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Abstract: This paper presents a unified Lyapunov-based predefined-time stability theorem that in-
cludes three sufficient conditions. The standard theoretical analysis method for achieving predefined-
time stability of non-linear systems using this theorem is provided within the framework of Lyapunov
theory. The developed Lyapunov-based theorem facilitates the establishment of equivalence between
the existing Lyapunov theorems concerning predefined-time stability. Furthermore, when the pre-
sented sufficient conditions are relaxed, the predefined-time stability conclusion for non-linear
systems degenerates into a finite-time one. Consequently, a standard non-singular sliding mode
control framework based on the unified Lyapunov-based theorem is developed for a Lagrangian
system to ensure its predefined-time stability. Exemplary numerical simulation results are subse-
quently given, in order to illustrate the convergence behavior of the system states and confirm that
the controlled systems are predefined-time stable.

Keywords: predefined-time stability; non-linear control system; sliding mode control; Lyapunov theory

1. Introduction

The convergence rate is an important index for evaluating the control performance
of a controlled system. The finite-time control method was introduced to attain rapid
stability [1], thereby addressing limitations inherent in asymptotically stable control systems
characterized by infinite convergence time. The convergence time is contingent upon the
system’s initial states, resulting in a variable settling time corresponding to different initial
states that becomes indeterminate. The fixed-time control method was defined to make the
upper bound on the convergence time less conservative [2,3], and severs the dependence
of settling time on the system’s initial states. However, it involves a complex function with
multiple control gains to characterize the upper bound of the convergence time, making
it challenging to arbitrarily select a convergence time through the tuning of multiple
control gains. To this end, the predefined-time control technique, with the settling time
as an explicit parameter that can be determined in advance, was discussed in [4–8]. This
approach has greater flexibility in determining the settling time than finite- and fixed-time
control methodologies, thus facilitating the design of observers and controllers that are
suitable for addressing challenges necessitating adherence to rigorous time constraints.

Lyapunov theory—an effective instrument for analyzing the stability of control systems—
is often combined with sliding mode control, backstepping control, and adding power
integrator techniques to design controllers to ensure asymptotic [9], finite-time [10–12],
fixed-time [13–15], and predefined-time [16,17] stability of the controlled system. In particu-
lar, the sliding mode control technique is usually used to design a controller to guarantee the
controlled system’s finite-time stability [17–22]. As detailed in [4,23,24], some paradigms
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of the predefined-time controller were formulated to achieve the control requirements of
second-order non-linear systems featuring uncertainties, but challenges related to the sin-
gularity of sliding mode control were encountered. To overcome this drawback, alternative
non-singular predefined-time sliding mode controllers were presented in [17,20,25]. The
aforementioned predefined-time controllers, designed using different Lyapunov-based
predefined-time stability theorems, can be applied to many systems and exhibit predefined-
time stability properties. In fact, through analyzing these theorems, one can derive a unified
Lyapunov theorem that covers the existing Lyapunov theorems presented in [6,19,23,26],
equally ensuring the predefined-time stability of non-linear systems.

On the basis of Lyapunov theory, this study develops a unified Lyapunov-based
theorem guaranteeing the predefined-time/finite-time stability of non-linear systems. The
main contributions are stated as follows:

(1) A unified Lyapunov theorem with three sufficient conditions is proposed, which guar-
antees that non-linear systems achieve predefined-time stability. This differs from that
reported in [6], which stated that a strictly increasing K1 regulator function is required
for the Lyapunov-based predefined-time stability theorem to hold true, thus restrict-
ing the Lyapunov-based predefined-time theorem’s selection. The results presented
in this paper relax this constraint. The new Lyapunov-based predefined-time stability
theorem allows for the use of an arbitrary, strictly monotonically bounded increasing
or decreasing regulator function. Moreover, it serves to unify the Lyapunov-based
predefined-time stability theorems for non-linear systems previously published in the
literature [6,19,25–27].

(2) A unified finite-time stability solution for non-linear systems using Lyapunov theory is
derived. Despite the widespread application of the Lyapunov-based finite-time stabil-
ity theorem, this study’s results not only uncover additional potential Lyapunov-based
finite-time stability theorems through the selection of different strictly monotonically
unbounded increasing or decreasing regulator functions but also cover the existing
Lyapunov-based finite-time stability theorems in [28–30].

(3) Using the sliding mode control technique and the proposed unified Lyapunov-based
predefined-time stability theorem, a class of non-singular predefined-time sliding
mode control frameworks is developed for a second-order Lagrangian system, en-
suring its predefined-time stability. Simulation examples further substantiate the
effectiveness of the aforementioned control method, and the simulation results pro-
vide a comprehensive exposition of the proposed controller’s behavior, including its
control accuracy and settling time.

The subsequent sections of this work are organized as follows: The preliminaries and
motivation are given in Section 2. Section 3 presents the unified predefined-/finite-time
stability conclusions. A standard predefined-time controller design method is developed in
Section 4. The numerical simulation examples carried out to validate the effectiveness of the
proposed control method are detailed in Section 5. Finally, Section 6 concludes this paper.

2. Preliminaries and Motivation
2.1. Notation

For the convenience of reading, the following notation is used: R is a set of real
numbers. Let Rm be the m-dimensional Euclidean space. For χ ∈ Rn, χ> denotes its
transpose, and χ̇ = dχ

dt denotes the time derivative of χ. For a scalar function h(χ) : Rn →
R, eh(χ) represents a standard exponential function with a natural constant e as the base,
and |h(χ)| denotes the absolute value of h(χ). A function P(χ) : [0, ∞)→ [0, a) is said to
be a class Ka function if it is strictly increasing with P(0) = 0.
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2.2. Definitions

Consider the following non-linear system:

ẋ = f (x; u), (1)

where x ∈ Rn is the system state, u ∈ Rm stands for the control input, and x0 is the system’s
initial state. The origin x = 0 is the unique equilibrium of the system (1). The smooth
function f : Rn ×Rm → Rn such that the solutions Ψ(t, x0) of system (1) exist and are
unique in the sense of Filippov.

Definition 1 ([6]). The origin of system (1) is said to be Lyapunov stable if, for any initial state
x0 ∈ Rn, the solution Ψ(t, x0) is well defined for all t ≥ 0. Additionally, for any arbitrarily chosen
ε > 0, there exists a corresponding δ > 0 such that, for any x0 ∈ Rn satisfying x0 ∈ Bδ(0), it
follows that Ψ(t, x0) ∈ Bε(0) for all t ≥ 0.

Definition 2 ([3]). The origin of system (1) is regarded as having asymptotic stability when it
exhibits Lyapunov stability and satisfies the condition that Ψ(t, x0)→ 0 as t→ ∞ for any initial
state vector x0 ∈ Rn.

Definition 3 ([3]). The origin of system (1) is deemed finite-time stable if it satisfies Lyapunov
stability and, for any x0 ∈ Rn, there exists a settling time function T(x0) such that Ψ(t, x0) = 0
for all t ≥ T(x0).

Definition 4 ([3]). The origin of system (1) is considered to be fixed-time stable if it satisfies
finite-time stability and if its settling time, denoted by T(x0), is constrained by a bound; that is,
there exists Tmax such that supx0∈Rn T(x0) ≤ Tmax < ∞.

Definition 5 ([6]). The origin of system (1) is designated as predefined-time stable if it satisfies
fixed-time stability and, for any predefined time constant Tc > 0, the settling time of system (1)
adheres to the condition supx0∈Rn T(x0) ≤ Tc.

2.3. Motivating Example

Consider the common finite-time stable first-order scalar system [31].

ẋ = −kxη , (2)

with k > 0 and 0 < η < 1, where x represents the system state. Let x0 be the initial
value of the system state. Its state trajectory is finite-time stable by Lyapunov analysis
with a positive function V = 1

2 x2 selected. The upper bound of the convergence time

can be determined as t ≤ 1

k(1−η)2
η−1

2
|V0|

1−η
2 with V0 = 1

2 x2
0. When x0 → +∞, one obtains

V0 → +∞. As the initial value increases, the convergence time will also synchronously
increase. Hence, we will give a solution that the system’s settling time is independent of the
initial condition and can be assigned arbitrarily. Hence, for the dynamics system (2), we can
rewrite its right-hand control input to make it a predefined-time stable system as follows:

ẋ = − 1
2pTc

eVp
V−px, (3)

with 0 < p < 1 and Tc > 0 being the predefined time constant. Taking the time derivative
of V yields

dV
dt

= − 1
pTc

eVp
V1−p < 0, ∀x 6= 0. (4)
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Intuitively, the scalar system (3) is asymptotically stable due to the fact that eVp
> 0 always

holds. Simultaneously, we can compute its convergence time. Rewriting (4) yields

dψ(V)

dt
= − 1

Tc
, (5)

where ψ(V) = 2− e−Vp
is an increasing function with ψ(V) ∈ [1, 2). Therefore, ψ(V) will

decrease to the minimum ψT = 1 from any initial value ψ(V0) < 2. Integrating (5) yields∫ ψT

ψ(V0)
1dψ = −

∫ T

0

1
Tc

dt. (6)

We simplify (6) to obtain T = (ψ(V0)− ψT)Tc ≤ Tc. From (5) and (6), it can be
proved that T ≤ Tc is valid for any ψ(V0) decreasing to the minimum of ψ(V). The
Lyapunov candidate V also converges to zero simultaneously, and the selected V is radially
unbounded. For any initial system state x0, it can converge to the equilibrium when T > Tc.

3. Unified Predefined-/Finite-Time Stability Theorem

This section explores the sufficient conditions for ensuring that non-linear systems
exhibit predefined-/finite-time stability within the framework of Lyapunov theory. We
endeavor to establish a unified Lyapunov-based predefined-/finite-time stability theorem
that not only can yield more potential Lyapunov-based predefined-/finite-time stability
theorems but also covers the existing Lyapunov predefined-/finite-time stability theorems
through the selection of different regulator functions.

Theorem 1. For system (1), if there exists a regulator function ψ(V), with V being a positive,
radically unbounded function, and the following three sufficient conditions are satisfied:

(i) ∀x ∈ Rn, ψ(V) ∈ [a, b), ψ(0) = a with a ∈ R and b ∈ R;
(ii) ∀x ∈ Rn, dψ

d(Vp)
> 0 with 0 < p < 1;

(iii) ∀x 6= 0, dV
dt ≤ −

b−a
dψ

d(Vp)

V1−p

pTc
with Tc > 0,

then system (1) is predefined-time stable, and the upper bound of the settling time is Tc.

Proof. Remember the system (1) and the candidate Lyapunov chosen as V = 1
2 x>x. If the

planned control input can make the Lyapunov function V meet sufficient condition (iii)
in Theorem 1, then it is easy to observe that the system’s origin is Lyapunov asymptotic
stable. Next, taking the time derivative of ψ and invoking sufficient condition (iii) in
Theorem 1 yields

dψ

dt
=

dψ

dV
dV
dt

= pVp−1 dψ

d(Vp)

dV
dt
≤ − b− a

Tc
. (7)

From (7), the function ψ(V) will stabilize at its minimum ψT = ψ(0) = a from any ini-
tial value ψ0 = ψ(V0) < b. Therefore, the selected V also decreases to zero simultaneously.
Then, we calculate the convergence time of ψ(V) from the initial state ψ0 to the minimum
ψT . Integrating both sides dψ ≤ − b−a

Tc
dt with respect to time, we have

∫ ψT

ψ0

dψ ≤ −
∫ T

0

b− a
Tc

dt. (8)

As a consequence, the following inequality holds:

T ≤ (ψ0 − ψT)Tc

b− a
=

(ψ0 − a)Tc

b− a
≤ Tc. (9)

Hence, ψ(V) decreases from an arbitrary initial value ψ0 to the minimum ψT , whose
convergence time satisfies T ≤ Tc. Through the introduction of the function ψ(V), as it
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undergoes a decrease from its initial value to the minimum within the predefined time Tc,
its independent variable V simultaneously converges to the origin. Consequently, the state
of system (1), starting from any arbitrary initial state x0, exhibits convergence toward the
equilibrium state x ≡ 0 when T ≥ Tc.

Through the above analysis, a unified predefined-time stability theorem using the
Lyapunov theory has been presented. The choice of function ψ(V) is critical to obtaining
the Lyapunov theorem and predefined-time stability. Moreover, the existing Lyapunov
predefined-time stability theorems documented in the literature [19,23,26] can be regarded
as special cases of Theorem 1. Several examples are given in the following:

Example 1. A specified regulator function ψ(V) = b− e−αVp
is selected, with b ∈ R, α > 0, and

0 < p < 1. The fact that ψ(V) ∈ [b− 1, b) always holds implies that b− a = 1. Differentiating
ψ(V) with respect to Vp, one has dψ(V)/dVp = αe−αVp

. Thus, sufficient condition (iii) in
Theorem 1 becomes

dV
dt
≤ − b− a

αpTc
eαVp

V1−p, ∀x 6= 0. (10)

Using Theorem 1, the system (1) is predefined-time stable with convergence time such that T < Tc.
When selecting α = 1, formula (10) reduces to dV

dt ≤ −
1

pTc
eVp

V1−p, ∀x 6= 0. Hence, this specific
case covers the results in [23].

Example 2. A particular selection of the regulator function ψ(V) = arcsin(tanh(Vp)) is given,
with 0 < p < 1. Using simple mathematical operations, one has ψ(V) ∈ [0, π

2 ).
Therefore, b − a = π

2 . Differentiating ψ(V) with respect to Vp, it can be deduced that
dψ(V)/dVp =

√
1− tanh(Vp). The sufficient condition (iii) in Theorem 1 is given as follows:

dV
dt
≤ − b− a

pTc
cosh(Vp)V1−p, ∀x 6= 0. (11)

On the basis of Theorem 1, system (1) is stable within predefined time Tc. Further, Formula (11)
can be rewritten as dV

dt ≤ −
π

2pTc
cosh(Vp)V1−p, ∀x 6= 0. This is identical to the result provided

in [26].

Example 3. Choosing a regulator function ψ(V) = arctan(
√

β
α Vp) with α > 0, β > 0, and

0 < p < 1, one can conclude that ψ(V) ∈ [0, π
2 ); that is, b − a = π

2 . Differentiating ψ(V)
with respect to Vp, it can be derived as dψ(V)/dVp =

√
αβ/(α + βV2p). Thus, the sufficient

condition (iii) in Theorem 1 becomes

dV
dt
≤ − b− a

p
√

αβTc

(
αV1−p + βV1+p

)
, ∀x 6= 0. (12)

Using Theorem 1, the state of system (1) converges to the origin when T ≥ Tc. If α = 1 and β = 1
are selected, the inequality (12) reduces to V̇ ≤ − π

2pTc

(
V1−p + V1+p), which is equivalent to

Theorem 1 of [19] with the special selection.

Example 4. To achieve predefined-time stability of system (1), a generalized Lyapunov-like theorem
has been provided in [6]. As the inequality ψ̇(V) ≤ − 1

(1−p)Tc
ψp(V) needs to be satisfied and the

derived settling time function T = Tc(ψ(V0))
1−p ≤ Tc should be met, it requires a strict constraint

that the function ψ(V) ∈ [0, 1) is a K1 function. In contrast, the theorem reported in this study
breaks this constraint. Only an arbitrary increasing function ψ(V) ∈ [a, b) is needed, increasing
the flexibility in selecting ψ(V). As such, the unified Lyapunov-based predefined-time stability
Theorem 1 was derived, which can ensure the predefined-time stability of the controlled system. Due
to the fact that the interval [0, 1) can be included in the interval [a, b), the results in [6] are covered
by Theorem 1.
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Therefore, the aforementioned Lyapunov-based predefined-time stability examples
are covered by Theorem 1 with a specific regulator function ψ(V).

Corollary 1. For system (1), if there is a regulator function ψ(V), with V being a positive and
radically unbounded function, and the following three sufficient conditions are satisfied:

(i) ∀x ∈ Rn, ψ(V) ∈ (a, b], ψ(0) = b with a ∈ R and b ∈ R;
(ii) ∀x ∈ Rn, dψ

d(Vp)
< 0 with 0 < p < 1;

(iii) ∀x 6= 0, dV
dt ≤

b−a
dψ

d(Vp)

V1−p

pTc
with Tc > 0,

then system (1) is predefined-time stable, and the upper bound of the settling time is Tc.

Proof. Consider the system (1) and the regulator function ψ(V) with V = 1
2 x>x. Develop

a control input to make the Lyapunov function V satisfy the sufficient condition (iii) in
Corollary 1. The straightforward derivation of the result regarding the system’s origin is
asymptotically stable.

Then, taking the time derivative of ψ(V) and invoking sufficient condition (iii) in
Corollary 1 yields dψ

dt ≥
b−a
Tc

, which means that the function ψ(V) will stabilize at its
maximum ψT = ψ(0) = b from any initial value ψ0 = ψ(V0) > a. Therefore, the selected V
also decreases to zero simultaneously. Then, we calculate the convergence time of ψ(V)
from the initial state ψ0 to the maximum ψT . Integrating both sides dψ ≥ b−a

Tc
dt, one obtains∫ ψT

ψ0
dψ ≥

∫ T
0

b−a
Tc

dt. As a consequence, the following holds:

T ≤ − (ψ0 − ψT)Tc

b− a
=

(b− ψ0)Tc

b− a
≤ Tc. (13)

Hence, ψ(V) from arbitrary initial value ψ0 to the maximum ψT has convergence time such
that T ≤ Tc. When the function ψ(V) increases from the initial value to the maximum value
within the predefined time Tc, its independent variable V also converges synchronously to
the origin. Therefore, the system state in (1) from the arbitrary initial state x0 converges to
the equilibrium x ≡ 0 when T > Tc.

Summarizing the analysis of Theorem 1 and Corollary 1, the predefined-time stability
of system (1) can be guaranteed. On this basis, we can obtain a series of predefined-time
stable dynamic systems. We give the standard predefined-time controller design process
as follows:

S1. Choose a strictly monotonically increasing function ψi(·) or decreasing function ψd(·);
S2. Choose a positive Lyapunov candidate V = 1

2 x>x to obtain the functions ψi(Vp) and ψd(Vp),
with 0 < p < 1. The two functions satisfy ψi(·) ∈ [a, b) with ψi(0) = a and ψd(·) ∈ (a, b],
where ψd(0) = b;

S3. Take the derivatives of ψi(Vp) and ψd(Vp) with respect to Vp;
S4. Construct a Lyapunov inequality form of V̇ to meet the following inequalities: ψ̇i(Vp) < −1/Tc

and ψ̇d(Vp) > 1/Tc;
S5. Design a control input u to meet the Lyapunov form of V̇ in step S4 and guarantee the

predefined-time stability of the system (1).

Summarizing the above analysis, let the Lyapunov function V be the independent vari-
able of the strictly monotonically increasing/decreasing bounded function ψi(V) ∈ [a, b)
or ψd(V) ∈ (a, b]. Utilizing the characteristics of the monotonic regulator function ψi(V)
or ψd(V) forces V to decay to zero with the regulator function decreasing/increasing to
its minimum/maximum. Therefore, we establish an equivalent relationship between the
system’s convergence and the decreasing/increasing characteristics of the regulator func-
tion, further reflecting the system’s settling time. The selection of the regulator functions
ψi(·) and ψd(·) is key to achieving predefined-time stability. Some examples of regulator
functions are listed in Table 1.
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Table 1. Candidate examples for Theorem 1 and Corollary 1.

Regulator Functions Predefined-Time Stability Theorem Parameters

ψi =
qVp

Vp+k , V̇ ≤ − 1
kpTc

(Vp + k)2V1−p 0 < p < 1, q > 0, k > 0, Tc > 0

ψi = n tanh(mVp), V̇ ≤ − 1
4mpTc

(emVp
+ e−mVp

)2V1−p 0 < p < 1, n > 0, m > 0, Tc > 0

ψi = m
∫ z1

− ln n
m

e−mxdx, V̇ ≤ − 1
mpTc

(Vp + 1)m+1V1−p z1 = ln(Vp + 1), 0 < p < 1, n > 1, m > 0, Tc > 0

ψi = ( V√
V2+ε

)p, V̇ ≤ − 1
εpTc

(V2 + ε)1+ p
2 V1−p 0 < p < 1, ε > 0, Tc > 0

ψi = q− e−αVp
, V̇ ≤ − 1

αpTc
eαVp

V1−p 0 < p < 1, α > 0, q > 0, Tc > 0

ψi = arcsin(tanh(Vp)), V̇ ≤ − π
2pTc

cosh(Vp)V1−p 0 < p < 1, Tc > 0

ψi = arctan(
√

β
α Vp), V̇ ≤ − π

2p
√

αβTc
(αV1−p + βV1+p) 0 < p < 1, α > 0, β > 0, Tc > 0

ψd = q + e−αVp
, V̇ ≤ − 1

αpTc
eαVp

V1−p 0 < p < 1, α > 0, q > 0, Tc > 0

ψd = n
m+eαVp , V̇ ≤ − 1

αp(m+1)Tc
(m + eαVp

)2e−αVp
V1−p 0 < p < 1, α > 0, m > 0, n > 0, Tc > 0

ψd = 1
Vp+k , V̇ ≤ − 1

kpTc
(Vp + k)2V1−p 0 < p < 1, k > 0, Tc > 0

· · · · · · · · ·

Moreover, if the regulator function ψ(V) in Theorem 1 does not meet the sufficient
condition (i), and ψ(V) ∈ [a,+∞) is a strictly monotonically increasing unbounded func-
tion, the conclusion of Theorem 1 degenerates into a finite-time one. The following unified
finite-time stability corollaries based on Theorem 1 are presented.

Corollary 2. For the system (1), if there is a regulator function ψ(V), with V being a positive and
radically unbounded function, and the following three sufficient conditions are satisfied:

(i) ∀x ∈ Rn, ψ(V) ∈ [a,+∞), ψ(0) = a with a ∈ R;
(ii) ∀x ∈ Rn, dψ

d(Vp)
> 0 with 0 < p < 1;

(iii) ∀x 6= 0, dV
dt ≤ −

1
dψ

d(Vp)

V1−p

pTc
with Tc > 0,

then system (1) is finite-time stable, and the upper bound of the settling time is (ψ(V0)− a)Tc.

Proof. The upper bound of the settling time can also be computed using a similar method
as in Theorem 1. Now, differentiating ψ(V) and invoking condition (iii) in Corollary 2,
one obtains dψ(V)

dt ≤ − 1
Tc

. Therefore, ψ(V) will decrease to the minimum ψT = a from

the initial value ψ(V0). Integrating it on both sides yields
∫ ψT

ψ(V0)
1dψ ≤ −

∫ T
0

1
Tc

dt. Then,
we have T ≤ (ψ(V0)− a)Tc. Thus, it is proved that any ψ(V0) decreases to the minimum
of ψ(V) when T > (ψ(V0)− a)Tc. The Lyapunov candidate V also converges to zero
simultaneously. The selected V is radially unbounded. For any initial system state x0,
it can converge to the equilibrium when T > (ψ(V0)− a)Tc. Therefore, we can further
summarize the following Lyapunov-based finite-time stability corollary on the basis of
Corollary 1.
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Corollary 3. For system (1), if there is a regulator function ψ(V), with V being a positive and
radically unbounded function, and the following three sufficient conditions are satisfied:

(i) ∀x ∈ Rn, ψ(V) ∈ (−∞, a], ψ(0) = a with a ∈ R;
(ii) ∀x ∈ Rn, dψ

d(Vp)
< 0 with 0 < p < 1;

(iii) ∀x 6= 0, dV
dt ≤

1
dψ

d(Vp)

V1−p

pTc
with Tc > 0,

then system (1) is finite-time stable, and the upper bound of the settling time is (a− ψ(V0))Tc.

Proof. The analysis process is similar to Corollary 1 and, thus, is omitted here.

Selection of the regulator function ψ(V) is important in deriving the Lyapunov-based
finite-time stability theorem and ensuring the finite-time stability of the controlled system.
Moreover, the existing Lyapunov-based finite-time stability theorems documented in the
literature [28–30] can be regarded as special cases of Corollary 2. Several examples are
given in the following:

Example 5. A specified regulator function ψ(V) = kVp is selected with k > 0 and 0 < p < 1,
such that ψ(V) ∈ [0,+∞) always holds. Differentiating ψ(V) with respect to Vp, one has
dψ(V)/dVp = k. Thus, sufficient condition (iii) in Corollary 2 becomes

dV
dt
≤ − 1

kpTc
V1−p, ∀x 6= 0. (14)

Using Corollary 2, system (1) is finite-time stable when T > (kVp
0 )Tc, where Tc > 0 is a time

constant. When selecting k = 1, formula (14) reduces to dV
dt ≤ −

1
pTc

V1−p, ∀x 6= 0. Hence, this
special case covers the results in [28,29].

Example 6. A special selection of ψ(V) = ln(Vp + 1) is chosen, with 0 < p < 1. Using simple
mathematical operations, one has ψ(V) ∈ [0,+∞). Differentiating ψ(V) with respect to Vp, it
can be derived as dψ(V)/dVp = 1/(Vp + 1). The sufficient condition (iii) in Corollary 2 is given
as follows:

dV
dt
≤ − 1

pTc
V1−p − 1

pTc
V, ∀x 6= 0. (15)

On the basis of Corollary 2, the system (1) is stable within finite time ln(Vp
0 + 1)Tc, where Tc > 0

is a time constant. This is identical to the result of [30].

Summarizing the above analysis for Corollaries 2 and 3, the finite-time stability of
system (1) can be guaranteed. On this basis, we can obtain a series of finite-time stable
dynamic systems. Let the candidate Lyapunov function V be the independent variable
of the strictly monotonically increasing/decreasing unbounded function ψi(V) ∈ [a, ∞)
or ψd(V) ∈ (−∞, b]. Utilizing the characteristics of the monotonic regulator function
ψi(V) or ψd(V) forces V to decay to zero with the regulator function decreasing/increasing
to its minimum/maximum. Therefore, we establish an equivalent relationship between
the system’s convergence and the decreasing/increasing characteristics of the regulator
function, which further reflects the system’s settling time. Therefore, the selection of a de-
creasing/increasing regulator function is important in the derivation of Corollaries 2 and 3.
Some possible regulator functions are listed in Table 2.
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Table 2. Candidate examples for Corollaries 2 and 3.

Regulator Functions Finite-Time Stability
Condition Parameters Upper Bound of

Settling Time

ψi = ln(mVp + 1) V̇ ≤ − 1
mpTc

(mV + V1−p) 0 < p < 1, m > 0, Tc > 0 T ≤ ln(mVp
0 + 1)Tc

ψi = βVp V̇ ≤ − 1
βpTc

V1−p 0 < p < 1, β > 0, Tc > 0 T ≤ βVp
0 Tc

ψi = eVp
V̇ ≤ − 1

pTc
e−Vp

V1−p 0 < p < 1, Tc > 0 T ≤ (eVp
0 − 1)Tc

ψi =
√

Vp + 1 V̇ ≤ − 2
pTc

√
Vp + 1V1−p 0 < p < 1, Tc > 0 T ≤ (

√
Vp

0 + 1− 1)Tc

ψd = −αVp V̇ ≤ − 1
αpTc

V1−p 0 < p < 1, α > 0, Tc > 0 T ≤ αVp
0 Tc

· · · · · · · · · · · ·

4. Standard Predefined-Time Controller Design

Due to the fact that many actual mechanical systems, including robot manipulator sys-
tems [32], unmanned aerial vehicles [33,34], and spacecraft attitude control systems [35,36],
are typically described by the Lagrangian dynamic equations of motion, the study objective
of this section is to develop a standard predefined-time controller design method for the
Lagrangian system considering external disturbances. The associated mathematical model
is given as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fu = u, (16)

where q ∈ Rn, q̇ ∈ Rn; q̈ ∈ Rn denote the generalized position, velocity, and accelera-
tion vectors, respectively; M(q) ∈ Rn×n is a positive definite moment of inertia matrix;
C(q, q̇) ∈ Rn×n is the centripetal Coriolis matrix; G(q) ∈ Rn is the gravity vector; Fu ∈ Rn

represents the uncertainty vector; and u ∈ Rn denotes the control input. For the conve-
nience of controller design, let x1 = q and x2 = q̇. Therefore, the Lagrangian system (16)
with n = 1 can be rewritten as follows:{

ẋ1 = x2

ẋ2 = f (x1, x2) + g(x1, x2)u + w
, (17)

where x = [x1 x2]
> ∈ R2 is the available state vector; g(x1, x2) = M−1(x1) and

f (x1, x2) = M−1(x1)(C(x1, x2)x2 +G(x1)) are known non-linear functions; w = M−1(x1)Fu
denotes the disturbances and system uncertainties, which satisfies |w| ≤ b where b is a
positive scalar; and u ∈ R is the control input.

Through the application of Theorem 1, a standard predefined-time controller design
method is presented here based on the sliding mode control technique for system (17).
In the control framework, a new predefined-time sliding mode surface is first designed
using piecewise function methods, in order to avoid potential singularities. A non-singular
sliding mode controller is then designed, which ensures that the system (17) is predefined-
time stable.

Choose a regulator function ψ1(·) ∈ [a, b) which satisfies the sufficient conditions
(i) and (ii) in Theorem 1, and define V1 = 1

2 x2
1. For the system (17), a novel non-singular

sliding mode surface is designed as follows:
s =x2 +

(b− a)Vq
1 x1Φ

2p1T1

Φ =

{
H1V−p1−q

1 , V1 ≥ η0
H1(k1V1 + k2V2

1 ), V1 < η0

, (18)
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where 0 < p1 < 1
2 , q > 1, η0 > 0, and H1 = 1/h1 with h1 = dψ1

dV
p1

1
; T1 > 0 is a predefined-

time constant; and k1 = 2η
−1−p1−q
0 and k2 = −η

−2−p1−q
0 are selected to meet the continuity

of s. Differentiating s yields

ṡ = ẋ2 +
(b− a)(Φ̇Vq

1 x1 + x2Vq
1 Φ + qVq−1

1 V̇1Φx1)

2p1T1
. (19)

The terms x2Vq
1 Φ and qVq−1

1 V̇1Φx1 are non-singular. Then, Φ̇ can be computed from (18),
as follows:

Φ̇ =

{
Ḣ1V−p1−q

1 + (−p1 − q)V−p1−q−1
1 V̇1H1, V1 ≥ η0

Ḣ1(k1V1 + k2V2
1 ) + H1(k1V̇1 + 2k2V1V̇1), V1 < η0

, (20)

where Ḣ1 = − dh1
dV

p1
1

p1Vp1−1
1 V̇1/h2

1. Specifically, it can be observed that, when V1 ≥ η0 > 0,

Φ̇ will not exhibit singularity. When V1 < η0, it is possible for the term Ḣ1 to have a
negative power term of x1. Then, according to the definition of V1, assuming the term

dh1
dV

p1
1

p1Vp1−1
1 V̇1 = |x1|−ηχ(x1, ẋ1) with η ≥ 0 and limx1→0 χ(x1, ẋ1) = 0 is reasonable,

χ(x1, ẋ1) denotes a smooth function. Hence, the limit of the term
Ḣ1Vq

1 x1 = limx1→0
x1χ(x1,ẋ1)

2q |x1|1−(2q+1−η) exists when 2q + 1− η > 1. Therefore, there is no singu-

larity for the term Φ̇Vq
1 x1 when an appropriate q is selected. For system (17), the control

input u is designed as

u =g−1(x1, x2)
(
−
(b− a)(Φ̇Vq

1 x1 + x2Vq
1 Φ + qVq−1

1 V̇1Φx1)

2p1T1

− (b−a)Hss
2T2 p1

V−p1
2 − bsign(s)− f (x1, x2)

) , (21)

where Hs = 1/ dψ1(V2)

dV
p1

2
and κ > 0. T2 > 0 is the predefined convergence time, and V2 = 1

2 s2

is a Lyapunov function. Summarizing the above analysis, the presented predefined-time
sliding mode controller (21) has no singularity.

Theorem 2. In view of the system (17), if the sliding mode surface is designed as (18) and the
non-singular predefined-time sliding mode controller is designed as (21), the states x1 and x2 will
converge to a small region around zero along the surface within a predefined-time T = T1 + T2.

Proof. Taking the time derivative of V2 and inserting (21) and (19), one has

V̇2 =s
(

f (x1, x2) + g(x1, x2)u + w− (b− a)Hss
2T2 p1

V−p1
2 − bsign(s)

)
≤− b− a

2HsT2 p1
V1−p1

2

. (22)

From (22), V2 will converge to zero within the predefined time T2 on the basis of
Theorem 1. The ideal sliding mode motion is established simultaneously. Once s reaches
zero, the designed sliding surface (18) satisfies s = 0. Then, one has x2 = − (b−a)H1x1

2p1T1
V−p1

1

when |x1| ≥
√

2η0. Taking the time derivative of V1, one can obtain V̇1 = − H1
p1Tc

V1−p1
1 .

Using Theorem 1, x1 and x2 will converge to the origin along the sliding manifold within
the predefined time T1. When |x1| <

√
2η0 approaches zero along the general sliding

manifold, one has x2 = − (b−a)Vq
1 H1x1

2p1T1
(k1V1 + k2V2

1 ). The second phase of s in (18) is
asymptotically stable. Hence, the predefined-time convergence of system state x1—that
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is, limt→(T1+T2)
|x1| <

√
2η0—is achieved, and the singularity problem of predefined-time

sliding control can be circumvented.
Moreover, the presented Theorem 1 can also be applied for the stability analysis of high-

order non-linear systems. In this case, the recursive sliding mode control scheme [37–39] or
integral high-order sliding controller [40–42] can be designed to stabilize the high-order
systems. In the sliding mode control method, the proposed Theorem 1 can be used for
the controller design of the reaching phase. One can construct a controller to satisfy the
condition (iii) of Theorem 1, ensuring that the system states reach the sliding mode surface
within a predefined time. Once the ideal sliding mode is established, the system states will
converge to the origin along the sliding mode surface. Therefore, the stability of high-order
non-linear systems can be achieved.

5. Simulation Examples

To validate the previous theoretical results, the proposed predefined-time control
framework (21) was applied to a second-order Lagrangian system and an actual attitude
control system, and the effectiveness of the designed control scheme was verified through
numerical simulation.

5.1. Predefined-Time Controller for a Second-Order Lagrangian System

Consider system (17) with f (x1, x2) = (x1 + 1)2(x2
2 + x2 sin(x1)), g(x1, x2) = (x1 + 1)2,

and w = sin(t)(x1 + 1)2. The control input is given by (21). In order to verify that,
under different initial conditions, the designed predefined-time controllers can ensure that
the state converges to the vicinity of the origin within a predefined time, Monte Carlo
simulations with 500 dispersed scenarios were conducted. In the simulation, the initial
conditions of x1 and x2 satisfied x1(0) ∈ [−1300, 1300] and x2(0) ∈ [−100, 100], respectively.

On the one hand, for the sliding surface (18), we selected a monotonically increasing
regulator function ψ1(ν) = b/(a + e−ανp1 ) with 0 < p1 < 1, α > 0, a > 0, and b > 0. One

can obtain that ψ1(ν) ∈ [ b
a+1 , b

a ). Therefore, one has H1 = 1
bα (a + e−αV

p1
1 )2eαV

p1
1 > 0 and

Hs =
1

bα (a + e−αV
p1

2 )2eαV
p1

2 > 0. Thus, the sufficient conditions (i) and (ii) for the regulator
function ψ(·) in Theorem 1 have been satisfied. On this basis, the specific controller
of (21), guaranteeing controlled system predefined-time stability, can be obtained using
the regulator function ψ1(ν). In the Monte Carlo simulations, the control parameters were
chosen as a = 1, b = 3, α = 1, and p1 = 0.051. The predefined-time constants were set
as T1 = 0.5 and T2 = 0.5. Figure 1a,c display the convergence performance of the system
state x1 and sliding surface s driven by the controller (21). The convergence accuracy of
system state x1 was superior to 1× 10−4 for any initial state, which can be verified from
the depiction of the steady behavior of state |x1| in Figure 1b. To achieve predefined-time
stability of the second-order non-linear system, the required control input is also illustrated
in Figure 1d. The simulation results show that the system state converged to the origin
within the predefined time Ts = T1 + T2 = 1 second.

On the other hand, for the sliding surface (18), we selected a monotonically decreasing
regulator function ψ1(ν) = ā + e−ᾱνp1 with 0 < p1 < 1, ᾱ > 0, and ā > 0. One can obtain

that ψ1(ν) ∈ (ā, ā + 1]. Therefore, one has H1 = − 1
ᾱ eᾱV

p̄1
1 < 0 and Hs = − 1

ᾱ eᾱV
p̄1

2 < 0. The
sufficient conditions (i) and (ii) for the regulator function ψ(·) in Corollary 1 were satisfied.
Hence, the unique control input (21) with the decreasing regulator function ψ1(ν) being
used could be obtained to ensure the predefined-time stability of the controlled system.
In the Monte Carlo simulations, the control gains were selected as ᾱ = 1 and p1 = 0.05,
and the given time constants were T1 = 0.5 and T2 = 0.5. Figure 2a,c plot the convergence
performance of the system state x1 and sliding surface s, respectively. From Figure 2b, it
can observed that, for any initial state value, the system state converged to a small region
around zero (i.e., |x1| < 1× 10−3). The time response curve of the control input (21) is
shown in Figure 2d. One can see that the system state x1 converged to the small region
around within the predefined time Ts = T1 + T2 = 1 second. Summarizing the analysis
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of the above simulation results, the theoretical results in Theorem 2 were numerically
validated through Monte Carlo simulations.
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Figure 1. Convergence behavior of system state x1, sliding surface s, and control input u in the Monte
Carlo simulations with an increasing function ψ1(ν) = b/(a + e−ανp1 ).
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Figure 2. Convergence behavior of system state x1, sliding surface s, and control input u in the Monte
Carlo simulations with a decreasing function ψ1(ν) = ā + e−ᾱνp1 .

5.2. Predefined-Time Controller for a Spacecraft Attitude Control System

To verify the applicability and effectiveness of Theorem 2 in the context of actual con-
trol systems, a spacecraft attitude stabilization control system was taken as an example for
verification. The MRPs ρ = [ρ1 ρ2 ρ3]

> were chosen to represent the attitude information.
The attitude control model of a rigid spacecraft is given as follows [43]:{

ρ̇ = Ψ(ρ)ω
Jω̇ = −ω× Jω + u + ud

, (23)
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with ω = [ω1 ω2 ω3]
> being the angular velocity and ω× = [0 − ω3 ω2; ω3 0 − ω1;

−ω2 ω1 0] ∈ R3×3; J ∈ R3×3 is the inertia matrix of the spacecraft; u ∈ R3×1 denotes the
control input; ud ∈ R3×1 represents the external disturbance torque; Ψ(ρ) ∈ R3×3 is given

as Ψ(ρ) =
(1−ρ>ρ)I3+2ρ×+2ρρ>

4 with ρ× = [0 − ρ3 ρ2; ρ3 0 − ρ1; −ρ2 ρ1 0] ∈ R3×3;
and I3 ∈ R3×3 is an identity matrix. The system (23) can be transformed into

Mρ̈ + C(ρ, ρ̇)ρ̇ = F>u + F>ud, (24)

with C(ρ, ρ̇) = −F>
(

JFΨ̇− (JFρ̇)×
)

F, F = Ψ−1, and M = F> JF. Defining x1 = ρ and
x2 = ρ̇, the system (24) can be rewritten as follows:{

ẋ1 = x2
ẋ2 = Px2 + Qu + d

, (25)

with P = −M−1C(x1, x2) and Q = M−1F>, and d = M−1F>ud denotes the synthetic
external disturbance. Assume ||d|| ≤ b1, with b1 being a positive real number.

To stabilize the attitude control system within a predefined time, the correspond-
ing sliding mode surface and attitude controller were designed according to Theorem 2.
Hence, the regulator function was designed as ψa(V) = m

∫ z1
− ln n

m
e−mxdx ∈ [n− 1, n) with

z1 = ln(Vp1 + 1), 0 < p1 < 1, n > 1, and m > 0. Referring to (18) and using the regula-
tor function ψa(V), a non-singular sliding mode surface for system (25) was developed
as follows: 

S =x2 +
Vq

x x1Φ1

2p1T1

Φ1 =

{
H1V−p1−q

x , Vx ≥ η0
H1(k1Vx + k2V2

x ), Vx < η0

, (26)

with Vx = 1
2 x>1 x1. H1 = 1/h1 with h1 = dψa(Vx)

dV
p1

1
= m(Vp1

x + 1)−m−1 > 0. Using (26) and

recalling (21), a non-singular predefined-time sliding mode controller for system (23) was
designed, as follows:

u = Q−1(− (Φ̇1Vq
x x1 + x2Vq

x Φ1 + qVq−1
x V̇xΦ1x1)

2p1T1
− HsS

2T2 p1
V−p1

s − b1sign(S)− Px2
)
, (27)

with Vs =
1
2 S>S. Hs = 1/hs with hs =

dψa(Vs)

dV
p1

s
= m(Vp1

s + 1)−m−1 > 0.

Then, a simulation study was conducted to test the control performance of the designed
attitude controller (27). In the simulation, the inertia matrix of the spacecraft was set
as J = [20 0 0.9; 0 17 0; 0.9 0 15]kg ·m2. The external disturbance was assumed as
ud = 0.01[sin(0.5t) cos(0.5t) sin(0.4t)]> Nm. The initial settings of the attitude control
system were set as ρ(0) = [1.0 − 0.5 − 1.5]> and ω(0) = [0.14 − 0.11 0.06]>rad/s.
The main control gains in (26) and (27) were selected as T1 = 5, T2 = 10, p1 = 0.1,
q = 2, m = 2, n = 3, b1 = 0.02, and η0 = 0.02. According to the simulation results, the
convergence performance of spacecraft attitude MRPs and sliding mode surface are shown
in Figure 3a and Figure 3b, respectively. The attitude MRPs ρ converged to a small region
around the origin rapidly within the predefined time of T = T1 + T2 = 15 s. To achieve
attitude stabilization, the time response curve of the control input is plotted in Figure 3c.
It can be observed that attitude stabilization was completed when t ≥ T1 + T2 = 15 s,
and the control input remained around zero. Hence, the conclusions in Theorem 2 were
numerically validated.
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Figure 3. Time response curve of MRPs ρ, sliding surface S, and control input u in attitude stabiliza-
tion simulation example.

6. Conclusions

This study investigated sufficient conditions within the framework of Lyapunov theory
for guaranteeing the predefined-/finite-time stability of non-linear systems. The developed
Lyapunov-based theorem allowed us to establish equivalence with existing Lyapunov-
based theorems for predefined-/finite-time stability in non-linear systems. The proposed
theorem not only allows for the establishment of more possible Lyapunov-based predefined-
/finite-time stability theorems through the choice of different regulator functions but also
covers existing Lyapunov predefined-/finite-time stability theorems [6,19,23,26,28,29]. On
this basis, a standard non-singular sliding mode control framework guaranteeing the
predefined-time stability of second-order Lagrangian systems was provided. Furthermore,
numerical simulation results verified the effectiveness of the proposed control approaches.
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