement of the particles, outlined in Figure 3d. The positional determina‑
tion of each particle is established definitively through repetitive up and down motions
until a target point is achieved. The primary parameters for the CSF algorithm encompass
four elements: namely, the grid resolution (GR) for calculating the horizontal distance be‑
tween the particles, time iteration increments (DT) for particle motion along the gravity
axis during the simulation events, softness rigidity value (RI) relative to textile materials,
and finally the threshold height (HT) separating the ground points from non‑ground after
sorting operations take place [51].
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Figure 3. Movement of particles gradually attached to ground points: (a) stage I: the particles are
placed above the laser dot; (b) stage II: the particles start to fall due to gravity, and some of them fall
below the laser dot; (c) stage III: the particles below the laser are moved to the surface of the laser
spot and are set to be unable to move; (d) stage IV: by the gravitational force between the particles,
the movable particles are pulled by the neighboring immovable particles, resulting in movement.



Buildings 2024, 14, 1180 7 of 17

2.2. Roof point Cloud Segmentation
2.2.1. Roof Point Cloud Extraction

The CSF algorithm has gained considerable attention as a widely utilized filtering
method, with various experts confirming its exceptional effectiveness. Recent investiga‑
tions have shown that the approach is effective in precisely dividing point clouds on flat‑
roofed structures. This was proved in Wang et al.’s research on extracting buildings from
UAV oblique photography point clouds using a cloth simulation [52]. Building upon this
encouraging discovery, this work utilized the CSF method to extract sloped roofs on con‑
ventional buildings. The experiment solely utilized the CSF algorithm, with modifications
applied to its parameters for multiple rounds of trials.

2.2.2. Slope Segmentation
This paper presents a new way to address the limitations of existing algorithms for

roof segmentation, which heavily depend on normal vectors and curvature thresholds [53].
The proposed method utilizes slope direction features to offset these influences. More pre‑
cisely, the technique divides the roof surface by utilizing the unique characteristics of the
slope direction of building roofs. By mapping the initial point cloud onto a standardized
grid and employing a smoothing technique to remove the irregularities, the value assigned
to each grid pixel indicates the average value of the corresponding points in the point
cloud. In order to streamline the data structure, the procedure of identifying the feature
lines shifted from 3D point cloud processing to 2D picture detection. This approach not
only effectively integrateswith existing picture segmentation algorithms but also improves
experimental efficiency.

The study defines the direction of a slope as the angle formed by the horizontal plane
and the projection of the normal to the tangent plane of a specific location on the surface.
The resulting value is indicated as the cardinal direction at that particular geographical
position. Themeasurement is performed in a clockwise manner, with values ranging from
0 (representing due north) to 360 (still indicating due north), as depicted in Figure 4. If an
area is flat and does not have a downward slope, it is assigned a value of −1 to indicate
a horizontal surface. In order to determine the direction of the slope for each center unit,
a 3 × 3 moving window is utilized, as depicted in Figure 5. The computation formula is
presented below:

De = α tan 2(A, B) (2)

where De denotes the slope direction of the image element e, α denotes the conversion
coefficient between radians and degrees, the specific calculation can be taken as 57.29578,
and A and B are the rate of change of the image element e in the x and y direction; the
formula is as follows:

A = (c + 2 f + i)− (a + 2d + g) (3)

B = (g + 2h + i)− (a + 2b + c) (4)

where a, b, c, d, e, f, g, h, and i are the individual image values.
After determining the slope direction, a conversion is carried out to change the slope

data into compass direction values using recognized rules. Since the roofs of traditional
village buildings typically have double or four‑sloped designs, there is no need to per‑
form a detailed analysis of individual raster values in the tests conducted in this work. To
simplify, we gathered the slope direction values of similar slopes and adjusted them to
produce either two or four different slope directions in the raster.
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2.3. Feature Line Extraction
The process of extracting feature lines primarily involves identifying the external out‑

lines and internal ridge lines. These lines act as the demarcations for each inclined surface
on the roof. The Canny algorithm, introduced by John F. Canny in 1986 [54], is a renowned
and sophisticatedmethod for detecting edges in images [55]. The Canny operator for edge
detection consists of five primary processes: Gaussian smoothing for noise reduction, the
computation of pixel gradients, non‑maximum suppression, double thresholding to iden‑
tify prospective edge points, and finally, the tracking of lagging edge points. These steps
are performed in the specified order. Recently, some academics have made enhancements
to the Canny algorithm, resulting in enhanced accuracy to some degree [56]. However,
this paper solely employed edge detection on either two or four inclines of the roof, and
the image content was very uncomplicated with limited intricacy. Thus, adjusting the size
of the Gaussian filter and the high and low thresholds was sufficient to yield better results
in the experiments.

3. Experimental Results and Analysis
3.1. Experimental Data

Jingping Village, located in Hunan Province, China, is an ancient settlement with a
rich heritage deeply rooted in history and culture. This village has received prestigious
distinction as a national key cultural relics protection unit and has been certified as a tra‑
ditional Chinese village of the fourth batch. It has been meticulously kept for over a thou‑
sand years and showcases magnificent clusters of buildings from the Ming and Qing dy‑
nasties. Jingping Village showcases a unique combination of water, farmland, and wood‑
lands, demonstrating the harmonious relationship between humans and nature. It also
exemplifies the key characteristics of traditional villages in Western Hunan.

In August 2019, the author collected precise point cloud data of the villageMVS using
a Zhonghaida iFly D1 quadcopter UAV. The UAV was equipped with an iCam Q5 mini
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five‑lens tilt camera and a UAV‑PPK receiver, which had a high‑resolution camera with
120million effective pixels (24million× 5). A comprehensive investigationwas conducted
in the experimental region, deliberately establishing control sites and tactically mapping
out pathways. As a result of this endeavor, we were able to obtain orthophotos with a
resolution of roughly 1.5 cm, as well as an estimated 320 million point cloud data of the
hamlet. Themain building area, which included around 180million building point clouds,
measured approximately 0.21 km2 after the necessary crop. The building point cloud had
a density of approximately 900 points per square meter, while the roof point cloud had a
density of roughly 400 points per square meter. This indicates a high level of density and
accuracy. The flight parameters used for this study are shown in Table 1.

Table 1. Flight parameters of Jingping Village.

Parameter Value Parameter Value

Heading overlap 80% Parallax overlap 78%
Flight height 100 m Flight time 84 min

Image resolution 1.5 cm Number of control points 6

3.2. Building Point Cloud Extraction and Typology
Due to the large area covered by Jingping Village and the significant amount of point

clouddata, only three specific locationswere chosen to identify the buildings. Significantly,
when the value of the VDVI became very close to zero, a specific set of CSF algorithm
parameters was established using rigorous experimentation: a GR value of 0.5, a DT value
of 0.5, a RI value of 1, and an HD value of 0.5, as demonstrated in Figure 6. The act of
removing the plants and ground features using the VDVI and CSF techniques resulted in
the enhanced accuracy of producing point cloud data in different situations. Nevertheless,
there were still some small disturbances, such as a fence and unnecessary points.
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The building arrangements of JingpingVillage can be classified into four unique styles:
I‑shaped, L‑shaped (featuring two internal courtyards), U‑shaped (comprising three in‑
ternal courtyards), and “回”‑shaped (embodying four internal courtyards), as shown in
Figure 7.
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3.3. Roof Extraction and Slope Segmentation
During the process of removing the vegetation point cloud, it was discovered that

taller trees obscured the local information of the roofs due to limitations in the UAV tilt
photography technology. To address this issue, one more complete building from each
roof type, as shown in Figure 7, was selected for the feature line extraction experiment. The
impact of the GR value on the extraction effect of the roofs in the CSF algorithmwas exam‑
ined and found to have a significant influence. As an example, I‑shaped roofs were used,
and changing the GR value while keeping the other values constant resulted in the best ex‑
traction effect being achievedwhen theGRwas set to 0.1, as demonstrated in Figure 8. This
approach was then applied to obtain all types of roof point clouds, presented in Figure 9.
However, upon closer examination, a redundant point cloud was noted at the eaves of
different roofs. The reason for this is that elevation information in this area cannot be cap‑
tured during tilt photography, resulting in the absence of clear point cloud data during the
aerial triangulation solution. Additionally, the ancestral hall of Jingping Village, depicted
in Figure 9d, has higher surrounding walls than the roof, leading to partial voids in the
area of the walls. Consequently, the application of the CSF algorithm to extract the roof of
the building did not guarantee roof integrity.
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(b) GR = 1; (c) GR = 0.5; (d) GR = 0.2; (e) GR = 0.1.
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Figure 9. Extraction results for building roofs: (a) I‑shaped; (b) L‑shaped; (c) U‑shaped; (d) 回‑
shaped.

Tomitigate the influence of the threshold setting on the plane segmentation observed
in previous studies, we propose a novel approach whereby point cloud data is projected
onto a flat raster and smoothed before the slope calculation. Among the four types of
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roofs mentioned above, the extraction effect of the “回”‑shaped roofs was poor, and due
to the existence of the mountain wall, it was impossible to segment the slope direction.
Therefore, in this paper, based on manually removing the redundant point clouds of the
eaves, only three buildings selected from each of the first three types of building roofs
were experimented with. These three types of roofs are the main types of building roofs in
Jingping Village. The three typical selected roofs have approximate point cloud densities,
and only part of the roof is retained to ensure balance between the three datasets. Since
the traditional village buildings’ roof tiles are concave and convex, our slope direction
calculation produced eight initial directions, which were subsequently reclassified into a
two‑slope or four‑slope map. As depicted in Figure 10, the L‑shaped roof consists of four
slopes, which are further divided into eight directions. Specifically, the west and north‑
west directions form one slope ranging from 247.5◦ to 337.5◦, the east and south‑east di‑
rections form another slope ranging from 67.5◦ to 157.5◦, the southern and south‑west
directions form a third slope ranging from 157.5◦ to 247.5◦, and the north and north‑east
directions form the fourth slope ranging from 0◦ to 67.5◦ and 337.5◦ to 360◦, as shown in
Figure 11. These directions align precisely with the four clustered distributions illustrated
in Figure 11. Therefore, by utilizing the angles of 67.5◦, 157.5◦, 247.5◦, and 337.5◦, we
could classify and differentiate the four slopes of the L‑shaped roof. Nonetheless, the re‑
classified raster slope directions may contain a small number of misclassified stray points
at the edges and intersections, which require additional smoothing and denoising to avoid
negatively affecting downstream detection. Our method’s segmentation results were com‑
pared to those yielded using traditional RANSAC and region segmentation algorithms to
verify their effectiveness.
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According to Equations (5)–(7), the R, P, and F of the roof extraction of the three types
of buildings in Jingping Village were calculated, and the confusion matrix was plotted,
as shown in Figure 12. As can be seen in Figure 12, there are 30,713 pixel points for the
I‑shaped roof, 6712 pixel points for the L‑shaped roof, and 26,728 pixel points for the U‑
shaped roof, and the three types of roofs achieved 99.59%, 99.30%, and 99.80% and 99.79%,
99.65%, and 99.90% for F and P, respectively. It is worth noting that since the redundant
point cloud was manually presented in the previous section, there are no pixel points that
are not roofs, and high F and P values were obtained, so the two lower space values of the
confusion matrix are both 0 and the R values are both 1.

R =
TP

TP + FN
∗ 100% (5)

P =
TP

TP + FP
∗ 100% (6)

F =
2RP

R + P
∗ 100% (7)

where TP is the number of correctly segmented raster pixels, FN is the number of missed
raster pixels, FP is the number of incorrectly segmented raster pixels, R is the recall rate, P
is the accuracy rate, and F is the measure.

It is noteworthy that, owing to the high precision of the data, the recategorized slope
direction raster might exhibit a marginal number of erroneously classified outlying points
at the edges and intersections of two slope directions, namely, inaccurately segmented
raster pixels. These artifacts may exert a certain impact on the ensuing detection proce‑
dures and thus must be subjected to subsequent smoothing and denoising processes. To
ascertain the effectiveness of this approach, Figure 13 and Table 2 were produced by com‑
paring its segmentation outcomes with the conventional RANSAC and region segmenta‑
tion algorithms.
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Figure 12. Confusionmatrix for different roof slope segmentations: (a) I‑shpaed, (b) L‑shaped, (c) U‑
shaped. The upper left corner of each of (a–c) represents the number of grids that are actually roofs
and classified as roofs. The upper right corner represents the number of grids that are actually roofs
but classified as non‑roofs. The lower left corner represents the number of grids that are actually
non‑roofs but classified as roofs, and the lower right corner represents the number of grids that are
actually non‑roofs and classified as non‑roofs.
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Figure 13. Comparison of different types of roof slope surface segmentations: (a) using the RANSAC
algorithm leads to misclassification and overclassification; (b) using the region segmentation algo‑
rithm leads to overclassification; (c) using the slope segmentation algorithm leads to some noise;
(d) using the slope segmentation algorithm and noise removal leads to better results.

Table 2. Comparison of the number of roof slopes segmented using different algorithms.

RANSAC Region Segmentation Algorithm Slope Segmentation Algorithm

Total Number
of Extracted
Roof Slope
Surfaces

Number of
Correctly

Extracted Roof
Slope Surfaces

Total Number
of Extracted
Roof Slope
Surfaces

Number of
Correctly

Extracted Roof
Slope Surfaces

Total Number
of Extracted
Roof Slope
Surfaces

Number of
Correctly

Extracted Roof
Slope Surfaces

I‑shaped 4 2 2 2 2 2
L‑shaped 7 2 2 1 4 4
U‑shaped 8 4 4 3 6 6

Based on the results presented in Figure 13 and Table 2, our proposedmethod demon‑
strates significant improvements over both the RANSAC algorithm and the region segmen‑
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tation algorithm. Firstly, all three algorithms exhibit comparable performance in terms
of computational efficiency due to the small size of the input data. Secondly, regarding
segmentation accuracy, neither the RANSAC algorithm nor the region segmentation algo‑
rithm succeeded in accurately segmenting the facets of simple I‑shaped or slightly more
complex U‑shaped roofs. Instead, these algorithms exhibited varying degrees of under
and oversegmentation on either type of roof. In addition, based on the point cloud data
analysis, the region segmentation algorithm demonstrated a higher tendency toward un‑
dersegmentation when compared to the RANSAC algorithm. For instance, as shown in
Figure 13, the inner sides of both L‑shaped andU‑shaped roofs were segmented into single
planes, and the resulting segmented roofs showed greater noise due to restricted data ac‑
curacy. Furthermore, during the experiment, it was observed that the RANSAC algorithm
produced inconsistent results under identical parameter settings, indicating significant de‑
viations and instability.

Using the direction of the slope, the successful segmentation of all slopeswas achieved
in all three types of roof segmentation, resulting in improved outcomes. Though there
were several instances of missegmentation, such occurrences did not adversely affect the
overall effects compared to the area segmentation algorithm. Furthermore, after denoising,
a complete representation of the various roof slopes was obtained. It should be noted
that during experimentation, the first two algorithms were directly based on point cloud
segmentation, resulting in neater planar edges. In contrast, slope segmentation relied on
raster images after point cloud projection, leading to rougher edge contours due to lower
raster resolution. However, this issue could be eliminated by regularization in subsequent
feature line extraction.

3.4. Feature Line Extraction and Regularisation
The slope direction map was subjected to sequential analysis involving Canny edge

detection and Hough line detection. After further refinement and regularization, the re‑
sulting feature line extraction map is presented in Figure 14. Our approach offers com‑
mendable results in extracting the feature lines of various roof configurations, particu‑
larly double‑sloped andmulti‑sloped roofs commonly found in low‑rise traditional village
buildings.

Buildings 2024, 14, x FOR PEER REVIEW 14 of 17 
 

algorithm succeeded in accurately segmenting the facets of simple I-shaped or slightly 

more complex U-shaped roofs. Instead, these algorithms exhibited varying degrees of un-

der and oversegmentation on either type of roof. In addition, based on the point cloud 

data analysis, the region segmentation algorithm demonstrated a higher tendency toward 

undersegmentation when compared to the RANSAC algorithm. For instance, as shown in 

Figure 13, the inner sides of both L-shaped and U-shaped roofs were segmented into sin-

gle planes, and the resulting segmented roofs showed greater noise due to restricted data 

accuracy. Furthermore, during the experiment, it was observed that the RANSAC algo-

rithm produced inconsistent results under identical parameter settings, indicating signif-

icant deviations and instability. 

Using the direction of the slope, the successful segmentation of all slopes was 

achieved in all three types of roof segmentation, resulting in improved outcomes. Though 

there were several instances of missegmentation, such occurrences did not adversely af-

fect the overall effects compared to the area segmentation algorithm. Furthermore, after 

denoising, a complete representation of the various roof slopes was obtained. It should be 

noted that during experimentation, the first two algorithms were directly based on point 

cloud segmentation, resulting in neater planar edges. In contrast, slope segmentation re-

lied on raster images after point cloud projection, leading to rougher edge contours due 

to lower raster resolution. However, this issue could be eliminated by regularization in 

subsequent feature line extraction. 

3.4. Feature Line Extraction and Regularisation 

The slope direction map was subjected to sequential analysis involving Canny edge 

detection and Hough line detection. After further refinement and regularization, the re-

sulting feature line extraction map is presented in Figure 14. Our approach offers com-

mendable results in extracting the feature lines of various roof configurations, particularly 

double-sloped and multi-sloped roofs commonly found in low-rise traditional village 

buildings. 

 

Figure 14. Extraction effect of different types of roof feature lines: (a) I-shaped; (b) L-shaped; (c) U-

shaped. 

4. Conclusions 

This study focused on the extraction of complex roof feature lines in traditional vil-

lage buildings. Based on the MVS point cloud data collected in Jingping Village by the 

authors, a method combining the VDVI, CSF algorithm, and slope-based segmentation 

was proposed, which ultimately extracted the internal and external feature lines of three 

typical roofs. The experimental results illustrate the following: 

(1) This study presents an effective method for extracting the feature lines from tra-

ditional Chinese village roofs. The experiments showed that this method can successfully 

extract the feature lines from different types of traditional buildings, providing a valuable 

reference for the 3D reconstruction of traditional village architecture in China; 

(2) The feasibility of the CSF algorithm in extracting the roof slope surfaces of tradi-

tional buildings was demonstrated. By adjusting the GR parameter of the algorithm, the 

Figure 14. Extraction effect of different types of roof feature lines: (a) I‑shaped; (b) L‑shaped;
(c) U‑shaped.

4. Conclusions
This study focused on the extraction of complex roof feature lines in traditional vil‑

lage buildings. Based on the MVS point cloud data collected in Jingping Village by the
authors, a method combining the VDVI, CSF algorithm, and slope‑based segmentation
was proposed, which ultimately extracted the internal and external feature lines of three
typical roofs. The experimental results illustrate the following:

(1) This study presents an effective method for extracting the feature lines from tra‑
ditional Chinese village roofs. The experiments showed that this method can successfully
extract the feature lines from different types of traditional buildings, providing a valuable
reference for the 3D reconstruction of traditional village architecture in China;
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(2) The feasibility of the CSF algorithm in extracting the roof slope surfaces of tradi‑
tional buildings was demonstrated. By adjusting the GR parameter of the algorithm, the
roof point clouds of I‑shaped, L‑shaped, and U‑shaped roofs could be effectively andmore
comprehensively extracted;

(3) The slope‑based segmentation algorithm proposed in this study effectively avoids
oversegmentation and undersegmentation issues and performs better than the RANSAC
algorithm and region‑based segmentation algorithm.

However, there are still some unresolved issues in this study that warrant further
investigation in future research:

(1) The use of the CSF algorithm for extracting roof point clouds is only suitable for
simple two‑sloped and four‑sloped roofs in villages. It still remains a challenge to adapt
the method for extracting more complex “回” roofs with gable walls. Further research is
needed to address the extraction of different types of building roofs;

(2) The accuracy and density of the point cloud data have a greater impact on the seg‑
mentation of building roof slope surfaces in this paper. In the case of the same precision,
the higher density of point cloud data volume, while it can guarantee the final effect of the
experiment, is likely to lead to excessive experimental load, thus affecting the experimen‑
tal process and vice versa; a lower density may result in insufficient roof details, making
it more difficult to ensure that the experiment is carried out. Therefore, exploring the ef‑
fect of point clouds with different accuracies and densities to this experiment is a worthy
consideration afterward;

(3) This paper is a practical attempt to reconstruct traditional village monolithic build‑
ings inWesternHunan, and itsmethod ismainly for traditional village I‑shaped, L‑shaped,
and U‑shaped roofs, and its applicability to other types of buildings is still to be verified.
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