
Citation: Li, Y.; Zhu, Q.; Elahi, A.

Quadcopter Trajectory Tracking

Control Based on Flatness Model

Predictive Control and Neural

Network. Actuators 2024, 13, 154.

https://doi.org/10.3390/act13040154

Academic Editor: Xuerui Wang

Received: 1 March 2024

Revised: 9 April 2024

Accepted: 11 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Quadcopter Trajectory Tracking Control Based on Flatness Model
Predictive Control and Neural Network
Yong Li, Qidan Zhu * and Ahsan Elahi

College of Intelligent Systems, Science and Engineering, Harbin Engineering University, Habin 150001, China;
llyy5927@hrbeu.edu.cn (Y.L.); ahsan.elahi@hrbeu.edu.cn (A.E.)
* Correspondence: zhuqidan@hrbeu.edu.cn; Tel.: +86-188-4516-3353

Abstract: In this paper, a novel control architecture is proposed in which FMPC couples feedback
from model predictive control with feedforward linearization. The proposed approach has the
computational advantage of only requiring a convex quadratic program to be solved instead of a
nonlinear program. Feedforward linearization aims to overcome the robustness issues of feedback
linearization, which may be the result of parametric model uncertainty leading to inexact pole-zero
cancellation. A DenseNet was trained to learn the inverse dynamics of the system, and it was
used to adjust the desired path input for FMPC. Through experiments using quadcopter, we also
demonstrated improved trajectory tracking performance compared to that of the PD, FMPC, and
FMPC+DNN approaches. The root mean square (RMS) error was used to evaluate the performance
of the above four methods. The results demonstrate that the proposed method is effective.

Keywords: flatness-based model predictive control; DenseNet; DNN; differential flatness; feedforward
linearization

1. Introduction

Quadcopters have experienced a substantial surge in popularity. The quadcopter-like
Parrot AR.Drone [1] is presently employed in various applications, including but not limited
to tasks such as inspection [2], search and rescue missions [3], mapping operations [4], and
photography. Historically, PID controllers have been chosen for their simplicity and satisfactory
performance. However, they may not offer optimal performance when dealing with diverse
trajectories that have significant curvature. This research aims to develop a model predictive
controller (MPC) [5] that addresses the limitations of proportional–integral–derivative (PID)
controllers and offers enhanced trajectory-tracking capabilities for quadcopters. An MPC is an
optimum control strategy that efficiently solves an optimization problem in real-time. Current
real-time NMPC frequently performs only one iteration of a sequential quadratic program (SQP)
with Gauss–Newton approximation, resulting in a suboptimal NLP solution [6,7]. The primary
goal of an MPC is to calculate the most favorable control input by considering the current state
and a desired set of future states. Various versions of MPC controllers are proposed in the
literature. The methodology employed in this study is like the strategy proposed by M. Greeff
and A. Schoellig in [8]. It incorporates the differential flatness characteristic of quadcopters
combined with feedforward linearization and is commonly known as flatness model predictive
control (FMPC).

MPCs outperform PID controllers for quadcopter applications. However, they still
rely on a correct underlying system model, which may be challenging to accomplish in
practice. To understand the unmodeled dynamics of the system, a DenseNet was trained
using a methodology similar to that described in a previous study [9]. In that study, the
network successfully learned the inverse dynamics of the system and was subsequently
utilized to modify the desired trajectory employed by model predictive control (MPC).

Model predictive control has various versions, including nonlinear MPC [6], which
addresses the non-convex, nonlinear optimization problem by employing direct nonlinear

Actuators 2024, 13, 154. https://doi.org/10.3390/act13040154 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act13040154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://doi.org/10.3390/act13040154
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act13040154?type=check_update&version=1

Actuators 2024, 13, 154 2 of 16

dynamics. The methodology is characterized by a high computation and a susceptibility
to converging towards local minima. An alternative method is linear MPC [5], which
involves linearizing the nonlinear model, bringing up a convex problem. This approach is
simpler than nonlinear MPC. However, it suffers from performance drawbacks because of
linearization. J.A. Primbs et al. [10] integrated feedback linearization with MPC. According
to [11], coupling linear MPC with feedback linearization requires nonlinear term cancel-
lation, making its robustness to noise, parameter uncertainty, and disturbances difficult
to assess. They suggest including plant uncertainty in MPC+FBL (MPC and feedback
linearization). MPC+FBL lacks robustness by failing to account for known input time
delays. This approach eliminates nonlinear components through the feedback linearization
process, leading to an optimization problem for MPC that can be formulated as a linear
system of equations. This method is advantageous because it allows for the resulting
optimization problem to be formulated as a quadratic program known for its computing
efficiency. Furthermore, linearization around a fixed point is unnecessary. Typically, it is
observed that the feedback linearization approach is subject to robustness problems. Thus,
utilizing MPC with feedforward linearization is a potentially more effective method [8] in
which the optimal future states are used to cancel the nonlinear terms. This requires dealing
with the optimal future states obtained during the optimization process to overcome the
influence of nonlinear components through a feedforward mechanism. Feedforward lin-
earization aims to address the robustness challenges that arise from feedback linearization.
These challenges may occur due to uncertainties in the parametric model, leading to the
imperfect cancellation of poles and zeros [12]. For example, implementing feedforward
linearization in the ball-plate experiment enhanced tracking performance compared to
feedback linearization [13]. Due to the coupling of linear MPC with feedback, linearization
requires nonlinear term cancellation, making its robustness to noise, parameter uncer-
tainty, and disturbances difficult to assess. Feedforward linearization aims to overcome
the robustness issues of feedback linearization, which may be the result of parametric
model uncertainty leading to inexact pole-zero cancellation. The proposed methodology
in this paper combines feedforward linearization with MPC, improving robustness and
tracking performance.

The authors of [14] mainly investigate real-time optimal trajectory generation tech-
niques, which enable dynamic systems in engineering applications to perform optimal
trajectory planning under constraints. They discuss the concept of differential flatness and
its application in trajectory generation. They describe the controllability and observability
of a system. If a system is differentially flat, then all of its states and inputs can be parame-
terized by its outputs and a finite number of their derivatives. This implies that the dynamic
behavior of the system can be fully captured by a finite-dimensional representation of the
outputs, thereby simplifying the trajectory generation problem. The FMPC described in [8]
employs differential flatness, a feature of many physical systems, such as cranes, cars with
trailers, and quadrotors [15]. Differential flatness separates a nonlinear model into linear
dynamics and nonlinear transformations. This characteristic is applicable in both feedback
and feedforward linearization [12]. To put it in basic terms, a method is differentially flat
if its state can be represented in terms of a flat output and its derivatives, which are not
related to each other using a differential equation [15,16]. This problem is simplified by
expressing the state in its flat counterpart, as the system formulation in the flat output
space is linear. This allows for the integration of all of the nonlinear components into the
feedforward linearization process.

MPC relies on an underlying accurate system model, which is hard to achieve because
modeling aerodynamic drag, vibrations, and so on for a quadcopter is difficult. Much
work can be found in the literature to learn the unknown dynamics of robotic systems. N.
Petit, Mark B. Milam, and R.M. Murray [17] proposed a computationally efficient technique
for the numerical solution of optimal control problems. This method utilizes tools from
the nonlinear control theory to transform the optimal control problem to a new, lower-
dimensional set of coordinates. Through numerical examples, it is shown that increasing

Actuators 2024, 13, 154 3 of 16

the use of inverse mapping significantly improves the execution speed without sacrificing
the convergence rate. Machine learning approaches have been successfully integrated into
control system designs in several instances, leading to improved tracking performance in
the presence of unpredictable environments [18–21]. Examples of these machine learning
techniques include but are not limited to Gaussian Processes (GPs), ILC, and DNNs [22],
among others. In [23], a recurrent neural network (RNN) was introduced that learned the
dynamics of automated food slicing. The network was employed along with the MPC
optimization loop to control the actions of a robot slicing different kinds of food items with
a knife. Despite its effectiveness, the strategy incurs significant computational costs since
the approach needs to learn the system’s dynamics from the beginning. In the case of a
quadcopter, the conventional dynamics model remains an accurate representation of the
actual system. Consequently, abandoning this model and learning the dynamics from the
start would be inefficient.

A more effective strategy is to enhance and refine the existing model of the system, as
suggested in [8], by training a deep neural network (DNN) to learn the inverse dynamics
of a quadcopter following an impromptu trajectory. So, the deep neural network (DNN)
was able to learn the inverse dynamics of a quadcopter and was used to adapt the desired
flight path employed by MPC. Early review publications [24,25] explain how DNNs can be
coupled with control approaches like predictive and adaptive control to account for system
uncertainties and non-idealities. Numerous studies have demonstrated the effectiveness
of using DNNs in various control applications. In [26], it was shown that DNNs can help
linear quadratic regulators (LQR) manage trajectory tracking by approximating unmodeled
quadrotor dynamics. In [27] and related studies in the literature, DNNs were employed to
account for model uncertainty in manipulator impedance control. The trained DNN was
then used to adjust the input to the controller to improve performance. However, during
the training process of a DNN, the employment of gradient descent methods can often
result in the problem of gradients converging towards zero, which can impede training to a
standstill, particularly as the number of network layers grows. Consequently, the premature
termination of training activity occurs, resulting in suboptimal parameter optimization. The
solution to this problem is adopting a DenseNet [28], which is a feedforward convolutional
neural network (CNN) architecture that links each layer to every other layer, incorporates
skip connections, and effectively prevents the issue of premature optimization termination.
Employing DenseNet guarantees that the parameter gradients do not converge to values
extremely close to zero while undergoing optimization. This allows for the optimization of
network parameters towards suitable optimal solutions.

We proposed an efficient controller to control a quadcopter and obtained a reliable
trajectory-tracking performance. The significant contributions of this article are as follows:

(1) This study proposes a novel control architecture in which FMPC couples feedback
from model predictive control with feedforward linearization to provide a more
reliable trajectory-tracking performance.

(2) To further improve the performance of the above control architecture, a DenseNet
was trained to learn the inverse dynamics of the system, which was used to adjust the
desired path input to FMPC.

(3) DenseNet and the feedforward linearization combined with feedback model predic-
tive control both form a larger feedback system to improve the control robustness and
trajectory-tracking performance of the quadcopter.

This paper is organized as follows: Section 2 explains the problem statement, Section 3
presents the background knowledge, and Section 4 describes the methodology of using
MPC and learning the dynamics. Finally, Section 5 presents the experimental results and a
discussion of the proposed techniques. Section 6 concludes the paper and describes future
work objectives.

Actuators 2024, 13, 154 4 of 16

2. System Description

The mathematical model developed in the above section can be represented in a
state-space form,

.
x= f (x,u), where the state and the input are given by

x(t) =
[
x, y, z,

.
x,

.
y,

.
z, ϕ, θ, ψ

]T (1)

u(t) =
[.
zcmd, ϕcmd, θcmd,

.
ψcmd

]T
(2)

where x, y, and z represent the linear position of the quadcopter; ϕ, θ, and ψ correspond
to the quadcopter’s roll, pitch, and yaw angles;

.
zcmd is the commanded velocity in the z

direction; ϕcmd is the commanded roll angle; θcmd is the commanded pitch angle; and
.
ψcmd

is the commanded yaw rate.
The system model is given by

.
x = f (x(t), u(t)) =

.
x
.
y
.
z

(sin ϕ sin ψ+cos ϕ sin θ cos ψ)(
..
z+g)

cos θ cos ϕ
(− sin ϕ sin ψ+cos ϕ sin θ sin ψ)(

..
z+g)

cos θ cos ϕ
1
τz

(.
zcmd −

.
z
)

1
τϕ
(ϕcmd − ϕ)

1
τθ
(θcmd − θ)

.
ψcmd

(3)

where x(0) = x0, and y(t) = x(t). Note that the system’s response to the inputs
.
zcmd, ϕcmd&θcmd

was modeled using first-order differential equations, which worked fine with the simulation
environment. The values of the time constants

(
τz, τϕ, τθ

)
were identified by observing the

system’s step response.
We consider the hover to be

(
ϕ = 0, θ = 0,

..
z = 0

)
, where we assume that our current

yaw angle remains constant at each time step.
Our control system comprises a low-level onboard controller and an MPC outer-loop

controller. The MPC controller is capable of sending commands:
(.

zcmd, ϕcmd, θcmd,
.
ψcmd

)
.

Here
.
zcmd represents the desired velocity in the z direction, ϕcmd is the desired roll

angle, θcmd is the desired pitch angle, and
.
ψcmd is the desired yaw rate.

We begin by performing a system identification process to enhance the trajectory
tracking accuracy. This process is similar to the method described in reference [29], allowing
us to estimate the inner-loop attitude dynamics.

.
ϕ = 1

τϕ

(
kϕϕcmd − ϕ

)
.
θ = 1

τθ
(kθθcmd − θ)

.
ψ =

.
ψcmd

(4)

The symbols τϕ and τθ indicate time constants. kϕ and kθ show defined gains, and the
angles ϕ, θ, and ψ correspond to the quadcopter’s roll, pitch, and yaw angles. In contrast
to [28], we refrain from transmitting a direct thrust command, Tcmd. As a result, we make a
comparable system identification to calculate the z-velocity dynamics using a second-order
response with a time delay (td) of 0.1 s as follows:

...
z (t) = − 1

τz

.
z(t)− 1

τIz

..
z(t) +

2
τCz

.
zcmd(t − td) (5)

where τz, τIz, and τCz are known time constants.

Actuators 2024, 13, 154 5 of 16

3. Background Knowledge

A nonlinear system model (3) is considered differentially flat if it exists ζ(t) ∈ Rm,
consisting of differentially independent components (meaning they are not related to each
other through a differential equation), and the following condition is satisfied [15]:

ζ = Λ
(

x, u,
.
u, . . . , u(δ)

)
(6)

x = Φ
(
ζ,

.
ζ, . . . , ζ(ρ−1)

)
(7)

u = Ψ−1
(
ζ,

.
ζ, . . . , ζ(ρ)

)
(8)

where Λ, Φ and Ψ−1 denote smooth functions, δ and ρ represent the maximum orders of
derivatives, u and ζ are required to explain the system, and ζ = [ζ1, . . . , ζm]

T is referred to
as the flat output.

Every system that exhibits differential flatness can be mathematically described using
a Brunovsky state (also known as a flat state):

z :=
[
ζ1,

.
ζ1, . . . , ζ

(ρ−1)
1 , . . . , ζm, . . . , ζ

(ρm−1)
m

]T
(9)

It should be noted that ρi represents the highest order derivative of ζi found in
Equation (8).

By using the state transformation between the flat state z and state x, derived by the
differentiation of Equation (6) and utilizing Equation (7), we may convert Equation (2) into
the standard form.

ζ
(ρi)
i = αi

(
ζ,

.
ζ, . . . , ζ(ρ−1), u,

.
u, . . . , u(σi)

)
:= vi (10)

where αi, i = 1 . . . m represents a smooth function formed by the process of the transfor
mation. Note that σi is the highest derivative of u after ρi times differentiating ζi in
Equation (6). The flat input, v, is defined as follows:

v := [v1, v2, . . . , vm]
T (11)

By applying the explanations provided in (9) and (11), we rephrase (10) as follows:

.
z = Az + Bv (12)

v = Ψ
(

z, u,
.
u, . . . , u(σ)

)
(13)

where σ = maxσi The linear flat model is denoted as (12). By replacing the definitions in
Equations (9) and (11), we may rephrase Equation (8) as follows:

u = Ψ−1(z, v) (14)

The following theorem is derived from reference [12]: Take into account a desired path
in the flat output ζd, together with a matching desired flat state zd (achieved by replacing
the variable ζd with the expected value of ζ in Equation (9)) and desired flat input vd
(obtained by replacing the variable ζd with the desired value of ζ in Equation (10) and
Equation (11)). Given ζd, and given that the nominal control, u = Ψ−1(zd, vd), is applied to
a differentially flat system of Equation (2), provided that z(0) = zd(0), it leads to a linear
system through a change in coordinates, as expressed in Equation (12).

Theorem 1 enables trajectory generators or controllers to concentrate solely on the
comparable linear flat model, as shown in our suggested approach depicted in Figure 1.
The trajectory generator or controller produces the appropriate flat state and flat input as
the output. These outputs can then be processed through inverse transformation (14) to

Actuators 2024, 13, 154 6 of 16

counteract the system’s nonlinear component (13). Feedforward linearization fundamen-
tally differs from feedback linearization by utilizing the desired flat state from Equation (14)
instead of the measured flat state in the inverse term.

Actuators 2024, 13, x FOR PEER REVIEW 6 of 18

By using the state transformation between the flat state z and state x, derived by the
differentiation of Equation (6) and utilizing Equation (7), we may convert Equation (2)
into the standard form.

() () ()()1, , , , , , , :i i
i i iv

ρ σρζ α −= =ζ ζ ζ u u u (10)

Where , 1i i mα = represents a smooth function formed by the process of the transfor

mation. Note that iσ is the highest derivative of u after iρ times differentiating iζ
in Equation (6). The flat input, v , is defined as follows:

[]1 2: , , , T
mv v v=v (11)

By applying the explanations provided in (9) and (11), we rephrase (10) as follows:

= +z Az Bv (12)

()(), , , , σ= Ψv z u u u (13)

where max iσ σ= The linear flat model is denoted as (12). By replacing the definitions
in Equations (9) and (11), we may rephrase Equation (8) as follows:

()1 ,−= Ψu z v (14)

The following theorem is derived from reference [12]: Take into account a desired
path in the flat output dζ , together with a matching desired flat state dz (achieved by

replacing the variable dζ with the expected value of ζ in Equation (9)) and desired flat

input dv (obtained by replacing the variable dζ with the desired value of ζ in Equa-

tion (10) and Equation (11)). Given dζ , and given that the nominal control,
1(,)d d

−= Ψu z v , is applied to a differentially flat system of Equation (2), provided that

(0) (0)d=z z , it leads to a linear system through a change in coordinates, as expressed in
Equation (12).

Theorem 1 enables trajectory generators or controllers to concentrate solely on the
comparable linear flat model, as shown in our suggested approach depicted in Figure 1.
The trajectory generator or controller produces the appropriate flat state and flat input as
the output. These outputs can then be processed through inverse transformation (14) to
counteract the system’s nonlinear component (13). Feedforward linearization fundamen-
tally differs from feedback linearization by utilizing the desired flat state from Equation
(14) instead of the measured flat state in the inverse term.

FMPC

Densenet

()1 ,op op
−ψ z v

r e fz o pv
o pz o puFlatness based model predictive

control

Feedforward
Linearization

Deeplearning

()()1 x t−Φ
yz

tz
1t +z

The mapping between flat
state to the actual state

Training and
feedback data

Parameter
sharing

r e fσ Feed
forward

loop

Feed
back
loop

Evaluate

Densenet

2t +σ
1t +σ

3t +σ

Figure 1. A schematic of the overall architecture of the control system.

4. Methodology

The proposed method of coupling feedforward linearization and MPC, as seen in
Figure 1, uses the linear flat model in a feedback MPC. The MPC outputs the flat state and
flat input, which are then fed through the inverse term. Then, the result of feedforward
linearization outputs to the quadcopter. The actual state of the quadcopter is mapped to
a flat state, and the flat state is used as feedback for the controller. A DenseNet module
is added to the FMPC architecture to adjust the reference inputs to the feedback control
system. The DenseNet receives the current flat state (zt,o f f set) and the future flat state
(zt+1,o f f set) as inputs. The DenseNet produces flat outputs (σt+1,o f f set · · ·σt+N,o f f set that
specify the desired trajectory input for the MPC controller.

4.1. Differential Flatness Formulation

This section presents some necessary formulations that rely on the differential flatness
property of quadcopters. Note that we direct the reader to read [16] for more details about
the characteristics of differential flatness. Below is a summary of this property.

Differential flatness means that the state and input ((1) and (2)) can be expressed in
terms of a flat output and its derivatives. The flat output is defined as

σ = [x, y, z, ψ]T (15)

and the flat state and flat input are defined as

z =
[
x,

.
x,

..
x, y,

.
y,

..
y, z,

.
z, ψ
]T (16)

v =
[...

x ,
...
y ,

..
z,

.
ψ
]T

(17)

The mapping between the flat state (16) and the actual state (1) is expressed below:

Actuators 2024, 13, 154 7 of 16

z = Φ−1(x(t)) =

x
.
x

g
(

sin ψ tan ϕ
cos θ + cos ψ tan θ

)
y
.
y

g
(
− cos ψ tan ϕ

cos θ + sin ψ tan θ
)

z
.
z
ψ

(18)

where g is the gravitational constant; note that in the formulation shown above in (17),
..
z

was assumed to be zero.
The mapping between the input, u(t), from the flat state and flat input is provided

as follows:

u(t) = ψ−1(z, v) =

τz

..
z +

.
z

τϕ

1+α2
dα
dt + tan α

τθ
1+β2

dβ
dt + tan β

.
ψ

 (19)

Below, α and β are given; note that their time derivatives were computed using the
chain rule.

α =
1

..
z + g

(
cos ψ

..
x + sin ψ

..
y
)

(20)

β =
1

..
z + g

(
sin ψ

..
x − cos ψ

..
y
)

(21)

The entire system can be represented as a linear system by using the flat state and
input in the following discretized form:

zk+1 = Azk + Bvk (22)

4.2. Flatness-Based Model Predictive Control

Based on the formulation of the system in the flat space (Equation (22)), the MPC
optimization problem can be resolved by employing a quadratic cost function, similar to
the approach described in reference [8]:

min
v0···k

1
2

N

∑
k=1

(
σk −σk,re f

)T

Q
(
σk −σk,re f

)
+

1
2

N−1

∑
k=0

vT
k Rvk (23)

s.t.zk+1 = Azk + Bvk (24)

σk = Czk (25)

where Q is a positive semi-definite matrix that weighs the error with our reference trajectory.
R is positive-definite and regulates both the size and change in the inputs u.

It should be noted that C is a permutation matrix consisting of ones and zeros, and it
selects the flat output values from the flat state.

The above issue can be expressed as a quadratic program:

min
X

1
2

XTPX + qTX (26)

s.t.AX = b (27)

where X = [v0, · · · , vN−1, z1, · · · , zN]
T .

Actuators 2024, 13, 154 8 of 16

The optimal input can then be determined by using Equation (19) and utilizing the
optimal flat state and input obtained from the optimization problem (zop, vop):

uop(t) = ψ−1(zop, vop
)

(28)

4.3. Improvement via Learning

To enhance the accuracy of trajectory tracking for FMPC, a DenseNet was trained to
effectively capture the inverse dynamics of the system. Figure 1 demonstrates the process
of the DenseNet, where it feeds the reference trajectory (zre f) as the input and generates a
modified course with uniform or flat outputs (σre f). The concept is that the DenseNet will
change the desired path to improve the overall tracking performance.

To provide a thorough explanation of the architecture and its underlying reasoning,
we referred to Figure 2 and evaluated the following aspects:

Assumptions: The DenseNet does not include modeling of the z and yaw directions to
simplify the model. Only the x and y axes are taken into account.
Inputs: The DenseNet receives the current flat state (zt,o f f set) and the future flat state
(zt+1,o f f set) as inputs. Observing the x and y values relative to the position of zt is essential.
This feature renders the neural network insensitive to the position of the input.
Outputs: The DenseNet produces flat outputs (σt+1,o f f set · · ·σt+N,o f f set that specify the
desired trajectory input for the MPC controller. The value of N is either equal to or less
than the prediction horizon of the MPC. Once again, all of the output values for x and y are
relative to zt. So, to obtain the actual coordinates, the zt values are added back.
Concept: Based on the current state (zt) and the desired future state (zt+1), the DenseNet
generates the optimal sequence of flat outputs (σt+1 · · ·σt+N) to reach the desired future
state (zt+1). Consequently, the DenseNet learns inverse dynamics, and it refers to the
inverse mapping from the input to the output. The input consists of the desired trajectory
of MPC along with the current state (zt), and the output is the future state (zt+1).
Training: The network is trained using a reference trajectory, σre f ,0...T , as shown in Figure 1.
The resulting flat states, z0...T , are recorded. The flat states z0...T will serve as the inputs
during the training phase, whereas σre f ,0...T will serve as the training labels. So, the neural
network undergoes training using a supervised learning fashion.
Inference: For an entire trajectory in a flat space (zre f), each pair of consecutive states
in this trajectory feeds into the DenseNet. The DenseNet then produces N flat outputs
(σt+0 . . .σt+N), which are then recorded. At each time step t, the collected σ values are
averaged and stored to create the reference trajectory σre f ,0...T .

Actuators 2024, 13, x FOR PEER REVIEW 10 of 18

inputs during the training phase, whereas ,0ref Tσ will serve as the training labels. So,
the neural network undergoes training using a supervised learning fashion.

Inference: For an entire trajectory in a flat space ()refz , each pair of consecutive states in
this trajectory feeds into the DenseNet. The DenseNet then produces N flat outputs

0()t t N σ σ , which are then recorded. At each time step 𝑡, the collected values are

averaged and stored to create the reference trajectory ,0ref Tσ .

Densenet （n=1,2,3,4,5)

n

Input Layer Hidden Layers Output Layer

,

,
,

,

,

0

0

x t

t offset
y t

x t

y t

v

v

a

a

z , 1

1,
, 1

ref t t

t offset
ref t t

x x

y y

σ

1

1

,

1,
,t

,

,

t t

t t

x t

t offset
y

x t

y t

x x

y y

v

v

a

a

z

,t N

,
,

ref t

t N offset
ref t N t

x x

y y

σ

Figure 2. The DenseNet architecture for learning inverse dynamics.

The value of ‘N’ is essential as it determines the number of flat outputs generated by
the neural network. Ideally, the value of ‘N’ should be the same as the prediction horizon
of the MPC. However, this approach is inefficient, requiring the neural network to be more
extensive. Only the initial reference states considerably impact the subsequent input to
the quadcopters. States distant in the future have a diminished effect on the current input.
Therefore, opting for N as ‘1’ results in unsatisfactory outcomes due to the neural net-
work’s limited capacity for expressiveness. The value of N is selected as ‘3’, providing a
balance between the two extremes and satisfactory results.

5. Experiment Results
5.1. Experiment Introduction

Various trajectories were constructed with varying degrees of aggression to evaluate
the efficacy of the suggested architecture. The flight routes are designed to prevent abrupt
changes in location, ensuring a smooth trajectory in the quadcopter’s input area [16].
These trajectories were selected based on their benchmark performance, which has set a
standard for quadcopters. Minimum snap trajectories are generated by selecting an initial
and final state and a sequence of waypoints connecting them. Ultimately, ninth-degree
polynomial segments are utilized to establish connections between these waypoints. The
optimization problem collectively solves the coefficients of the polynomial components.

The polynomial formulation is given as follows:

 9

,0
,

i

i
j j ii

j total

t
x t p

t

 (19)

Figure 2. The DenseNet architecture for learning inverse dynamics.

Actuators 2024, 13, 154 9 of 16

The value of ‘N’ is essential as it determines the number of flat outputs generated by
the neural network. Ideally, the value of ‘N’ should be the same as the prediction horizon
of the MPC. However, this approach is inefficient, requiring the neural network to be more
extensive. Only the initial reference states considerably impact the subsequent input to
the quadcopters. States distant in the future have a diminished effect on the current input.
Therefore, opting for N as ‘1’ results in unsatisfactory outcomes due to the neural network’s
limited capacity for expressiveness. The value of N is selected as ‘3’, providing a balance
between the two extremes and satisfactory results.

5. Experiment Results
5.1. Experiment Introduction

Various trajectories were constructed with varying degrees of aggression to evaluate
the efficacy of the suggested architecture. The flight routes are designed to prevent abrupt
changes in location, ensuring a smooth trajectory in the quadcopter’s input area [16]. These
trajectories were selected based on their benchmark performance, which has set a standard
for quadcopters. Minimum snap trajectories are generated by selecting an initial and final
state and a sequence of waypoints connecting them. Ultimately, ninth-degree polynomial
segments are utilized to establish connections between these waypoints. The optimization
problem collectively solves the coefficients of the polynomial components.

The polynomial formulation is given as follows:

xj(t) = ∑9
i=0 pi

j,i

(
t

tj,total

)i

(29)

where tj,total is the total time assigned for the jth segment of the path. Note that dividing t
by tj,total helps improve the numerical stability of the solution. The problem can then be
formulated as a constrained quadratic program as follows:

min
p1···pM

 p1
...

pM

TQ1

. . .
QM

 p1

...
pM

 (30)

s.t.Atotal

 p1
...

pM

 =

 d1
...

dM

 (31)

where p1 . . . pM are the coefficients of the polynomial segments, and d1 . . . dM are the
derivatives at the endpoints.

Three different minimum snap trajectories were generated with increasing levels of
aggressiveness, with flight route ‘3’ being the most aggressive.

Before the experiments, a system identification step was executed where the system
was subjected to a step input in the z, ϕ, and θ directions. The time constants τz, τϕ&τθ were
1.0, 2.4, and 2.4, respectively.

A PD controller coupled with feedback linearization was set up for comparison pur-
poses. The dynamics in the x and y directions were modeled as a second-order system,
and the tuned Kp and KD gains were found to be ‘1’ and ‘8’, respectively. The z and yaw
directions were modeled as first-order systems with a Kp value of ‘10’. Note that a sufficient
amount of effort was spent tuning the gains. However, there was no guarantee that they
were optimal, as they could be further improved with more tuning.

For the FMPC controller, the model predictive loop was run at 10 Hz, with a prediction
horizon of 20 time steps. Attempts to increase the prediction horizon to values higher
than that have led to very low running frequencies, which caused instability. All quadratic
programs were solved using the CVXOPT library in Python.

Actuators 2024, 13, 154 10 of 16

5.2. Training the DenseNet

To train the DenseNet, the flight routes shown in Figure 3 were used to compile a
dataset. For each trajectory, the quadcopter performed 20 loops (10 in the reverse direction),
resulting in 12,332 training/label tuples. The dataset was then normalized to avoid instabil-
ity during training. The normalization coefficients were also stored to rescale the output
from the neural network during inference. The direction of flight follows the direction
of arrows.

Actuators 2024, 13, x FOR PEER REVIEW 11 of 18

. . totals t

 =

1 1

M M

p d
A

p d
 (21)

where 1 Mp p are the coefficients of the polynomial segments, and 1 Md d are the
derivatives at the endpoints.

Three different minimum snap trajectories were generated with increasing levels of
aggressiveness, with flight route ‘3’ being the most aggressive.

Before the experiments, a system identification step was executed where the system
was subjected to a step input in the z , φ , and θ directions. The time constants

, &z φ θτ τ τ were 1.0, 2.4, and 2.4, respectively.
A PD controller coupled with feedback linearization was set up for comparison pur-

poses. The dynamics in the x and y directions were modeled as a second-order system,
and the tuned pK and DK gains were found to be ‘1’ and ‘8’, respectively. The z and

yaw directions were modeled as first-order systems with a pK value of ‘10’. Note that a
sufficient amount of effort was spent tuning the gains. However, there was no guarantee
that they were optimal, as they could be further improved with more tuning.

For the FMPC controller, the model predictive loop was run at 10 Hz, with a predic-
tion horizon of 20 time steps. Attempts to increase the prediction horizon to values higher
than that have led to very low running frequencies, which caused instability. All quadratic
programs were solved using the CVXOPT library in Python.

5.2. Training the DenseNet
To train the DenseNet, the flight routes shown in Figure 3 were used to compile a

dataset. For each trajectory, the quadcopter performed 20 loops (10 in the reverse direc-
tion), resulting in 12,332 training/label tuples. The dataset was then normalized to avoid
instability during training. The normalization coefficients were also stored to rescale the
output from the neural network during inference. The direction of flight follows the di-
rection of arrows.

Figure 3. Different trajectories used for training.

The hidden layers of DenseNet consist of five layers and the same structures; each
layer has 30 neurons and ReLU activations [30]. The root mean square error was used as

0 2 4 6 8 10 12
x(m)

–8

–6

–4

–2

0

2

4

6

8

y(
m

)

Training Trajectory 1
Training Trajectory 2
Training Trajectory 3

Figure 3. Different trajectories used for training.

The hidden layers of DenseNet consist of five layers and the same structures; each
layer has 30 neurons and ReLU activations [30]. The root mean square error was used as
the loss function, and Adam [31] was the optimizer chosen. The network was trained for
60 epochs with a batch size of 10.

The error function for each task is defined as the root mean square (RMS) error of N
pairs of (x,y,z) coordinates sampled at 7 Hz, and the DenseNet feedback loop sampling rate
between the desired trajectory, Td, and the observed trajectory, Tc is determined as follows:

E(Tc, Td) =

√√√√ 1
N

N

∑
t=1

∥Pc,t − Pd,t∥2tth (32)

where ∥Pc,t − Pd,t∥ is the Euclidean norm, while Pd,t and Pc,t are the position coordinates
sampled at the tth time step from the desired trajectory Td and the observed trajectory Tc,
respectively. The quadrotor in the experiment repeats each task with and without the aid
of the trained DenseNet.

Note that the selected trajectories for training had relatively mild maneuvers compared
to some of the flight routes used in experimentation. That is because when attempting to
train with more aggressive trajectories, the system experienced unfavorable fluctuations in
the training dataset. Instead, relatively stable and well-conditioned flight routes were used
for training, and their generalization to more aggressive trajectories was observed.

5.3. Results

Figure 4 shows that the FMPC (without DNN and DenseNet) provides better trajectory
tracking performance than the PD controller and has a 35% improvement on average. Fig-
ures 5a and 6a depict figures of the resulting trajectories from the FMPC and PD controllers
for trajectories 1 and 2, respectively. It is worth noting that the system has an unaccepted
control error for trajectory 3 (the most aggressive) and cannot track this trajectory well
when using the FMPC and PD control methods. That is because no constraints were im-
posed on the inputs when solving the MPC optimization problem and when generating the
minimum snap trajectories. Therefore, the inputs were allowed to grow unboundless, in

Actuators 2024, 13, 154 11 of 16

some cases exceeding the controllability range of the quadcopter (which is what happened
with trajectory 3). The direction of flight in Figures 5–7 follows the direction of arrows.

Actuators 2024, 13, x FOR PEER REVIEW 12 of 18

the loss function, and Adam [31] was the optimizer chosen. The network was trained for
60 epochs with a batch size of 10.

The error function for each task is defined as the root mean square (RMS) error of N
pairs of (x,y,z) coordinates sampled at 7 Hz, and the DenseNet feedback loop sampling
rate between the desired trajectory, dT , and the observed trajectory, cT is determined as
follows:

() 2
, ,

1

1,
N

th
c d c t d t

t
E T T t

N =

= − P P (22)

where , ,c t d t−P P is the Euclidean norm, while ,d tP and ,c tP are the position coordi-

nates sampled at the tht time step from the desired trajectory dT and the observed tra-

jectory cT , respectively. The quadrotor in the experiment repeats each task with and with-
out the aid of the trained DenseNet.

Note that the selected trajectories for training had relatively mild maneuvers com-
pared to some of the flight routes used in experimentation. That is because when attempt-
ing to train with more aggressive trajectories, the system experienced unfavorable fluctu-
ations in the training dataset. Instead, relatively stable and well-conditioned flight routes
were used for training, and their generalization to more aggressive trajectories was ob-
served.

5.3. Results
Figure 4 shows that the FMPC (without DNN and DenseNet) provides better trajec-

tory tracking performance than the PD controller and has a 35% improvement on average.
Figures 5a and 6a depict figures of the resulting trajectories from the FMPC and PD con-
trollers for trajectories 1 and 2, respectively. It is worth noting that the system has an un-
accepted control error for trajectory 3 (the most aggressive) and cannot track this trajectory
well when using the FMPC and PD control methods. That is because no constraints were
imposed on the inputs when solving the MPC optimization problem and when generating
the minimum snap trajectories. Therefore, the inputs were allowed to grow unboundless,
in some cases exceeding the controllability range of the quadcopter (which is what hap-
pened with trajectory 3). The direction of flight in Figures 5–7 follows the direction of ar-
rows.

Figure 4. Comparison of RMS tracking error (averaged over 3 trials per trajectory).

0

0.2

0.4

0.6

0.8

1

1.2

Trajectory1 Trajectory2 Trajectory3

RM
S

Er
ro

r(m
)

PD FMPC FMPC+DNN FMPC+DenseNet

Figure 4. Comparison of RMS tracking error (averaged over 3 trials per trajectory).

Actuators 2024, 13, x FOR PEER REVIEW 13 of 18

happened with trajectory 3). The direction of flight in Figures 5–7 follows the direction of

arrows.

Figure 4. Comparison of RMS tracking error (averaged over 3 trials per trajectory).

(a)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

Trajectory1 Trajectory2 Trajectory3

R
M

S
Er

ro
r(

m
)

PD FMPC FMPC+DNN FMPC+DenseNet

Figure 5. Cont.

Actuators 2024, 13, 154 12 of 16

Actuators 2024, 13, x FOR PEER REVIEW 14 of 18

(c)

Figure 5. Trajectory 1 results of different methods. (a) Trajectory 1: PD and FMPC performance. (b)

Trajectory 1: DenseNet output and FMPC+DenseNet performance. (c) Trajectory 1: FMPC+DNN

and FMPC+DenseNet performance.

Figure 5a shows the PD and FMPC performance of trajectory 1; both PD and FMPC

experience a noticeable drift from the desired trajectory. Figure 5b shows the DenseNet-

output and FMPC+DenseNet performance of trajectory 1. The DenseNet output is the

path, and it hopes FMPC adjusts its path to the desired path. Figure 5c shows the

FMPC+DNN and FMPC+DenseNet performance of trajectory 1; both methods have a

good performance, but it can be seen that FMPC+DenseNet achieved a more effective

tracking performance.

Figure 6a shows that the PD method has a very unstable trajectory, and the FMPC

method has an overshoot trajectory. Both PD and FMPC experience a significant amount

of drift from the desired trajectory. Figure 6b presents the FMPC+DenseNet path and the

adjusted desired path, which is the output of the DenseNet. As seen in Figure 6c,

FMPC+DNN and FMPC+DenseNet achieve a more reasonable tracking performance, but

FMPC+DenseNet has a more stable path than FMPC+DNN.

(a)

Figure 5. Trajectory 1 results of different methods. (a) Trajectory 1: PD and FMPC performance.
(b) Trajectory 1: DenseNet output and FMPC+DenseNet performance. (c) Trajectory 1: FMPC+DNN
and FMPC+DenseNet performance.

Figure 5a shows the PD and FMPC performance of trajectory 1; both PD and FMPC
experience a noticeable drift from the desired trajectory. Figure 5b shows the DenseNet-
output and FMPC+DenseNet performance of trajectory 1. The DenseNet output is the path,
and it hopes FMPC adjusts its path to the desired path. Figure 5c shows the FMPC+DNN
and FMPC+DenseNet performance of trajectory 1; both methods have a good performance,
but it can be seen that FMPC+DenseNet achieved a more effective tracking performance.

Figure 6a shows that the PD method has a very unstable trajectory, and the FMPC
method has an overshoot trajectory. Both PD and FMPC experience a significant amount
of drift from the desired trajectory. Figure 6b presents the FMPC+DenseNet path and
the adjusted desired path, which is the output of the DenseNet. As seen in Figure 6c,
FMPC+DNN and FMPC+DenseNet achieve a more reasonable tracking performance, but
FMPC+DenseNet has a more stable path than FMPC+DNN.

Actuators 2024, 13, x FOR PEER REVIEW 14 of 18

(c)

Figure 5. Trajectory 1 results of different methods. (a) Trajectory 1: PD and FMPC performance. (b)

Trajectory 1: DenseNet output and FMPC+DenseNet performance. (c) Trajectory 1: FMPC+DNN

and FMPC+DenseNet performance.

Figure 5a shows the PD and FMPC performance of trajectory 1; both PD and FMPC

experience a noticeable drift from the desired trajectory. Figure 5b shows the DenseNet-

output and FMPC+DenseNet performance of trajectory 1. The DenseNet output is the

path, and it hopes FMPC adjusts its path to the desired path. Figure 5c shows the

FMPC+DNN and FMPC+DenseNet performance of trajectory 1; both methods have a

good performance, but it can be seen that FMPC+DenseNet achieved a more effective

tracking performance.

Figure 6a shows that the PD method has a very unstable trajectory, and the FMPC

method has an overshoot trajectory. Both PD and FMPC experience a significant amount

of drift from the desired trajectory. Figure 6b presents the FMPC+DenseNet path and the

adjusted desired path, which is the output of the DenseNet. As seen in Figure 6c,

FMPC+DNN and FMPC+DenseNet achieve a more reasonable tracking performance, but

FMPC+DenseNet has a more stable path than FMPC+DNN.

(a)

Figure 6. Cont.

Actuators 2024, 13, 154 13 of 16

Actuators 2024, 13, x FOR PEER REVIEW 15 of 18

(b)

(c)

Figure 6. Trajectory 2 results of different methods. (a) Trajectory 2: PD and FMPC performance. (b)

Trajectory 2: DenseNet output and FMPC+DenseNet performance. (c) Trajectory 2: FMPC+DNN

and FMPC+DenseNet performance.

Figure 7 shows the FMPC+DNN and FMPC+DenseNet performance of trajectory 3.

Both PD and FMPC have serious and unaccepted control errors and are not able to track

this trajectory well. So, the figures of PD and FMPC are not listed. In Figure 7a, the black

line presents the DenseNet output, which is the adjusted desired path. In Figure 7b, it can

be seen that both FMPC+DNN and FMPC+DenseNet were able to track trajectory 3 in a

stable state. We can see that FMPC+DenseNet has better performance than FMPC+DNN,

and FMPC+DNN has an overshoot area with high curvature.

Figure 6. Trajectory 2 results of different methods. (a) Trajectory 2: PD and FMPC performance.
(b) Trajectory 2: DenseNet output and FMPC+DenseNet performance. (c) Trajectory 2: FMPC+DNN
and FMPC+DenseNet performance.

Figure 7 shows the FMPC+DNN and FMPC+DenseNet performance of trajectory 3.
Both PD and FMPC have serious and unaccepted control errors and are not able to track
this trajectory well. So, the figures of PD and FMPC are not listed. In Figure 7a, the black
line presents the DenseNet output, which is the adjusted desired path. In Figure 7b, it can
be seen that both FMPC+DNN and FMPC+DenseNet were able to track trajectory 3 in a
stable state. We can see that FMPC+DenseNet has better performance than FMPC+DNN,
and FMPC+DNN has an overshoot area with high curvature.

As can be seen in Figures 5a and 6a, FMPC (without the DNN and DenseNet) always
seemed to overshoot the desired trajectory at areas of high curvature. The reason for that
could be that the MPC optimization loop might not be running at a high enough frequency,
and the prediction horizon might not be sufficiently long. Also, the quadcopter might be
reaching the limits of its controllability.

Actuators 2024, 13, 154 14 of 16

Actuators 2024, 13, x FOR PEER REVIEW 15 of 18

(c)

Figure 6. Trajectory 2 results of different methods. (a) Trajectory 2: PD and FMPC performance. (b)
Trajectory 2: DenseNet output and FMPC+DenseNet performance. (c) Trajectory 2: FMPC+DNN
and FMPC+DenseNet performance.

Figure 7 shows the FMPC+DNN and FMPC+DenseNet performance of trajectory 3.
Both PD and FMPC have serious and unaccepted control errors and are not able to track
this trajectory well. So, the figures of PD and FMPC are not listed. In Figure 7a, the black
line presents the DenseNet output, which is the adjusted desired path. In Figure 7b, it can
be seen that both FMPC+DNN and FMPC+DenseNet were able to track trajectory 3 in a
stable state. We can see that FMPC+DenseNet has better performance than FMPC+DNN,
and FMPC+DNN has an overshoot area with high curvature.

(a)

–1 0 1 2 3 4 5 6 7

x(m)

–4

–3

–2

–1

0

1

2

3

4

y(
m

)

FMPC+DNN
Desired
FMPC+DenseNet

–3 –2 –1 0 1 2 3
x(m)

–3

–2

–1

0

1

2

3

y(
m

) FMPC+DenseNet
Desired
DenseNet-output

Actuators 2024, 13, x FOR PEER REVIEW 16 of 18

(b)

Figure 7. Trajectory 3 results of different methods. (a) Trajectory 3: DenseNet-output and
FMPC+DenseNet performance. (b) Trajectory 3: FMPC+DNN and FMPC+DenseNet performance.

As can be seen in Figures 5a and 6a, FMPC (without the DNN and DenseNet) always
seemed to overshoot the desired trajectory at areas of high curvature. The reason for that
could be that the MPC optimization loop might not be running at a high enough fre-
quency, and the prediction horizon might not be sufficiently long. Also, the quadcopter
might be reaching the limits of its controllability.

When the DNN and DenseNet are combined with FMPC, the trajectory tracking per-
formance has improvements of 59% and 62% over the PD scenario, respectively, and im-
provements of 37% and 41% over FMPC for trajectories 1 and 2. Figures 5b and 6b show
figures of the outcomes for trajectories 1 and 2, respectively, with the black line represent-
ing the altered desired trajectory (DenseNet output) that is fed to the FMPC controller.
For trajectories 1 and 2, FMPC+DenseNet has improvements of 3% and 4% over
FMPC+DNN. For trajectory 3, although the PD and FMPC controllers resulted in instabil-
ity, the FMPC+DNN and FMPC+DenseNet architectures resulted in reliable tracking, but
that was at the cost of significant tuning to the original desired trajectory (as seen in Figure
7). It can be seen in Figure 4 that FMPC+DenseNet has a better performance than FMPC +
DNN by about 11%. Hence, we can see that the DNN and DenseNet have learned to adjust
the desired path by always pulling it inwards into the direction of curvature, with the
amount of pull being proportional to the magnitude of velocities and accelerations. For
example, by comparing the output of the DenseNet for trajectory 1 vs. trajectory 3, the
amount of offset is much more significant in trajectory 3 since it requires movement at
much higher velocities and accelerations. From Figure 7b, we can see that FMPC+DNN
has a larger overshoot than FMPC+DenseNet. FMPC+DenseNet has a more stable trajec-
tory, and the DenseNet has essentially learned that the quadcopter always overshoots ar-
eas of high curvature, so it pulled the desired trajectory in to compensate for this over-
shoot. So, the FMPC+DenseNet method performs better than FMPC + DNN and has a
more stable trajectory. The DenseNet method offsets the disadvantage of a DNN and of-
fers a good desired path for FMPC.

6. Conclusions
This study utilized a flatness-based model predictive controller (MPC) to regulate the

movement of a quadcopter within a simulated environment. The controller’s performance
surpasses that of a typical PD controller, resulting in a more reliable trajectory-tracking
performance. To enhance the performance of FMPC, a DenseNet was trained to learn the

–4 –3 –2 –1 0 1 2 3 4
x(m)

–3

–2

–1

0

1

2

3

y(
m

) FMPC+DNN
Desired
FMPC+DenseNet

Figure 7. Trajectory 3 results of different methods. (a) Trajectory 3: DenseNet-output and
FMPC+DenseNet performance. (b) Trajectory 3: FMPC+DNN and FMPC+DenseNet performance.

When the DNN and DenseNet are combined with FMPC, the trajectory tracking
performance has improvements of 59% and 62% over the PD scenario, respectively, and
improvements of 37% and 41% over FMPC for trajectories 1 and 2. Figures 5b and 6b
show figures of the outcomes for trajectories 1 and 2, respectively, with the black line
representing the altered desired trajectory (DenseNet output) that is fed to the FMPC
controller. For trajectories 1 and 2, FMPC+DenseNet has improvements of 3% and 4% over
FMPC+DNN. For trajectory 3, although the PD and FMPC controllers resulted in instability,
the FMPC+DNN and FMPC+DenseNet architectures resulted in reliable tracking, but
that was at the cost of significant tuning to the original desired trajectory (as seen in
Figure 7). It can be seen in Figure 4 that FMPC+DenseNet has a better performance than
FMPC + DNN by about 11%. Hence, we can see that the DNN and DenseNet have learned
to adjust the desired path by always pulling it inwards into the direction of curvature, with
the amount of pull being proportional to the magnitude of velocities and accelerations.
For example, by comparing the output of the DenseNet for trajectory 1 vs. trajectory 3,
the amount of offset is much more significant in trajectory 3 since it requires movement at
much higher velocities and accelerations. From Figure 7b, we can see that FMPC+DNN has
a larger overshoot than FMPC+DenseNet. FMPC+DenseNet has a more stable trajectory,
and the DenseNet has essentially learned that the quadcopter always overshoots areas of

Actuators 2024, 13, 154 15 of 16

high curvature, so it pulled the desired trajectory in to compensate for this overshoot. So,
the FMPC+DenseNet method performs better than FMPC + DNN and has a more stable
trajectory. The DenseNet method offsets the disadvantage of a DNN and offers a good
desired path for FMPC.

6. Conclusions

This study utilized a flatness-based model predictive controller (MPC) to regulate the
movement of a quadcopter within a simulated environment. The controller’s performance
surpasses that of a typical PD controller, resulting in a more reliable trajectory-tracking
performance. To enhance the performance of FMPC, a DenseNet was trained to learn the
inverse dynamics of the system. The network was then utilized to modify the desired path
input for FMPC. When the controller faced potential instability without a DenseNet in
FMPC, it ensured steady tracking and enhanced the tracking accuracy. Future research
could evaluate the suggested framework under various model perturbations, such as
gusty weather conditions. Moreover, optimizing the FMPC can enhance the controller’s
prediction horizon, enhancing overall performance. Finally, the quadcopter’s inputs might
be limited throughout the process of solving the MPC optimization problem and creating
the minimum snap trajectories to ensure the safe operation of the quadcopter.

Future research could entail augmenting the training dataset for the DenseNet by
incorporating a more comprehensive range of trajectories and evaluating the suggested
framework under various model perturbations, such as gusty weather conditions. More-
over, optimizing the FMPC can enhance the controller’s prediction horizon, enhancing
overall performance. Finally, the quadcopter’s inputs might be limited throughout the pro-
cess of solving the MPC optimization problem and creating the minimum snap trajectories
to ensure the safe operation of the quadcopter.

Author Contributions: Conceptualization, Y.L. and Q.Z.; methodology, Y.L.; software, Y.L.; validation,
Y.L. and A.E.; formal analysis, Y.L. and A.E.; investigation, Y.L.; resources, Y.L.; data curation, Y.L.;
writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; visualization, Y.L.;
supervision, Q.Z.; project administration, Q.Z.; funding acquisition, Q.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: Funding was provided by the National Natural Science Foundation of China with project
grant number 52171299.

Data Availability Statement: All data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bristeau, P.; Callou, F.; Vissiere, D.; Petit, N. The navigation and control technology inside the ar. drone micro uav. IFAC Proc.

2011, 44, 1477–1484.
2. Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding horizon path planning for 3D exploration and surface

inspection. Auton. Robot. 2016, 42, 291–306. [CrossRef]
3. Rudol, P.; Doherty, P. Human body detection and geo localization for UAV search and rescue missions using color and thermal

imagery. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–8.
4. Han, J.; Chen, Y. Multiple UAV Formations for Cooperative Source Seeking and Contour Mapping of a Radiative Signal Field.

J. Intell. Robot. Syst. 2013, 74, 323–332. [CrossRef]
5. Bangura, M.; Mahony, R. Real-Time Model Predictive Control for Quadrotors. IFAC Proc. Vol. 2014, 47, 11773–11780. [CrossRef]
6. Wang, Y.; Boyd, S. Fast Model Predictive Control Using Online Optimization. IEEE Trans. Control. Syst. Technol. 2010, 18, 267–278.

[CrossRef]
7. Houska, B.; Ferreau, H.; Diehl, M. ACADO toolkit—An open source framework for automatic control and dynamic optimization.

Optim. Control Appl. Methods 2011, 32, 298–312. [CrossRef]
8. Greeff, M.; Schoellig, A.P. Flatness-Based Model Predictive Control for Quadrotor Trajectory Tracking. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6740–6745.
9. Zhou, S.; Helwa, M.K.; Schoellig, A.P. Design of Deep Neural Networks as Add-on Blocks for Improving Impromptu Trajectory

Tracking. In Proceedings of the IEEE Conference on Decision and Control (CDC), Melbourne, Australia, 12–15 December 2017;
pp. 5201–5207.

https://doi.org/10.1007/s10514-016-9610-0
https://doi.org/10.1007/s10846-013-9897-4
https://doi.org/10.3182/20140824-6-ZA-1003.00203
https://doi.org/10.1109/TCST.2009.2017934
https://doi.org/10.1002/oca.939

Actuators 2024, 13, 154 16 of 16

10. Primbs, J.A.; Nevistic, V. MPC extensions to feedback linearizable systems. In Proceedings of the American Control Conference
(ACC), Albuquerque, NM, USA, 1–6 June 1997; pp. 2073–2077.

11. Khotare, M.V.; Nevistic, V.; Morari, M. Robust constrained model predictive control for nonlinear systems: A comparative
study. In Proceedings of the IEEE Conference on Decision and Control (CDC), New Orleans, LA, USA, 13–15 December 1995;
pp. 2884–2889.

12. Hagenmeyer, V.; Delaleau, E. Exact feedforward linearization based on differential flatness. Int. J. Control. 2003, 76, 537–556.
[CrossRef]

13. Hagenmeyer, V.; Streif, S.; Zeitz, M. Flatness-based feedforward and feedback linearization of the ball & plate lab experiment. In
Proceedings of the 6th IFAC-Symposium on Nonlinear Control Systems (NOLCOS), Stuttgart, Germany, 1–3 September 2004;
pp. 233–238.

14. Milam, M.B. Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems. Ph.D. Thesis, California Institute of
Technology, Pasadena, CA, USA, 2003.

15. Fliess, M.; L’evine, J.; Martin, P.; Rouchon, P. Flatness and defect of non-linear systems: Introductory theory and examples. Int. J.
Control 1995, 61, 1327–1361. [CrossRef]

16. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2520–2525.

17. Petit, N.; Milam, M.B.; Murray, R.M. Inversion Based Constrained Trajectory Optimization. IFAC Proc. Vol. 2001, 34, 1211–1216.
[CrossRef]

18. Schoellig, A.P.; Mueller, F.L.; D’Andrea, R. Optimization based iterative learning for precise quadcopter trajectory tracking. Auton.
Robot. 2012, 33, 103–127. [CrossRef]

19. Berkenkamp, F.; Schoellig, A.P.; Krause, A. Safe controller optimization for quadrotors with gaussian processes. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 493–496.

20. Bristow, D.; Tharayil, M.; Alleyne, A. A survey of iterative learning control. IEEE Control. Syst. 2006, 26, 96–114. [CrossRef]
21. Assael, J.-A.M.; Wahlström, N.; Schön, T.B.; Deisenroth, M.P. Data-efficient learning of feedback policies from image pixels using

deep dynamical models. arXiv, 2015; arXiv:1510.02173v2.
22. Li, Q.; Qian, J.; Zhu, Z.; Bao, X.; Helwa, M.K.; Schoellig, A.P. Deep neural networks for improved, impromptu trajectory

tracking of quadrotors. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 5183–5189.

23. Lenz, I.; Knepper, R.; Saxena, A. DeepMPC: Learning deep latent features for model predictive control. In Proceedings of the
Robotics Scienceand Systems, Rome, Italy, 13–17 July 2015; pp. 201–209.

24. Hunt, K.J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P.J. Neural networks for control systems a survey. Automatica 1992, 28,
1083–1112. [CrossRef]

25. Balakrishnan, S.; Weil, R. Neurocontrol: A literature survey. Math. Comput. Model. 1996, 23, 101–117. [CrossRef]
26. Bansal, S.; Akametalu, A.K.; Jiang, F.J.; Laine, F.; Tomlin, C.J. Learning quadrotor dynamics with neural nets for flight control.

arXiv 2016, arXiv:1610.05863.
27. He, W.; Dong, Y.; Sun, C. Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation. IEEE Trans. Syst.

Man Cybern. Syst. 2016, 46, 334–344. [CrossRef]
28. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
29. Kamel, M.; Burri, M.; Siegwart, R. Linear vs. Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial

Vehicles. IFAC-Pap. 2017, 50, 3463–3469. [CrossRef]
30. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/0020717031000089570
https://doi.org/10.1080/00207179508921959
https://doi.org/10.1016/S1474-6670(17)35349-1
https://doi.org/10.1007/s10514-012-9283-2
https://doi.org/10.1109/mcs.2006.1636313
https://doi.org/10.1016/0005-1098(92)90053-I
https://doi.org/10.1016/0895-7177(95)00221-9
https://doi.org/10.1109/TSMC.2015.2429555
https://doi.org/10.1016/j.ifacol.2017.08.849

	Introduction
	System Description
	Background Knowledge
	Methodology
	Differential Flatness Formulation
	Flatness-Based Model Predictive Control
	Improvement via Learning

	Experiment Results
	Experiment Introduction
	Training the DenseNet
	Results

	Conclusions
	References

