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Abstract: The development of intelligent transportation technology has provided a significant impetus
for autonomous driving technology. Currently, autonomous vehicles based on Model Predictive
Control (MPC) employ motion control strategies based on sampling time, which fail to fully utilize
the spatial information of obstacles. To address this issue, this paper proposes a dual-layer MPC
vehicle collision-free trajectory tracking control strategy that integrates spatial kinematics and vehicle
dynamics. To fully utilize the spatial information of obstacles, we designed a vehicle model based
on spatial kinematics, enabling the upper-layer MPC to plan collision avoidance trajectories based
on distance sampling. To improve the accuracy and safety of trajectory tracking, we designed an
8-degree-of-freedom vehicle dynamic model. This allows the lower-layer MPC to consider lateral
stability and roll stability during trajectory tracking. In collision avoidance trajectory tracking
experiments using three scenarios, compared to two advanced time-based algorithms, the trajectories
planned by the proposed algorithm in this paper exhibited predictability. The proposed algorithm
can initiate collision avoidance at predetermined positions and can avoid collisions in predetermined
directions, with all state variables within safe ranges. In terms of time efficiency, it also outperformed
the comparative algorithms.

Keywords: collision-free tracking; integrated model predictive control; roll dynamics; simulation
studies; spatial kinematics model

1. Introduction

Advancements in artificial intelligence and hardware technologies have propelled
the evolution of vehicle control systems beyond the initial assisted driving functionalities,
ushering in a new era of high autonomy to meet the demands of intelligent transporta-
tion [1]. Cost-effective, high-precision hardware solutions have significantly augmented
vehicles with environmental perception capabilities. The human-like deductive and in-
ferential capabilities afforded by artificial intelligence empower vehicles to make rational
maneuvering decisions in response to intricate traffic scenarios based on environmental
information [2]. Recent years have witnessed substantial progress in autonomous vehicle
research, particularly in the domains of traffic environment perception, graphics and image
processing, path planning, and motion control. Notably, the planning and decision-making
aspects of these studies must translate into coherent control commands executed by the
vehicle’s control system to perform the ultimate maneuvers. Consequently, ensuring the
practical deployment of fully autonomous vehicle technology underscores the critical
research significance of autonomous vehicle control techniques.

During road vehicle driving, the lateral and longitudinal forces, and torque are pre-
dominantly determined by the interaction between the tires and the road surface. Under
the assumption of small angles, the slip ratio and slip angle of the tires exhibit a linear
relationship with the longitudinal and lateral forces [3]. However, in scenarios involving
complex road conditions or aggressive driving maneuvers, the tire—road interaction man-
ifests intricate nonlinear characteristics [4]. Consequently, to mitigate the complexity in
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controller design, vehicle control is often bifurcated into two independent design schemes:
longitudinal controllers and lateral controllers [5].

The objective of the longitudinal controller is to compute the appropriate torque or
throttle opening to achieve constant speed cruising or maintain stable inter-vehicle spac-
ing [6]. Various nonlinear control algorithms such as adaptive control [7], sliding mode
control [8], gain-scheduling control [9], etc., have been employed for vehicle longitudinal
control. The primary goal of these controllers is to mitigate the impact of external dis-
turbances, such as rolling resistance, wind speed, and unpredictable road slope factors,
on the longitudinal velocity [10]. With the advancement of intelligent transportation and
the maturation of vehicle-to-vehicle and vehicle-to-infrastructure communication tech-
nologies, MPC-based longitudinal controllers can leverage real-time traffic information
to predict future vehicle states and disturbances, further enhancing longitudinal control
performance [11].

The objective of lateral controllers is to compute appropriate steering inputs to accom-
plish lateral maneuvers such as trajectory tracking, overtaking maneuvers, and obstacle
avoidance [12]. Compared to longitudinal dynamics, lateral dynamics exhibit more com-
plex nonlinear characteristics. Therefore, the design of lateral controllers often needs to be
tailored to specific control tasks [13]. In cases of high trajectory curvature or low ground
friction coefficients, yaw controllers need to adjust the yaw moments and lateral velocity to
recover the yaw rate [14]. In scenarios with high real-time requirements, MPC algorithms
designed based on a low-degree-of-freedom vehicle model have been employed for trajec-
tory tracking tests [15]. The experimental results demonstrate that when road conditions
are favorable, MPC designs based on a bicycle dynamics model can achieve real-time tra-
jectory tracking and collision avoidance. To simplify the impact of longitudinal dynamics,
researchers generally assume a constant longitudinal velocity and employ longitudinal
controllers to reduce velocity errors and decouple the longitudinal dynamics [16]. In con-
trast to longitudinal controller design, MPC is a prevalent framework in lateral controller
design due to its capability in simultaneously handling state constraints for lateral control
tasks [17].

To achieve high-performance vehicle driving, controllers considering both longitudi-
nal and lateral dynamics have been proposed [18]. Under the nonlinear MPC framework, a
simplified second-order longitudinal dynamics model and a nonlinear bicycle model are fre-
quently employed to design an integrated longitudinal and lateral control algorithm [19,20].
Considering the nonlinear characteristics of tires, a linear tire model based on upper and
lower bounds is used to design a multi-stage integrated longitudinal and lateral con-
troller [21]. In trajectory planning, the lower bound linear tire model is utilized for path
planning, while the upper bound linear tire model is employed for trajectory tracking.
Similar to lateral control design, each integrated control requires a specific design for par-
ticular scenarios. Although there is an improvement in performance, the design process
of such controllers is complex, and they lack generality due to limitations in nonlinear
scenario settings.

The aforementioned studies on vehicle control primarily focus on achieving high-
performance handling. However, beyond high performance, the complex traffic environ-
ment necessitates that vehicle maneuvers adhere to safety considerations. Aggressive
driving behavior not only increases the risk of vehicle rollovers but also poses threats to
other road participants. Therefore, alongside high-performance control, there is a growing
emphasis on control technologies aimed at ensuring vehicle safety [22].

Collision avoidance is a critical indicator for testing the safety of autonomous vehi-
cles [23]. Traditional nonlinear controllers, based on state errors, are not only conducive to
stability proofs but also ensure real-time algorithm performance. However, these controllers
cannot incorporate collision avoidance strategies, leaving collision avoidance strategies
reliant on path planning algorithms. Controllers based on optimization algorithms, such
as MPC, can utilize the optimization algorithm’s framework to consider vehicle state con-
straints, including nonlinear constraint optimization, mixed-integer programming, and
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other optimization algorithms [24]. As a result, they are widely used in collision avoid-
ance control research for vehicles. Time-based MPC, by predicting the future states of
the vehicle at multiple time points and considering obstacle information, constrains the
vehicle’s future trajectory to accomplish collision avoidance. This class of algorithms,
however, does not fully leverage the geographical information available in intelligent
transportation systems. The exact time of collision cannot be predicted, but the distance
from obstacles to the current moment is known. Utilizing sampled distances rather than
sampled times to predict future vehicle states allows for a more accurate calculation of
vehicle control inputs. Based on this perspective, collision avoidance strategies based on
spatial MPC have been proposed [25,26]. Spatial MPC is used for the real-time replanning
of collision-free trajectories, while the lower-level controller is employed to track the new
trajectory. Similar strategies were adopted in [25]. The nonlinear bicycle model was used
to calculate collision avoidance trajectories in those studies. However, the nonlinearity
of this dynamic model leads to lengthy solution times, making it impractical for real-
time deployment. Our previous research also compared the corresponding computation
times, indicating that based on spatial nonlinear bicycle models under the CASADI solver,
the computation time is higher than that of time-based bicycle models [27]. Collision
avoidance strategies often include collision-free trajectory planning, collision avoidance
behavior decision-making, and other components. Therefore, this strategy involves the
interaction of multiple functional modules [28]. Furthermore, for more complex collision
avoidance scenarios and demands, intelligent approaches enable autonomous vehicles
to simulate human decision-making behaviors, rendering the collision avoidance mech-
anism more sophisticated [29]. In addressing intricate collision scenarios, particularly in
close-proximity situations between vehicles, the necessity for more sophisticated collision
avoidance strategies demands tailored design considerations. Reference [30] proposed an
innovative approach that integrates MPC with ellipsoids to delineate keep-out zones. Fur-
thermore, it employs linearization techniques to manage the resultant nonlinear constraints,
thereby guaranteeing effective optimization within the MPC framework. These methods en-
hance the rationality of collision avoidance decision-making processes, yet reliable control
schemes are still required for the specific deployment of collision avoidance actions.
Excessive driving behavior often leads to a loss of lateral stability in vehicles, causing
them to deviate significantly from the intended trajectory [31]. Therefore, ensuring lateral
stability is a crucial prerequisite for safe driving in controller design. As mentioned earlier,
traditional nonlinear controllers cannot handle state constraints, necessitating consideration
of the vehicle’s lateral and roll dynamics in the controller design process. This complexity
and tediousness in the controller design process, along with poor algorithm scalability, can
be mitigated by MPC [32]. MPC leverages steady-state or quasi-steady-state dynamics and
kinematic analyses to formulate state constraints, ensuring the vehicle’s lateral stability.
In cases of good ground conditions, the desired slip angle and yaw rate can typically be
obtained using stead-state turning models. In [33], under low curvature trajectory settings,
a steady-state steering dynamics model was used to calculate the steady-state error of
the slip angle, deriving the relationship between the steady-state slip angle and steering,
vehicle speed, trajectory curvature, and steering angle parameters. This relationship was
then utilized as a slip angle constraint. To account for insufficient friction, in [34], a
steady-state friction model was used to derive the relationship between the ground friction
coefficient and yaw rate. This relationship can serve as the upper and lower bounds for
the yaw rate since the maximum slip ratio is provided by the maximum ground friction.
Treating vehicle motion as two-dimensional rigid body movement significantly reduces
the modeling difficulty, but introducing more degrees of freedom to consider vehicle roll
dynamics can further prevent the risk of vehicle rollover [35]. Therefore, for the risk of
vehicle rollover, a 14-degree-of-freedom (14-DOF) vehicle model has been proposed to test
various anti-rollover controllers [36]. To avoid complex vehicle load calculations in rollover
prediction, simplified anti-rollover control based on load transfer rates was proposed [37].
The simplified 8-DOF model can further reduce the MPC controller computation time
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while ensuring roll stability [38]. The consideration of lateral safety and roll safety poses
significant challenges to the autonomy of vehicles.

Based on the literature review outlined above, it is evident that the current motion
control systems for autonomous vehicles have not fully exploited the spatial informa-
tion of obstacles when addressing collision avoidance issues. This deficiency results in
uncertainties in collision avoidance behaviors, such as uncertain initiation positions and
ambiguous avoidance directions, during vehicle maneuvering. These uncertainties are
prevalent in time-based MPC collision avoidance strategies. Additionally, the design of
collision avoidance control strategies for vehicles needs to comprehensively consider the
safety of the trajectory tracking process and the compatibility of safety constraint designs
among different vehicle manufacturers.

Given the current state of autonomous vehicle control, this paper integrates con-
siderations for collision avoidance, safety requirements, and control performance into a
dual-layer MPC architecture. The contributions and advantages of the proposed algorithm
are as follows:

(1) Inresponse to the predictability and compatibility requirements of collision avoidance
strategies, a spatial MPC was designed based on a spatial kinematic model, serving
as the upper-level trajectory planning layer. Collision avoidance strategies are im-
plemented in the form of hard state constraints. Parameterizing the state trajectory
using sampling distance enhances the predictability of collision avoidance strategies.
The adoption of the vehicle’s kinematic model aims to reduce computation time,
facilitating real-time deployment.

(2) To accurately track collision-free trajectories from the upper-level planning, a linear
time-varying MPC was designed. It utilizes an 8-DOF vehicle model with rolling
dynamics. Differing from traditional nonlinear bicycle dynamic models, the inclusion
of additional degrees of freedom accounts for the vehicle’s rolling dynamics during
trajectory tracking, mitigating the risk of rollovers.

(3) Considering the need for scalability and universality in vehicle control algorithms, this
study’s constraint design, encompassing variables such as slip angle, yaw rate, and
roll angle, leverages steady-state dynamic analysis to reduce the impact of algorithm
applicability variations arising from different manufacturers’ vehicles.

(4) We conducted collision avoidance tracking experiments using single-lane and double-
lane scenarios. In aspects such as the rationality of vehicle collision avoidance trajec-
tories, predictability, trajectory tracking effectiveness, lateral and roll stability, and
algorithm execution time, the proposed algorithm was compared with two advanced
time-based dual-layer MPC algorithms.

The paper is organized as follows: Section 2 details the modeling process of three
vehicle models tailored for distinct tasks, namely trajectory planning, trajectory tracking,
and model validation. Section 3 outlines the proposed control algorithms, encompassing the
upper-level trajectory planning algorithm, lower-level trajectory tracking algorithm, and
longitudinal control algorithm. Section 4 delves into collision avoidance tracking scenarios,
addressing both single-lane and double-lane situations. Finally, Section 5 provides a
summary of the entire paper.

2. Multifaceted Vehicle Modeling

The complexity of vehicle dynamics models significantly impacts controller design and
simulation accuracy. High-fidelity models encompass subsystems such as the transmission
system, powertrain system, sprung mass, unsprung mass, and tires, providing superior
replication of real-world dynamics. However, for tasks like trajectory planning and vehicle
control, overly complex models increase the computational load, necessitating rational
design choices. To address this, our approach employs vehicle models with three distinct
complexity levels. For collision-free trajectory planning, a simplified bicycle kinematic
model parameterized by distance facilitates real-time calculations. The trajectory tracking
utilizes an 8-DOF vehicle model to ensure accurate tracking while considering lateral and
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roll dynamics. For high-fidelity simulations, a 14-DOF model accurately reproduces vehicle
longitudinal, lateral, and roll dynamics. This multi-level approach balances simulation
accuracy with computational efficiency.

2.1. Spatial Kinematics Model

The vehicle kinematic model describes the vehicle’s motion based on geometric prop-
erties, independent of force considerations [39]. The motion equations are determined by
the vehicle and road geometries, as depicted in the schematic diagram in Figure 1. Here, the
construction of the kinematic model is undertaken for the sake of completeness, facilitating
subsequent derivations of the spatial kinematic model. The following assumptions were
made in deriving this model:

(a) The vehicle is represented by a single axle, with the left and right wheels of the front
axle combined as point A, and the two wheels of the rear axle combined as point B.
The vehicle’s steering is determined by the front wheel steering angle J¢, while the
rear wheel steering angle is set to 0.

(b) The velocities at points A and B align with the steering directions of the front and rear
wheels. Specifically, the velocity at point A is related to the steering angle of the front
wheels, represented by J¢, while the velocity at point B is in the same direction as the
axis. Consequently, the slip angles for both the front and rear wheels are zero.

(¢) The process of vehicle steering is considered as rigid body motion, that is, there exists
an instantaneous rotation center O. The vehicle moves only in the plane.

In Figure 1, point C represents the center of mass. The distances from A and B to C are
denoted as a and b, respectively. The distance from C to the rotation center O is denoted
as L = a + b. The angle between the vehicle velocity and axis AB is the slip angle 5. The
angle between axis AB and the global coordinate axis X is the yaw angle 1. R denotes
the rotation radius. X and Y represent the global coordinate system, namely the inertial
coordinate system.

Figure 1. Kinematics of bicycle model in global frame.
In triangles OCA and OCB, the sine rule can be used to obtain
sin(6f — B) - R = cos(dy) - a, (1)

sin(B) - R =b. )
By using Equations (1) and (2), the following can be obtained:

B =atan(b-tandf/L), (3)

1/R = cos ftands/L. 4)
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According to the assumption, the vehicle’s motion around O is considered as rigid
body motion. Thus, the following can be obtained:

¢ =V/R. (5)

Combining Equations (3)-(5), the vehicle’s motion equations can be represented as fol-
lows: .
X = Vcos(p + B)
Y = Vsin(y + B) : (6)
¥ = Vcos(B) tan(d¢) /L

To apply this kinematic model to collision-free trajectory planning, a curvilinear
coordinate transformation is introduced to convert it into spatial-based kinematic equations.
Figure 2 illustrates the relationship between the vehicle and the road (the trajectory) in the
curvilinear coordinate system. x and y represent the vehicle body coordinate system. e,
represents the lateral distance of the vehicle’s center of gravity from the given trajectory.
ey represents the deviation between the vehicle’s heading and the heading of the given
trajectory (counterclockwise direction is positive). Point O is the instantaneous rotation
center, and p is the radius of rotation. s is the distance parameter of the given trajectory,
that is, the trajectory is a parameter curvilinear of the traveled distance s. Therefore, p(s),
O(s), ey(s), and ey(s) are all functions of s.

A

Y

v

Figure 2. Kinematics model in curvilinear coordinates.

The following relationships can be deduced from Figure 2:

ey = Vgsiney = V cos Bsiney
éf/’ = lP—l[JS

P =Vs/p ’
s=p9p=Vs-p/(p—ey)

(7)

where V; represents the velocity of the vehicle in the direction of the reference trajectory.
s represents the heading angle of the reference trajectory. s represents the speed of the
reference point. The calculation of Equation (7) is performed in the global coordinate
system X and Y.

The logical flow of the derivation from Equation (7) is outlined as follows: firstly, the
current state of the vehicle is determined. Using this state information, a reference point
on the trajectory is located, typically chosen as the nearest point. Utilizing the geometric
details of the reference trajectory, the instantaneous rotation point O, the turning radius p,
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and the heading angle 15 of the reference point are determined. Subsequently, based on this
information, the distance deviation e, and the heading deviation ey, between the vehicle and
the trajectory at that moment are calculated. The rate of change of the distance deviation e,
is interpreted as the projection of the vehicle’s velocity in the centripetal direction (relative
to the rotation center O). Additionally, the rate of change of the heading deviation ey is
defined as the difference between the vehicle’s heading rate and the reference trajectory’s
heading rate.

The vehicle’s state is parameterized by time ¢, whereas in the curvilinear coordinate
system, the reference trajectory is parameterized by distance s. If we can also parameterize
the vehicle’s state trajectory using the same distance parameter s, we can design collision-
free trajectories in trajectory planning using distance s. This approach fully leverages the
geographical information of the reference trajectory, and in subsequent MPC design, we
can utilize the sampling distance ds as a substitute for the sampling time dt to predict future
states. Hereafter, we use the parameter s to parameterize the vehicle’s state:

: dey 0
ey(s) = % ai ey s, 8)
ey =ey(s)/s, ©9)

where e,y represents the rate of change of the vehicle’s lateral distance relative to the
trajectory e, with respect to the distance parameter s. In the subsequent text, the symbol
o' indicates the derivative with respect to distance s, and e represents the derivative with
respect to time t. 5 and ¢, are determined using Equation (7).

The motion equation parameterized by distance s can be derived as follows:

>
—~
195}
NGy
<
I

I
/_\

—ey ) cos(p+B)
P cos(ey+p)

—ey ) sin(yp+pB)

p cos(ey+P)

ey) tandycosp

p 5 L cos(ey+p) ’ (10)

(p—ey) [ cosBtand 1
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In the spatial kinematics model, the state vector with a new sample distance s is repre-
sented as ¢l (s) = [X(s), Y(s), ¢(s), ey (s), ey (s)]T and the input vector is UHL(s) = 5¢(s).
‘HL’ is utilized as the superscript because this model is employed by the upper-level algo-
rithm in the subsequent two-tiered MPC structure. After parameterizing the state trajectory
with distance s, the prediction of state variables ¢! (s) at various distances is feasible. The
position information of obstacles can easily be transformed into a distance-based form
relative to the road using intelligent transportation systems, for example, the coordinates

of an obstacle can be denoted as e;bs (Sops ), indicating that the obstacle is located at S

with a lateral distance from the reference trajectory of e;bs (Sops)- Therefore, when plan-
ning the trajectory, it is imperative to ensure that the vehicle’s trajectory at S, satisfies
ey(Sops) > ef,bs (Sobs) + disty g, The specific obstacle avoidance strategy will be elaborated
in detail in Section 3.

Remark 1. When the curvature of the reference trajectory changes drastically, reference points
may not be uniquely determined, or multiple rotation centers may exist. Therefore, this study only
considered straight-line segment reference trajectories. Consequently, the accuracy of the proposed
algorithm would be significantly affected under highly variable reference trajectories.
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2.2. Integrating Roll Dynamics into 8-DOF Vehicle Model

In the field of autonomous vehicle control, a commonly employed model is the non-
linear bicycle dynamics model and its variants. These models primarily focus on the
lateral dynamics of the vehicle, treating it as a rigid body moving in a plane. The 8-DOF
vehicle model encompasses the longitudinal, lateral, yaw, and roll dynamics, as well as
the rotational dynamics on each tire. This comprehensive representation enables a more
thorough depiction of the vehicle’s motion state. The schematic diagram of this model is

depicted in Figure 3.
F velf v F\:u:f‘
m, Sprung mass \)

a

w:
n , . S@_

vgrr

' b
m"f m"/. ) ’-]_‘ ﬂ_‘
Ihm‘ F vglr
——— .
Tyres and r
1

Unsprung mass

Front view Side view Top view
Figure 3. The 8-DOF full vehicle model with sprung mass and unsprung mass.

In the 8-DOF model, the sprung mass (denoted by the subscript s), in comparison to
the unsprung mass (comprising the chassis and tires, denoted by the subscript ), exhibits
an additional degree of freedom related to roll (®). The subscripts {I,r}{f, r} represent the
four tire-ground contact points, with the first two indicating left and right and the second
denoting front and rear. ¢y and ¢, represent the front and rear track widths, respectively. To
simplify the analysis of rolling dynamics, we assume the vehicle has three roll centers. The
distance from the sprung mass center of gravity to the roll center beneath it is denoted as h,.,
and the distances to the front and rear roll centers are denoted as ,, £ and hy,, respectively.
Their relationships are expressed as follows:

hrc = (ahrcr + bhrcf)/L (11)

By employing the roll center positioned below the center of gravity of the sprung mass
as the origin, with velocity [u, v, O]T and angular velocity [wx, 0, wz]T, the application of
rigid body kinematics principles enables the derivation of the velocity and acceleration for
both the sprung mass and the chassis, as outlined below:

u Wy my 0 — my,b U — Wy0 —wf(mufa — Myb)
Vo= |v|+]0]| x 0 Jay = v+ wul| + wz(mufa — myb) (12)
0 Wy 0 0 0
u Wy 0 U — w0 Wywzhye
Vi=lo|l+ 10| x|0|,a,=|0v+weu| + | —wyihpe |. (13)
0 Wy hye 0 0

To simplify the force analysis, the vehicle’s dynamic model is established based on
chassis force analysis. Considering the chassis neglects rolling dynamics, the lateral and



Actuators 2024, 13, 153 9 of 34

longitudinal forces are obtained by subtracting the inertia force of the sprung mass from
the forces at the ground-tire contact points:

| — — w? — = _ | — g

{ my (i — w0 — wz (mya — myrb)) = —ms (U — w;0 + wWxWzhye) + 1 Frgij (14)
My (0 + watt + wz(mypa — myrb)) = —ms(v + Wzt — Wyhye) + 1 Fygif

The torque exerted on the sprung mass’s roll dynamics can be obtained by subtracting
the torque due to tire-ground contact forces from the torque induced by the lateral forces
on the chassis. This yields the rolling dynamics of the sprung mass.

J2wz + Jxzy :a(Fyglf+ grf) ( ngr+Fygrr)+Cf( xgrf — Fvglf)/z'i'cr(Fxgrr_Fxglr)/z_ (mufa"'mw’b)(i]"'wzu)' (15)

Applying the parallel-axis theorem allows for the analysis of the rolling dynamics of
the sprung mass at the roll center, yielding the following:

Jxzwz + (Jx + msh%c)wx = msghrcp + hyems (0 + wyu) — ((k¢f +k¢r)¢ + (bq)f + b(])r) ) (16)

where ko and kg, denote the equivalent front and rear suspension roll stiffness, and be ¢
and by, denote the equivalent front and rear suspension roll damping.

Precisely analyzing the forces between the tires and the ground is extremely complex,
as it requires consideration of factors such as the ground conditions, tire material, and
changes in vehicle load. There is extensive research in the literature on the mechanical
analysis of tires, including mechanical models, semi-empirical models, and others [17].
For controller design, overly detailed tire models can result in an overly complex vehicle
model, leading to difficulties in controller design. Under the assumption of small slip
angles and slip ratios, the forces on the tires are linearly related to these variables, allowing
for model simplification. Therefore, this study adopted a linear tire model for the lateral
and longitudinal forces on the tires. The vertical forces on the tires, crucial for calculating
the load transfer during vehicle motion, are essential in designing roll stability constraints.
Assuming zero torques exerted by the longitudinal forces of the vehicle’s tires on both sides
and both ends relative to the ground contact point—indicating constant contact with the
ground—enables the derivation of the total vertical force of the tires:

Fgp = gty + TS Lot hort ‘P;b"’f ? (o +wau )(ms : fh{f o )4 m”ffh“f ) = (it = w:0) (ms}lcﬁm”ﬁi“bf)m"rh”)

Fgrf = gim + 5 + kM(P;bM + (ot wan (™ thj;: L+ mugfh 1) = w.0) (mQhwn;('ﬁg)m”hW) (17)
Fugy = sty + 48 — it (o o (Mtlion) 1 ) (i — o) (RSl

Fegrr = aigipy + 780 + M + (0 + wsu )(’"’” h;{bh’") + ’"Ch) + (it — wzv) (mshvg+n;gllug)+mmhw>

Fogif, Fogirs Fogrf, and Frgpr represent the vertical forces exerted on the tires, specifically
referring to the left front, left rear, right front, and right rear tires, respectively. The
expressions consist of five terms: the first two are gravity-related components, the third
term is associated with the torque represented by the vehicle’s roll stiffness, the fourth term
is related to the torque generated by lateral inertial forces, and the final term is associated
with the torque produced by longitudinal inertial forces.

The state vector of the 8-DOF vehicle model is denoted as #LF = [u, v,¢,, ¢, ¢, X, Y] T

with UM = § ¢ representing the inputs. We use ‘LL’ as the superscript because in the
subsequent two-tiered MPC structure, this model is employed by the lower-level algorithm.

2.3. 14-DOF Validation Vehicle Model

Conducting physical vehicle experiments is costly and time-consuming, often requir-
ing multiple iterations for parameter tuning to achieve the desired performance. Therefore,
a high-fidelity vehicle simulation model offers a practical alternative. Such a model not
only provides an initial assessment of the control strategy effectiveness but also validates
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the controller parameters, significantly reducing deployment costs and time. In this study,
a 14-degree-of-freedom high-fidelity vehicle dynamics model was employed. This model
includes six degrees of freedom for the sprung mass and rotational dynamics and vertical
freedom for each tire, totaling 14 degrees of freedom.

The original model uses bond graph and Newtonian mechanics for derivation, mak-
ing the modeling process intricate. This chapter does not replicate the original modeling
procedure but supplements it with additional details on coordinate transformations and
annotations. Additionally, the original modeling process overlooked algebraic loop issues;
hence, this study addressed and rectified this concern. The narrative sequence was adjusted
from a modeling perspective to enhance reader comprehension and facilitate the deploy-
ment of this model. To aid readers in referring to the original text, consistent terminology
and schematic diagrams were maintained in alignment with the original work [36].

The 14-DOF vehicle model is depicted in Figure 4. This model employs two coordinate
systems: Coordinate System 1 is fixed to the sprung mass, with its origin at the center of
mass of the sprung mass and Coordinate System 2 is fixed to the unsprung mass, with
its origin coinciding with the point where the tire contacts the ground. In the subsequent
discussion, Coordinate System 2 specifically refers to the right front wheel. Coordinate
System 2 is obtained by rotating around a fixed axis relative to the global inertial coordinate
system (XYZ), reflecting the vehicle’s heading, where 1 represents the vehicle’s heading an-
gle. Coordinate System 1 is continuously rotated around a fixed axis relative to Coordinate
System 2, reflecting the pitch and roll dynamics of the vehicle, where 6 and ¢ represent
the pitch and roll angles of the vehicle. The rotation matrix from Coordinate System 2 to
Coordinate System 1 can be obtained as follows:

1 0 0 cosf 0 —sinéd
RI=1[0 cos¢ sing|-| 0 1 0 |. (18)
0 —sin¢g cos¢ sinf 0 cosf

Wsif  Fraf

Struct Point

Usif Fxsif
Vsif Fysif

Fygsiy

F. zgsrf

Figure 4. The 14-DOF full vehicle model with sprung mass and unsprung mass.

The modeling process from bottom to top is as follows: the interaction between
the ground and the tire generates lateral and longitudinal forces on the tire, as well as
vertical forces due to tire deformation. The tire subsequently influences the motion of the
unsprung mass. The unsprung mass, in turn, affects the suspension points, where changes
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My (Wi f + Wx Oy f — Wylhyyrf)

in suspension length reflect variations in the vehicle load. Force analyses at the suspension
points, combined with the concept of the roll center, are used to calculate the vehicle’s load
transfer, ultimately yielding the motion equations for the sprung mass. We divided the
modeling process into five steps:

Step 1. Calculate the velocity of the right front struct point based on rigid body
kinematics principles. The vehicle’s suspension influences the sprung mass through four
struct points. In Coordinate System 1, the calculation of the velocity at the right front struct
point is as follows:

Usy —a Wy u
Ugp | = [¢/2] X |wy| + |©v]. (19)
Wey f 0 Wy w

Step 2. By introducing the geometric dimension of the vehicle suspension (instanta-
neous length I, r), the lateral and longitudinal velocities in Coordinate System 1 can be
calculated through rigid body kinematics:

{ Uyrf = Ugrf — lsrfwy ) (20)

Ourf = Usrf — lsrfwx

The vertical motion of the unsprung mass is influenced by three factors: the force at
the site of tire-ground contact, its own gravity [Fxgr £r Fygrfs Fagrf — Mu g]T , and the forces
generated by changes in the vehicle load Fj;,¢ and suspension deformation xg ks r +

Xsr£bsrr. Thus, in Coordinate System 1, the force equilibrium of the unsprung mass in the
vertical direction can be expressed as:

= cos ¢ sinOF gy f — Sin PF, g, + €08 ¢ €08 O (Frgrp — Mug) — (XsrfKsrf + X fbsrf) — Fazrs, (21)

where kg, s and b, s represent the suspension stiffness and damping, respectively, and xg, ¢
denotes the instantaneous compression of the suspension. The first three terms on the right-
hand side represent the transformation of the tire—ground contact forces and gravity into
Coordinate System 1. The vertical velocity ws,f is a solution to this differential equation.
From Equations (19) and (21), we can obtain the vertical velocities of the struct point
and the unsprung mass. The difference in these velocities reflects the deformation of the
vehicle suspension. Hence, the compression of the vehicle suspension can be calculated:

J.Csrf = Wyrf — Werf- (22)

The compression x,, is a solution to differential Equation (22). Further, based on the
initial length of the vehicle suspension I5;¢ and the initial compression x,;¢, we can update
the instantaneous length I, f:

lsrf = lsif - (xsrf - xsif)~ (23)

It is noteworthy that in the original text, Equations (21) and (22) are presented in
differential form, yet both I, and x,, s appear in them, leading to algebraic loop issues
(e.g., Equation (20) requires I, ¢, but I, ¢ is also a solution to the subsequent differential
Equations (21) and (22)). In practical model deployment, which occurs in discrete time, to
circumvent algebraic loop problems, it is imperative to assign initial values to [, s and X, ¢
before calculating Equation (20). The subsequent solution of Equations (21) and (22) follows
the sequence described in this paper, providing the necessary values for Equation (20) at
the next sampling instant.

Step 3. Introduce the geometric parameter of the tire (instantaneous tire radius r,¢). In
Coordinate System 2, the relationship between the tire-ground contact point velocity and
the unsprung mass can be derived using rigid body kinematics. In the original work, the
author employed bond graphs to depict this relationship, leading to a complex presentation.
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Xirf = Werf —

In this paper, we use coordinate transformations to express this relationship and provide
explicit formulas for each step, simplifying the model deployment process.

Ugrf [ | Murf Wy 0
Vgrf :(R%) Vurf | + |wy| x| 0 | ] (24)
Werf Wyrf Wz —Tyf

Similar to Step 2, the lateral and longitudinal velocities satisfy Equation (24). However,
the vertical velocity, involving tire deformation, requires a separate analysis. Therefore,
Equation (24) is exclusively utilized for calculating lateral and longitudinal velocities:

{ Ugrf = €08 O(Uypf — WyTrs) + SINO (W, £ COS P + SINP(WxTyf + Vyrf)) '

Vgrf = COS P(Vypf + Wilyf) — Wypp SN (25)

Constant contact between the tire and the ground implies a vertical velocity wg, r of 0.
As the load transfers, the longitudinal force on the tire varies. To simplify the analysis, we
utilized the longitudinal tire deformation x;, ¢ to calculate the longitudinal force:

Fzgrf - xtrfktfr (26)

where x;, ¢ is the tire stiffness.
In Coordinate System 2, the instantaneous tire compression is equal to the difference
in longitudinal velocities between the tire and the overlying unsprung mass:
T

0 Uyrf

-1 . .
0] -(RY - Vurf | = Werp — (cOSO(wyrf COSP + vy SiNP) — Uy psin ). (27)
1 wwf

The instantaneous tire radius 7, is determined by the instantaneous tire compression
xtrr and the tire radius 7,:

ot o0

fo—Xpg= (0| -(RY) -|0], (28)
1 rrf

1= (o — X4rf)/cos 6 cos ¢. (29)

It is important to note that the tire radius r,¢ in Coordinate System 1 represents the
vertical distance between the unsprung mass and the tire—ground contact point (aligned
with the Z-axis of Coordinate System 1). On the other hand, x;, represents the vertical
distance in Coordinate System 2 (aligned with the Z-axis of Coordinate System 2). Therefore,
a coordinate transformation is required in Equation (28).

Similar to Step 2, Equations (24)—-(29) in the original text also suffer from algebraic
loop issues. Consequently, before computing Equations (24)-(26), it is imperative to assign
values to x;,s and 7, . Subsequently, the next time-step values for x;, s and r,¢ are calculated
based on Equations (27) and (29) to eliminate the algebraic loop problem.

Step 4. The forces at the tire—ground contact point {Fxg, fr Fygrfs Fogr f] represent the

external forces acting on the vehicle in Coordinate System 2. Subtracting the inertial forces
of the unsprung mass yields the dynamics of the sprung mass. Before performing this
operation, it is necessary to transform the contact point forces into Coordinate System 1:

[FxsgrfrFysgrf/Fzsgrf]T = R% ’ [FxgrfrFygrf/Fzgrf]T' (30)



Actuators 2024, 13, 153

13 of 34

In Coordinate System 1, the longitudinal and lateral forces at the right front struct
point are

{ Fxsrf = Fxgsrf + mygsint — mu(ilurf - W0y + wywurf) (31)
Fysrf = Fygorf — mug sing cos 0 — my (0 f + Walhyrf — WxWyyp)

The vertical force is equal to the force generated by the deformation of the
vehicle suspension:
Fzsrf = xsrfksrf + xsrfbsrf- (32)
Step 5: In the original work, the author introduced multiple torque calculations with
similar symbols, which could lead to confusion. This paper simplifies and summarizes the
process into two steps (depicted in Figure 5): before introducing the roll center, calculate
the torque of the external forces acting on the center of mass of the sprung mass; after
introducing the roll center, calculate the torque of the forces at the struct points acting on the
roll center. The difference in these torques is responsible for the roll dynamics, representing
the torque generated relative to the roll center due to load transfer.

. w.\"f‘ Faslf
. g LF struct
f: Fstf : sl \ Fylf
Wsr. v i E
"\ Isif
Coords 2"" AT \ \
\\ \lref L
\ \ \

\\ Fazsif .‘-v\‘\ Roé{é;)\enter 4
% " Unsprung mass 2 \\‘
Coor ! ﬂ/, , L€ R

Frgstf

P

Figure 5. The 14-DOF full vehicle model with and without a roll center.

In the X-direction of Coordinate System 1, the torque generated by the right front
support point on the center of mass is

szfm” = Fygsrf(lsrf + rrf) — (mygsin6 — mu@‘urf — WUy + wywurf))lsrf- (33)

When the roll center is introduced, the torque of the force acting on the right front
suspension point relative to the roll center is given by

Mxrf = Fysrfhrcf~ (34)

The torque difference introduced before and after the roll center is directly applied to
the sprung mass. The torque of the load transfer force acting on the roll center is equal to
this torque difference. Consequently, we can obtain the load transfer force:

Fdzrf = _Fdzlf = (M;t:zj;roll + M;tlnfroll — Mxrf — Mxlf)/Cf. (35)

Similar to previous steps, Equation (35) is a differential equation, causing algebraic
loop issues in Equation (21). Therefore, before solving Equation (21), it is necessary to
assign a value to Fj;, ¢, and the solution of Equation (35) serves as the initial value for the
next sampling instant, which is provided to Equation (21).
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In the Y and Z-axis directions of Coordinate System 1, the torques generated by the
force at the right front struct point on the center of mass of sprung mass are, respectively,

{ Myrf - - xgsrf(lsrf + rrf) + (mllgSine - mu(uurf — WUy + wywurf)>lsrf (36)
MZT’f = 0 7

Combining the aforementioned five steps yields the dynamic equation for the center
of mass of the sprung mass:

ms (U + wyw — w;v) = ¥ Frgij + msgsin@

ms (0 + wzu — wyw) = Y Fysij — msg sin¢ cos 0

ms (W — wytt + wxv) = ¥ (Fysij + Fazif) — msg cos ¢ cos 0

Jxwx = ZMxij + (Fzslf + Fas1y — Fzsrf - Fzsri’) -c/2

]ywy = ZMyij + (Fzslr +Fzsrr) b— (Fzslf +Fzsrf) 4

]za’z = ZMzij - (Fzslr + FZSVV) b+ (Fzslf + Fzsrf) b+ (Fxsrf - Fxslf + Frsrr — Fxslr) c/2

In this study, the computation of wheel forces was conducted exclusively via the
utilization of the Pacejka tire model [40]. This computational approach, widely recognized
within the field of vehicular dynamics, encompasses a sophisticated representation of tire
behavior under diverse operational circumstances.

(37)

3. Controller Design

The two-layer MPC algorithm is illustrated in Figure 6. Road information and obstacle
data are fed into the upper-layer MPC. The upper-layer MPC utilizes a spatial vehicle
kinematic model to plan a collision-free trajectory. This trajectory is then fed into the lower-
layer MPC. The lower-layer MPC, using an 8-DOF vehicle model, tracks the trajectory. The
two-layer MPC model assumes a constant vehicle speed to reduce computational com-
plexity and runtime. At the end of each MPC computation cycle, a nonlinear longitudinal
controller calculates the torque based on the current vehicle speed and the specified speed
difference, implementing longitudinal control.

Vehicle states

Obstacle l l
Information . ZhL
Path planning I3 Path Tracking 5 Validation
RefLane level level " | Vehicle
Information X (ds),-+, X (Hp-ds)
—eeep |
Higher level
module Kinematic
command model Y(ds),---,Y(Hp-ds) 8-DOF model 14-DOF model
—_—
Longitudinal
Controller
T,
Sim}? liﬁ?d Vehicle states
longitudinal
model

Figure 6. The two-layer MPC with a longitudinal controller.

3.1. Upper-Layer MPC Design

The spatial kinematic model in Section 2.1, discretized using the Euler method, can be

expressed as
k1) = &0 (k) +ds - (F1E(ET (k) UG (K))), (38)

where k represents the kth sampling distance and ds denotes the sampling distance.
Differing from time-based state-space equations, Equation (38) enables us to predict

state variables with a fixed distance. The schematic diagram of the collision avoidance

strategy is depicted in Figure 7. The position of obstacles can be obtained by intelligent
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ley(t)]| > |e

ley(1)| <

eobs| ]ey(k)f < |eobs — w/2 — diStsafe k= kleft ,kright.e (k) ,ey( )

traffic systems and converted into curvilinear coordinates. In this study, we assume that
obstacles are enveloped by rectangles, and these rectangles are aligned with the orientation
of the reference trajectory. The determination of these rectangles can be achieved through
algorithms for environmental perception, computational geometry, and machine vision [4].
In this paper, we assume that these rectangles are known.

obs obs Left sid
so 4 Stefi Sright A
/s .
e Obstacle Ref Trajectory
L T o —— 3
® e Right side
y
Center
obs .
e,(t) sl “ ™ w2 +dist,,
WAS) | B
3 \Safe Zone _
= A k[‘,/, d d d b é‘ (kwglu 5 S)
Current State e}.( obs | A4S ) eﬁne A4 o \obs
Heuristics 1
Prediction State v
khfﬁ .ds right
% 0bs i k,,,,\ -ds
lefi right
1 2 e g e ko Hp
| | i | |
MPC prediction horizon
1
L}

Hp -ds

Figure 7. Heuristic 1 for obstacle avoidance strategy.

As shown in Figure 7, the red box encloses the obstacle with coordinates [S?eb;t/ Sgl?’;ht, e;bS} ,
representing the distance coordinates of the left and right boundaries and the lateral distance
from the center point to the reference road. The current vehicle is at position s,. If the obstacle
is within the predictive length range Hp-ds (i.e., S?eb;t — S, < Hp-ds), this distance is converted

to the predicted sample point kl:bét = floor( (S?Eb;t — So)/ds). Here, kf;/;t signifies the obstacle

at the klo‘?lf;tth sampling distance, and the vehicle needs to navigate around the obstacle at
this point:

‘ey(k) - eghs > distsfe, k = ket ,Hp. (39)

obs ’

Considering the geometric dimensions of the obstacle, we can also convert the dis-
tance from the obstacle’s right edge to the current position into a predicted sample point

kgﬁht = ceil( (Sff’gsh ; — So)/ds). Therefore, the accurate avoidance zone during the prediction
kri ght

cycleisk =k ., -, kp. -
Equation (63) signifies that the avoidance strategy is unidimensional, specifically
choosing the lateral distance (ey) of the vehicle relative to the given road. Conventional
collision avoidance algorithms often prescribe the two-dimensional coordinates (i.e., x and
y coordinates) of the vehicle. This simplification is effective in reducing computational
time, given that one dimension aligns with the reference lane, namely the distance pa-
rameter s. Moreover, this strategy facilitates the integration of collision avoidance with
decision and planning modules. In light of this, we have designed two collision avoidance
heuristic strategies.
In Heuristic 1,
obs| = ey (k)| > |e00° + w/2 + distsape| k= Kl KO 0 (K) - ey (8)

v obs ’ obs 7y t
t

>0
) 40
>0 (40)

Y y obs 7 obs 7Y

where t denotes the current time, w represents the vehicle width, distg,, signifies the safety
margin, and the last term e, (k)-e, (t) indicates the alignment of the planned trajectory’s lat-
eral distance direction with the current direction. Heuristic 1 implies that during trajectory
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planning, the MPC determines the avoidance direction based on the lateral positions of
the vehicle, obstacle, and the tracking trajectory at the current time. When the obstacle
is closer to the trajectory, the vehicle implements avoidance on the side away from the
trajectory. The lateral distance of the vehicle must be greater than the obstacle’s lateral
distance plus half of its own width and a safety margin. Conversely, when the vehicle
is closer to the trajectory, it opts for avoidance on the side closer to the trajectory. This
process is illustrated in Figure 7 by the green rectangle. The vehicle is farther from the
reference trajectory compared to the obstacle, necessitating avoidance from the side away
from the trajectory. The green rectangle represents the precise avoidance segment, and its
orientation aligns with the vehicle’s orientation at this moment (both on the right side of
the reference trajectory).
In Heuristic 2, we directly specify all the avoidance trajectories:

ey(K) = el"(k),k = KIt, . K8, (41)

Heuristic 2 simulates the interaction between the decision-making module, the plan-
ning module commands, and the MPC algorithm. As illustrated in Figure 8, when the
vehicle is relatively far from the obstacle compared to the trajectory, a typical avoidance
algorithm would consider going around the obstacle from the right side to minimize
the control effort. Heuristic 1 might lead the vehicle to avoid the obstacle while stay-
ing away from the reference lane. However, to utilize the available space more effec-
tively, Heuristic 2 explicitly instructs the vehicle to avoid the obstacle while staying close
to the lane edge, maximizing the use of the narrow road traffic environment. Heuris-
tic 2 represents the high-level intervention of the planning module in avoidance con-
trol. Importantly, time-based algorithms cannot directly specify the avoidance direction
within the MPC framework. Heuristic 2 directly specifies the lateral distance e, from
kffbét to kzlbgsht to precisely dictate the avoidance direction, achieving a more efficient use
of space. Consequently, the vehicle will pass through the obstacle from the left side
rather than the right side. The detailed avoidance algorithm is presented in Algorithm 1.

Algorithm 1: Avoidance Strategy.

Input: S;’ehf?t Sﬁf’;ht, egbs, So, Hp, ds, Heuristic

Output: e

1: left_obstacle = false
2: right_obstacle = false
3: if 77, > So and 8717, — So < Hp-ds:
4 kg, = floor (S}, — So) /ds)
5: left_obstacle = true
6: else:
7: kf’ebfst = null
8: if S5, > So and SY%, — So < Hp-ds:
9: k(r)zbgsht = ceil (( (r)zb;ht —S,)/ds)
10: right_obstacle = true
11: else:
. bs  _
12: k?i;ht = null
13: if left_obstacle and right_obstacle:
14: for k from k§Y%, to kO7*, -
15: ey(k) = Heuristics(k, e;bs)
16: elseif left_obstacle:
17: for k from 2 to k(r)zb;ht:
18: ey(k) = Heuristics(k, eﬁbs)

—_
NeJ

: End
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Figure 8. Heuristic 2 for obstacle avoidance strategy.

The planning of the avoidance trajectory needs to account for the coefficient of friction
1 between the vehicle and the ground, ensuring that the planned trajectory does not exceed
the friction limit. Assuming the vehicle’s initial velocity V(0) remains constant during
trajectory planning, the centripetal acceleration a, is provided by the ground friction. The
state constraints are expressed as follows:

ay(k) = V(0)[¢'(k)| < ug,k=1,---, Hp. (42)

The MPC controller, unlike traditional state-based controllers, does not explicitly
calculate state feedback inputs. Instead, it solves an optimal input problem in the form
of a constrained optimization. In this paper, the objective of the upper-layer MPC is to
minimize the deviation of the vehicle from the reference trajectory, control effort, and
control rate while satisfying the vehicle dynamics, collision avoidance, and lateral stability
requirements. Therefore, the cost function for the upper-layer MPC is given by

o Hp . _ - 2 ~ 2 5
P Uiy ) = 3 [808) = g B[+ [T + 18U 0

where & = [C15,+ ,CHps) € R™P is the predicted state sequence. Us = [Uy, - - -, Ump,s| €

R™HP represents the predicted input sequence, and ACIS = [Alys, -, AlUpys] € R(Hp=1)

represents the predicted incremental input sequence. ¢, represents the reference road infor-

mation. Q, R, and Rd respectively denote the state penalty matrix, input penalty matrix, and

input increment penalty matrix, all of which are semi-positive definite matrices. Here, m = 5

and n = 1 denote the dimension of the kinematics model vector and input vector, respectively.
The upper-level controller can be represented as

min  JHL(Z, Us, AUL)

st 61’5 = g(s)
gk—i—l,s = fHL(gk,sr uk,s),k =1,2,--- ,Hp
Auk-i—l,s:uk+1,5_uk,5/k:2/"',Hp , (44)

gk,s € Estute/k =2,--- ’HP
uk,s S Einputrk = 1[2[ . al
AUy, € Eﬂug_input,k =2,---,Hp
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where the first constraint indicates that the current state is assigned to the initial predicted
state of the MPC. The second constraint employs Equation (10) to represent the spatial
kinematic constraint, meaning that the vehicle state at the predicted Hp distances must
satisfy the spatial kinematic model. The third constraint calculates the input increment.
The fourth term includes the state constraints, using e, obtained from Algorithm 1 and
lateral stability constraints from Equation (42). The fifth constraint represents the input
constraints. The sixth constraint indicates the input increment constraint.

When the upper-level MPC computes the optimal result ¢, which is parameterized by
the sampling distance ds, and the lower-level MPC is parameterized by time ¢, a space-time
conversion is required. As discussed in Section 2.1, the relationship between sampling time
and sampling distance is given by

t =dt/ds =1/s. (45)

The integration of Equation (45) yields

Hp-ds Hp-ds )
/ dt — / 1/éds. (46)
0 0

Since the MPC is deployed in discrete time, the time point t; corresponding to the kth
sampling distance, is given by
k-ds
te=Y_1/5(i) - ds. (47)
i=1

As aresult, the collision-free trajectory obtained by the upper-level MPC can be converted

into a time-based parameterization of the state trajectory ¢ = [C15(t1), - , GHp,s(tHp)]- Due
to the uneven distribution of time points from t; to t, and the lower-level MPC requiring
an evenly distributed time sequence, spline interpolation is applied to achieve uniformity in
the lower-level MPC.

Remark 2. With the support of advanced intelligent transportation systems and vehicular connected
technology, autonomous vehicles can readily access spatial information about obstacles, even if they
are beyond the vehicle’s perceptual range. Therefore, this study assumes that all obstacle information
is available in advance. However, providing excessive future information to the MPC system may
hinder its closed-loop performance. Hence, to enhance real-time trajectory tracking performance,
it may be beneficial to devise corresponding feedforward compensation schemes [41]. Due to the
nonlinear characteristics of spatial kinematics, analyzing the stability of nonlinear MPC poses
challenges [42]. This study did not conduct theoretical analyses but instead employed numerical
experiments to iteratively select the appropriate penalty parameters. Furthermore, through the
comparative analysis in Section 4, the trajectory variations following obstacle avoidance visually
reflect the stability of the control system. In instances where the control system exhibits stability, the
vehicle promptly returns to the predetermined trajectory, demonstrating the system’s robustness to
external disturbances.

3.2. Lower-Layer MPC Design

In Section 2.2, the state-space equations of the 8-DOF vehicle model exhibit significant
nonlinearity. Directly employing this model for the design of nonlinear MPC could result
in excessively long algorithm-solving times, which is impractical for real-time deployment.
Therefore, to achieve real-time trajectory tracking, we linearized the model.

The current state vector, denoted as ¢, satisfies the 8-DOF vehicle dynamics equation:

éro = fLL(go/ uo) (48)

For this operating point, a first-order Taylor series expansion is performed, and the
vehicle dynamic equation in the vicinity of this operating point can be approximated as
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Hout = [N(k+1) -+~
sy = [édﬁd CiA2 ... CyAHe ... ¢ AF ]

Eq=[eg
[ CaBy
CaAqBy
T=1| "% cheig
C AR,
| CdAHp 13

& = fLe, U, + (C Go) + (U U) (49)
= Ac¢ + BcU + (fLL(‘;Io/ U,) — AC‘:O + BCUO)

where the last term represents the linear error term. In cases where the dynamic changes
are not significant, this term can be omitted. However, in trajectory tracking experiments,
we observed that retaining this term allows for more accurate trajectory tracking. Therefore,
this paper includes this term. Equation (49) can be discretized as follows:

E(k+1) = AgE(k) + BU(K) + eq, Ay = I +dt- Ac,

50
By =dt-Bc, eg = fLL(Co, Uy) — Aglo + By, 0

Based on Equation (50), it can be observed that in the linearized model, the state at
the ith sampling instant exhibits an affine linear relationship only with the initial state ¢
and the input U. This greatly simplifies the state prediction calculation. As the lower-level
MPC tracks only the states X and Y in the upper-level’s state trajectory and not all states,
the output equation selects the corresponding states from the predicted states:

A(k+1) = C4&(k),C4 = [1,1,0,0,0,0,0,0]. (1)

In addition, since the MPC does not have the form of integral control, the control
increment form can play a role similar to integral control in classical control. We define a
new state variable x(k) = [¢(k), U(k — 1)], output variable 7 (k), and control increment
AU(k) = U(k) — U(k — 1). The new state-space equation is

x(k+1) = Aygx(k) + ByAU(k) + &4, 5(k) = Cax(k), x € R",AU € R™,y € RP.  (52)

The matrices are defined as follows:

Avd = |: Ad ij:|,§d = |:?]Z:|/~d = |:0m:| Cd = [Cd Opxm] (53)

Om><n

The predicted output of the lower-level MPC within the prediction range Hp and the
control range Hc can be expressed as

Hout = Yx (k) +TAU,ut + YE,, (54)

where

n(k+Hp)|', AUou = [AU(K) --- AU(k+ He - 1)),

t

0 0 - i
o ) Cy 0 e e 0
CyBy e édgd éd 0 - 0 ) (55)
: 0 y—| G2 A ¢
~ ~ ~ ~ ~ , L= d dd d
CAf B o Cuby S . )
: : ~ THp—-1 ~ THp-2 ~ ~Hp-3 ~
C, A C A C,A e Gy
CdAHp 2% CdAHp Hc By | L d d d i

The mterplay between the tires and road gives rise to propulsive forces, facilitating
vehicular maneuverability and control. While optimizing control inputs solely based on 8-
DOF vehicle dynamics models and reference trajectories is an idealized approach, practical
constraints arising from insufficient ground friction may impede the realization of this
ideal. Consequently, it becomes imperative to account for the influence of ground friction
forces, constraining the lateral stability of the vehicle to enable the implementation of
planned controls.
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In the field of vehicle dynamics and control, the constraint on the yaw rate plays a
crucial role in ensuring safety and optimal performance. The yaw rate, denoted as ¢, is a
key parameter in the stability and control of the vehicle. In practical situations, when the
longitudinal force is constrained to zero, and the tire—road friction is primarily allocated to
lateral acceleration (ay), it must satisfy the constraint

ay = Vy + Vep < pmg. (56)

Here, Vy represents the change in lateral velocity, Vy is the longitudinal velocity, u
denotes the tire-road friction coefficient, and g is the gravitational acceleration. In the field

of vehicle control, where Vy is relatively small, a significant portion of lateral acceleration

can be attributed to the second term, Vxl}i. To ensure the safe control of the vehicle within
its constraint range, a widely adopted constraint is

Vip < 0.85pu8. (57)

This constraint (Equation (57)) allocates a significant portion of the available tire-road
friction to generate lateral acceleration (85%), supporting stable and agile vehicle control
under various driving conditions [38].

The sideslip angle quantifies the deviation between the direction of vehicle travel and
its actual trajectory, playing a profound role in the stability, maneuverability, and overall
performance of the vehicle. Excessive sideslip angle can lead to loss of control, skidding,
and potential accidents. By imposing constraints on , enhancing the safe operation of the
vehicle and mitigating the risk of instability can be achieved. The constraint chosen here is

|B] = |Vy/ Vx| < atan(0.02ug). (58)
Thus, based on Equations (56) and (57), linear state constraints are obtained:
—Nigt < Mlat€<k) < Niat, (59)

where

Mg =

0 0 00 0 1/V, 00 0.85
e ]NW:[ ke } (60)

0 1/Ve 000 0 0 0 atan(0.02pg)

Vi represents the vehicle longitudinal speed at the current moment to distinguish it from
the state variable Vy, which remains constant throughout the entire MPC prediction period
to ensure that matrix M;,; is a constant matrix.

Finally, compared to low curvature tracking tasks, the vehicle maneuvers more aggres-
sively during collision avoidance trajectory tracking. Excessive maneuvers can lead to the
risk of vehicle rollover. Therefore, in addition to lateral stability constraints, we also need
to avoid the risk of rollover during trajectory tracking.

The lateral load transfer ratio (LTR), also known as the rollover index, is a critical
concept in vehicle dynamics and safety [43]. It quantifies the distribution of lateral load
transfer when the vehicle is turning or changing direction. It is defined as

LTR = (szr+ler_szl_lel) /mg' (61)

The LTR represents the rate of change of the difference between the vertical forces on
the two sides of the vehicle relative to gravity. Therefore, the LTR reflects the load transfer
situation of the vehicle during steering. When the vehicle load distribution is uniform, the
LTR value is close to 0. When there is excessive maneuvering, the support force on both
sides of the vehicle increases to maintain torque balance, leading to a larger difference in
support forces, and the LTR value approaches 1 or —1. In extreme cases, the support force
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on one side of the vehicle disappears, indicating tire lift-off, and the LTR value equals 1
or —1.

Based on the vertical forces on the tires in the 8-DOF model (Equation (17)), the LTR
can be calculated:

)

(k(prQb + bzpr¢) + ufhuf n Myrhyr n msb(hcg - hrcf) 4 msa(hcg - hrcr) ‘ 62)
crmg mg ch ¢, L ch ¢/ L

According to the analysis of the LTR, we need to minimize the LTR as much as possible
to avoid rollover. Therefore, when the LTR reaches its maximum value, the vehicle’s rolling
state can be used as a constraint for the roll dynamics. When the LTR reaches its maximum
value, the support force on one side of the vehicle’s tires is assumed to be zero. Based on
the torque balance in the rolling direction in Figure 3, we can obtain

msayheg = msg(W/2 — hycsing). (63)

Due to the small rolling angle, we can obtain the lateral acceleration in this case based
on the small roll angle assumption:

ay = (W/2 = hye)g/hcg. (64)

Substituting Equation (64) into Equation (62), the differential equation concerning the
roll angle can be obtained:

A1p+ Arp+ A3 =0, (65)
where ) . L L
A= 8 0 g, Tef Ko MeegB o BWg mg
cr ¢y cf cy heg 2heq 2 (©6)
B— mufhuf Myrhyy i msb(th - hrcf) i msa(hcg - hrcr)
cr cr crL oL ’

Before each MPC calculation cycle, the maximum roll angle @, can be obtained by
solving Equation (65). Therefore, the roll angle constraint can be obtained:

*Qbmax < Mrollér(k) < Qbmaxl Mroll = [O/ 01 1/ 0/ 0' 0' 0, 0]' (67)

Combining the above steps, the final representation of the lower-level MPC is
as follows:

LL il
min /M (&(t))= g\
st Upmin< U(k)
Alpin< U (k)

AU(k)= U(k +

Mmin< Hout < Nmax

—Nigt < Mig¢(k) < Nigp, k=2,--- , Hp
—pmax< M8 (k) < pmax, k =2,--- ,Hp

out (k+1) = & (k+1) H +ZHAU )iz

Umpax,k=1,2,--- ,Hc
AUmax, k=1,2,--- ,Hc
1) — ()kzZ,---,Hc

<
= , (68)

where the objective function of the lower-level MPC requires the vehicle’s output states to

closely follow the trajectory ¢, set by the upper-level MPC while minimizing control effort.
The first three terms in the constraints represent input constraints. The fourth term is the
state output constraint, calculated using Equations (52) and (55). The fifth term is the lateral
stability constraint, with the specific calculation given in Equations (82) and (83). The final
term is the roll constraint, calculated using Equations (59) and (60). The control law for this
MPC entails solving the optimization problem defined by Equation (68). Once the optimal
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solution is obtained, the first optimal input is applied as the real input. Subsequently, the
optimization problem is solved again, moving horizontally to the next sample, and this
process is repeated iteratively.

Remark 3. For the linear time-varying MPC strategy employed in the trajectory tracking layer,
its objective is to track collision-free trajectories generated by the upper-level planner. While
collision-free trajectories may be effective, the dynamics of the vehicle can introduce variations that
may lead to instability in the lower-level MPC. Although theoretical analyses of this instability
remain challenging, researchers in the field of autonomous vehicle control often employ strategies
to ensure obstacle avoidance. These strategies may include increasing the safety distance around
obstacles (i.e., enlarging the obstacles) and imposing constraints on the maximum tracking error for
the lower-level controller [25]. Alternatively, invariant set theory, such as considering all initial
conditions for which the lower-level controller is persistently feasible [44], could also be utilized to
guarantee obstacle avoidance. These approaches aim to mitigate potential instabilities and enhance
the robustness of the autonomous motion control system in real-world scenarios.

3.3. Longitudinal Controller Design

The inputs to the dual-layer MPC controller are both &¢; however, in practice, the vehi-
cle speed cannot be maintained at a constant speed due to the influence of rolling friction
and aerodynamic resistance. Therefore, to ensure a constant longitudinal velocity for the
vehicle, and make the matrices constant for the MPC, we designed a longitudinal controller.

For the convenience of controller design, a simplified longitudinal dynamics model
was employed instead of Equation (37):

mu = F, — F, (69)

where F, represents the driving force. m represents the total mass. u is the longitudinal
velocity from Equation (37). In this work, the effects of rolling friction and aerodynamic
resistance are considered, and F; is calculated as follows:

F = Cqu?/2 + pymg, (70)

where C; represents the aerodynamic resistance coefficient and y, represents the rolling
resistance coefficient.
The tire dynamics is as follows:

Ia}(:U = —FpR + Tc - Tb/ (71)

where R represents the radius of the tire, w represents the angular velocity of the tire, and
T. and Tj, represent the traction torque and braking torque, respectively. I, denotes the
inertial property of the tire.

In the assumption where the wheels do not slip, the relationship between the vehicle
speed and the wheel angular velocity can be simplified to

u = Rw. (72)
Hence, the driving force can be expressed as

Combining with Equations (69)—(73), the relationship between the driving torque and
the vehicle speed is
(m+Iy/R*)i = (T. — T,)/R — F.. (74)

The purpose of the longitudinal controller is to calculate T or Tj, (T, and Tj cannot
be activated simultaneously) to ensure that the vehicle tracks the reference speed. Next,
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we designed the longitudinal controller using the Lyapunov function method. The vehicle
speed error e is given by
€ = Upef — U. (75)

In this study, the vehicle aims for a constant speed, so the error derivative is
e=—I. (76)
The Lyapunov function V is defined as
vV =¢é%/2. (77)

Thus, when the Lyapunov function satisfies the following first-order differential
equation, the speed error converges to 0:

V =—kV,k>0. (78)
When Equations (74) and (76) are substituted into Equation (78), the result is

(TC—Tb)/R—Fr
(m+ I,/R?)

—e( ) = —ke?/2. (79)

Therefore, the longitudinal control law is defined as follows:
T, = MRmtlo/R) | RF, T, = 0,if e > 0 (80)
T, =0,T, = XBmtl/R) L RE ife<0

4. Experiments

To validate the effectiveness of the proposed algorithm, we compared it with two
representative time-based two-layer MPC algorithms. The first algorithm, denoted as
Algorithm 2, employs a geometric point distance approach in the upper collision avoidance
layer and an 8-DOF trajectory tracking model in the lower layer (consistent with the
approach presented in this paper). The geometric point distance strategy uses point mass
representation for vehicles or obstacles, resulting in a low computational overhead, and is
a commonly employed collision avoidance tactic [23].

The second algorithm, referenced as Algorithm 3 and stemming from our prior re-
search [27], utilizes a polygon distance-based collision avoidance strategy in its upper
layer and a nonlinear bicycle model for trajectory tracking in the lower layer. The polygon
distance strategy precisely calculates the distance between the vehicle and obstacles, albeit
with a higher computational cost. The lower layer employs a nonlinear bicycle model, a
prevalent choice in contemporary road vehicle trajectory tracking controllers [26].

The algorithm proposed in this paper is succinctly referred to as Algorithm 1. Notably,
all three algorithms share identical state constraints, as the constraint design in this paper
utilizes steady-state analysis, requiring only the incorporation of vehicle and road parame-
ters. The optimization algorithm solver in the experiments employs the Fmincon function
and the simulations were conducted on the MATLAB 2022b platform. All simulation
parameters are listed in Table 1.

In real-world autonomous driving systems, vehicle control algorithms serve as crucial
subsystems, which are seamlessly integrated into the broader architecture. In practical
traffic environments, the definition of lane waypoints becomes a pivotal aspect, and is
typically determined by trajectory planning and behavioral decision-making layers. This
experimental design draws inspiration from the established literature, such as the work
in [45], where lane points are utilized as a convenient means to set reference trajectories.

To comprehensively assess the algorithm’s performance and versatility, three distinct
yet representative scenarios were selected for experimentation. The first scenario involves
single-lane collision avoidance, where the vehicle is tasked with tracking a predefined
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single-lane trajectory while intelligently avoiding obstacles within that lane. This scenario
mirrors common driving situations where maintaining safe distances from obstacles in a
single lane is crucial. The second scenario introduces a more complex dual-lane collision
avoidance task. Here, the vehicle is required to execute a lane-changing maneuver, transi-
tioning from one lane to another while adeptly avoiding obstacles present in both lanes.

Table 1. Simulation parameters.

Parameter Value
s 1440 kg
Jxo Ty, Iz 900 kg m?, 2000 kg m?, 2000 kg m?
lf,lr 1.15m,1.5m
ksf, ksr 35,000 N/m, 32,000 N/m
h 0.75m
cf=cr 1.5m
bsf, bsr 2500 Ns/m, 2000 Ns/m
My f = Myr 80 kg
kip = ker 30,000 N/m
To 0.285 m
yef, Brer 0.65m, 0.6 m
M 0.9
Hp,Hc 30, 20
ds 0.5m
dt 0.05s
k 1.5
Q (for upper-level MPC) Diag([100, 100, 0, 0, 0, 0])
R (for upper-level MPC) 200
Rd (for upper-level MPC) 100
Q (for lower-level MPC) Diag([150, 120, 0, 0, 0, 0, 0, 0])
R (for lower-level MPC) 150

This scenario replicates the intricate dynamics of lane-changing maneuvers frequently
encountered in real-world traffic scenarios. Additionally, a third scenario is introduced to
test the robustness of the proposed algorithm. This scenario consists of three segments,
each featuring multiple obstacles, providing a challenging environment to evaluate the
algorithm’s ability to handle complex and dynamic scenarios. The deliberate selection
of these scenarios demonstrates a comprehensive evaluation strategy, covering both lane-
tracking and lane-changing maneuvers. Such diverse scenarios are essential to assess the
algorithm’s adaptability to various driving situations and its potential integration into a
broader autonomous driving framework.

4.1. Single-Lane Collision Avoidance Experiment

In Figure 9, a single lane is depicted with square obstacles 10 m in length and 1 m in
width located at positions 40 m and 80 m along the lane, indicated by red squares. The
green rectangle represents the collision avoidance region specified by the heuristics, as
detailed in Section 3.1. The vehicle initiates its trajectory from the origin point with an
initial speed matching the designated speed, both set at 60 km /h.

This experimental setup aimed to evaluate the algorithms based on criteria such as
predictability, compatibility, trajectory tracking performance, lateral and roll stability, and
algorithmic computational efficiency.

Predictability assesses whether the vehicle’s collision avoidance behavior is activated
based on the specified theoretical collision avoidance points. As shown in Figure 9, the
proposed algorithm employs a distance-parameterized vehicle model, ensuring that colli-
sion avoidance is determined solely by the vehicle’s position rather than its speed. This
characteristic enhances the predictability of the vehicle’s collision avoidance maneuvers.
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Figure 9. Trajectory results from Algorithm 1.

In Algorithm 1, the predicted distance for collision avoidance was set to 15 m. Observ-
ing the trajectory, it is evident that the vehicle remained on the reference lane until 15 m
before the obstacle. Specifically, at 25 m and 65 m, the vehicle maintained its course on the
reference lane. Therefore, Algorithm 1 exhibited predictability in its collision avoidance
behavior. In Figure 10, it is observed that all variables remain within the safe region.
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Figure 10. Maneuver and bound variable results from Algorithm 1.

The time-based algorithm predicts collision avoidance based on a prediction horizon
(Hp) of sampled time durations. Therefore, the predicted distance is equal to the product of
the time duration and the current speed (30 x 0.05 x 60/3.6 = 25 m). However, the initiation
of collision avoidance depends on different strategies for different orientation situations.

Algorithm 2 employs a point-distance collision avoidance strategy, and the calculated
collision avoidance distance overestimated the actual distance. As a result, the collision
avoidance strategy was activated at 15 m to navigate around the first obstacle. Therefore,
the collision avoidance process for the first obstacle was predictable. However, while
maneuvering around the first obstacle, the vehicle detected the second obstacle as it
approaches the trajectory, at approximately 60 m, and initiated a turn. The theoretical
collision avoidance point should have been at 55 m. The tracking results are depicted
in Figure 11. In Figure 12, it is evident that all variables consistently remain within the
designated safe region.
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Figure 11. Trajectory time results from Algorithm 2.
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Figure 12. Maneuver and bound variable results from Algorithm 2.

Algorithm 3 utilizes a polygon-based distance calculation method, enabling the precise
measurement of collision avoidance distance. It could accurately track the trajectory even
after detecting obstacles (at 15 m) and achieved collision avoidance along the edge of the
avoidance area. While this strategy obtained efficient collision avoidance trajectories, its
predictability was lower. Algorithm 3 activated the collision avoidance strategy at 22 m to
navigate around the first obstacle. However, during the second collision avoidance process,
it could not distinguish between trajectory tracking overshoot and the collision avoidance
trajectory. The tracking results are illustrated in Figure 13. However, in Figure 14, it’s

evident that the tracking controller fails to ensure the safety of the tracking process.
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Figure 13. Trajectory time results from Algorithm 3.
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Figure 14. Maneuver and bound variable results from Algorithm 3.

Compeatibility refers to whether external modules can directly specify the avoidance
behavior of the algorithm. In the single-lane tracking experiment, obstacle 1 was close to
the left side of the lane, and obstacle 2 was close to the right side. Therefore, an efficient
avoidance trajectory should pass around obstacle 1 on the right and round obstacle 2 on
the left, forming an S-shaped avoidance trajectory. To simulate the decision-making and
planning layers of autonomous driving systems, this paper used Heuristic 1 for obstacle 1,
representing a conventional avoidance scenario where the relative position of the vehicle
to the obstacle determines the avoidance direction. For obstacle 2, Heuristics 2 was used,
mimicking the decision-making layer and forcing the vehicle to pass around the left side of
obstacle 2 to make full use of the free space.

Algorithm 1 efficiently planned an S-shaped trajectory, showcasing superior avoidance
efficiency. In contrast, Algorithm 2, employing point-distance calculations for obstacle
avoidance, exhibited a more conservative strategy when passing around obstacle 1 on the
right. This conservatism led to the vehicle deviating away from the lane as it approached
obstacle 2. On the other hand, Algorithm 3, utilizing a polygon-based distance strategy, ac-
curately computed the vehicle’s position concerning obstacles. Consequently, it approached
obstacle 1 closer to the lane, resulting in a left-side route around obstacle 2. Although
both Algorithms 1 and 3 planned S-shaped collision avoidance trajectories, Algorithm 1
achieved this through a predetermined avoidance direction, while Algorithm 3 relied on an
accurate distance calculation method. Thus, among the three algorithms, only Algorithm 1
possessed compatibility.

Figures 10, 12 and 14 illustrate the results of the constraint variables for the three
algorithms, providing insights into their lateral and roll stability. Algorithms 1 and 2,
utilizing an 8-DOF model for trajectory tracking, both satisfied the lateral and roll stability
requirements. However, Algorithm 3, employing a bicycle model for trajectory tracking,
failed to meet lateral stability requirement due to model inaccuracies, such as the yaw rate
variable exceeding the constraint conditions.

Algorithm 1 and Algorithm 2 exhibited significantly lower computation times than
Algorithm 3. This discrepancy arises from Algorithm 3 incorporating a high-precision
avoidance strategy and introducing additional nonlinear constraints (albeit convex), thereby
increasing the computation time. Algorithm 1, which builds on Algorithm 2, further
constrains the avoidance direction, resulting in a reduced search space and, consequently,
lower computation times. The time comparison of the three algorithms is depicted in
Table 2. All bold numerals represent the time consumption benefits.
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Table 2. Time consumption comparison of three algorithms in single-lane scenario.
Algorithm 1 Algorithm 2 Algorithm 3
Max Mean Median Max Mean Median Max Mean Median
0.2000 0.1429 0.1430 0.2198 0.1548 0.1551 0.5420 0.4282 0.4343
4.2. Double-Lane Collision Avoidance Experiment

In order to further validate the algorithm’s practicality in complex traffic scenarios,
we conducted a double-lane tracking and avoidance experiment. Obstacles were placed at
40 m and 120 m, with a lane-change point at 100 m. The efficient avoidance criterion was to
utilize the free space as much as possible while ensuring the vehicle’s safety. An effective
avoidance trajectory should navigate to the right side past obstacle 1 and then to the left
side past obstacle 2, forming an S-shaped avoidance path. This experiment poses more
severe lateral stability challenges.

Concerning predictability, Algorithm 1 consistently activated avoidance maneuvers
at the specified avoidance points of 25 m and 105 m, demonstrating predictability. The
tracking results are depicted in Figure 15. In Figure 16, it is evident that all variables
consistently remain within the designated safe region.
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Figure 15. Trajectory results from Algorithm 1 in double-lane scenario.
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Figure 16. Maneuver and bound variable results from Algorithm 1 in double-lane scenario.
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Algorithm 2, after navigating on the right around obstacle 1, turned left towards the
left lane. Due to the premature execution of the avoidance task caused by overestimating
the collision risk with obstacle 2 using point-distance calculation, it failed to efficiently
avoid obstacle 2 on the right, deviating from the prescribed S-shaped trajectory. While
Algorithm 2 activated the first avoidance maneuver at 15 m as intended, it deviated from
the prescribed 95 m avoidance point during the lane change at 94 m. The tracking results
are depicted in Figure 17. In Figure 18, it is evident that all variables consistently remain
within the designated safe region.
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Figure 17. Trajectory results from Algorithm 2 in double-lane scenario.
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Figure 18. Maneuver and bound variable results from Algorithm 2 in double-lane scenario.

Algorithm 3 activated avoidance maneuvers at 20 m and 107 m, closely adhering to the
avoidance region. Despite displaying efficient avoidance trajectories, it lacked predictability.
The compatibility results mirrored those of the single-lane scenario, with only Algorithm 1
successfully implementing avoidance maneuvers according to the prescribed timing and
direction. The other algorithms failed to demonstrate compatibility. The tracking results
are illustrated in Figure 19. However, in Figure 20, it’s evident that the tracking controller
fails to ensure the safety of the tracking process.
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Figure 19. Trajectory results from Algorithm 3 in double-lane scenario.

Results from Algorithm 3
(a) Heading angle (b) Front wheel steering angle (¢) Driving torque
2

(d) Longitudinal speed tracking error
0. 0

0.1

Heading angle (rad)

—0.1

150

0.1
-0.1

100
0
-0.2
=0.1

Steering angle (rad)

-0.2 -0.3

0

Longitudinal distance X (m) Longitudinal distance X (m) Longitudinal distance X (m)

Driving & braking torque (Nm)

50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Longitudinal distance X (m)

(e) Vehicle roll angle (f) Slip angle (g) Yaw rate (h) LTR
0.05 0.4

Longitudinal velocity error (m/s)

Yaw rate

Roll angle(rad)

—— Upper boupd
Lower boupd 0.2

Roll angle
~———Upper bound
Lower bound —0.05

Slip angle (rad)
Yaw rate (rad/s)
LTR

—-0.2

.2
0

50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Longitudinal distance X (m) Longitudinal distance X (m) Longitudinal distance X (m) Longitudinal distance X (m)

Figure 20. Maneuver and bound variable results from Algorithm 3 in double-lane scenario.

The lateral and roll stability results, as shown in Figures 16, 18 and 20, indicated
that Algorithm 1, which used S-shaped trajectory tracking, exhibited more aggressive
maneuvers without violating the constraints, highlighting the effectiveness of the lateral
and roll constraints.

Algorithm 3, using the same S-shaped trajectory tracking, had a yaw rate that did
not satisfy the constraint conditions. The time comparison results were similar to those
of Scenario 1. Algorithms 1 and 2 had shorter times than Algorithm 3, with Algorithm 1
having the lowest execution time. The time comparison of the three algorithms is depicted
in Table 3. All bold numerals represent the time consumption benefits.

Table 3. Time consumption comparison of three algorithms in double-lane scenario.

Algorithm 1 Algorithm 2 Algorithm 3

Max

Mean Median Max Mean Median Max Mean Median

0.2713

0.1444 0.1443 0.2200 0.1513 0.1527 0.5403 0.4445 0.4395

Based on the experiments, it is evident that the algorithm proposed in this paper holds
advantages over time-based MPC algorithms in terms of predictability of collision initiation
points, compatibility, trajectory tracking stability, and time efficiency. Table 4 summarizes
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the comparison of the proposed algorithm and the time-based MPC algorithms based on
these four metrics in the two experiments.

Table 4. Comparison of performance metrics between proposed algorithm and time-based
MPC algorithms.

Predictability = Compatibility Tracking Stability Time Efficiency

Algorithm 1 v v v v
Algorithm 2 X X v v
Algorithm 3 X v X X

4.3. Triple-Lane Collision Avoidance Experiment

From the experiments in the previous sections, it is evident that the algorithm proposed
in this paper effectively utilizes spatial information for collision avoidance compared to
time-based MPC algorithms. Due to the nonlinear characteristics of the spatial kinematics
and vehicle dynamics, theoretical analyses of the stability and robustness of nonlinear MPC
algorithms pose considerable challenges. The stability analysis of nonlinear MPC remains
an open problem due to these complexities [42]. Therefore, this section employs numerical
experiments to demonstrate the stability and robustness of the proposed algorithm. In
this experiment, the vehicle is subjected to a three-segment collision avoidance test. The
tracked lane consisted of three segments, each containing obstacles located at 30 m, 80 m,
and 160 m.

Figure 21 depicts the planned trajectories of the algorithm proposed in this paper. It can
be observed from the figure that the algorithm can initiate collision avoidance at theoretical
collision points (15 m, 65 m, and 145 m). Moreover, all collision avoidance directions aligned
with the green safe zones. After avoiding the obstacles, the vehicle could stably track the
specified lane. When changing lanes from the second segment to the third lane, there was a
slight overshoot in trajectory tracking, but it quickly returned to the specified lane. Figure 22
presents the state variables of the algorithm, all of which fell within the predetermined
ranges. Therefore, the proposed algorithm passed the robustness test, demonstrating its
capability to achieve safe collision avoidance in complex driving environments.

Trajectory from Algorithm 1
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Figure 21. Trajectory results from Algorithm 1 in triple-lane scenario.
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Figure 22. Maneuver and bound variable results from Algorithm 1 in triple-lane scenario.

5. Conclusions

This paper introduces a novel dual-layer Model Predictive Control strategy for au-
tonomous vehicles, addressing the limitations of the existing motion control strategies that
primarily rely on sampling time. The proposed strategy integrates spatial kinematics and
vehicle dynamics, enabling more effective utilization of spatial information for collision-
free trajectory tracking. By designing a vehicle model based on spatial kinematics, the
upper-layer MPC can plan collision avoidance trajectories based on distance sampling,
while the lower-layer MPC considers lateral and roll stability during trajectory tracking
using an 8-degree-of-freedom vehicle dynamic model.

The simulation experimental results across three scenarios demonstrated that the
proposed algorithm offers improved predictability, initiating collision avoidance at pre-
determined positions and directions while ensuring that all state variables remain within
safe ranges. Moreover, the proposed algorithm surpasses comparative algorithms in terms
of time efficiency. Overall, this research contributes a robust and efficient approach to
autonomous vehicle trajectory planning and collision avoidance by effectively leveraging
spatial information.

The stability and robustness of the proposed algorithm remain to be theoretically
proven. Therefore, in future work, we aim to address this limitation by focusing on
theoretical analyses. Additionally, conducting real-world vehicle experiments will be a key
aspect of our future research efforts.
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