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Abstract: Robotic manipulators play a pivotal role in modern intelligent manufacturing and un-
manned production systems, often tasked with executing specific paths accurately. However, the
input of the robotic manipulators is trajectory which is a path with time information. The resulting
core technology is trajectory planning methods which are broadly classified into two categories:
maximum velocity curve (MVC) methods and multiphase direct collocation (MPDC) methods. This
paper concentrates on addressing challenges associated with the latter methods. In MPDC methods,
the solving efficiency and accuracy are greatly influenced by the number of discretization nodes.
When dealing with systems with complex dynamics, such as robotic manipulators, striking a balance
between solving time and path discretization errors becomes crucial. We use a mesh refinement (MR)
algorithm to find a suitable number of nodes under the premise of ensuring the path discretization
error. So, the actual device can effectively implement the planned solutions. Nonetheless, the con-
ventional application of the MR algorithm requires solving the original problem in each iteration;
these processes are extremely time-consuming and may fail to solve when dealing with a complex
dynamic system. As a result, we propose a sequential optimal trajectory planning scheme to solve
the problem efficiently by dividing the original optimal control (OC) problem into two stages: path
planning (PP) and trajectory planning (TP). In the PP stage, we employ a DC method based on arc
length and an MR algorithm to identify key nodes along the specified path. This aims to minimize
the approximation error introduced during discretization. In the TP stage, the identified key nodes
serve as boundary conditions for an MPDC method based on time. This facilitates the generation of
an optimal trajectory that maximizes motion performance, considering constant velocity in Cartesian
space and dynamic constraints while keeping the path discretization error. Simulation and experi-
ment are conducted with a six-axis robotic manipulator, ROCR6, and show significant potential for a
wide range of applications in robotics.

Keywords: optimal control method; robotics; trajectory planning

1. Introduction

Robotic manipulators are advanced modern equipment supporting intelligent manu-
facturing and unmanned production. They play an important role in smart manufacturing
in Industry 5.0 [1]. The end effector (EE) is the most flexible component of robotic ma-
nipulators, enabling a diverse range of industrial application possibilities which include,
but are not limited to, point-to-point (PTP) movements such as stacking [2–4], as well as
movements along specific paths, such as laser cutting, spraying, etc. [5–7].

As industrial environments gradually advance towards intelligence and precision
in development, the key technology of robotic manipulators can be cast as the trajectory
planning (TP) problem of the EE along specific paths, where an optimal time law of
the specific geometric path followed by the EE can be solved with a series of complex
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constraints including robot dynamics. It is noticed that the trajectory can be viewed as a
path subject to a time law [8].

Due to the high nonlinearity and coupling of robot dynamics, the TP problem is
divided into two part. The first part is about the design of a high-level planner generating
an optimal path or trajectory, and the other part is about the design of a lower-level
controller supporting the implementation of tracking the optimal path or trajectory [9].
When it comes to TP along specific paths, the related research mainly focuses on the design
of the high-level planner. In this situation, the lower-level controller is used as a discrete
data receiver and enables actuators in the tracking mission, so that the specific path data
from the planner can be executed.

Related research frames the above optimal trajectory planning (OTP) problem as an
optimal control (OC) problem, which accounts for kinematic and dynamic constraints to
achieve the most optimal performance index [10].

OC problems can be typically solved by indirect and direct methods. On the one hand,
the Pontryagin Minimum Principle serves as the core technology of the indirect methods,
providing optimal necessary conditions for OC problems and the derivation of an explicit
solution. However, the indirect methods are often challenging to reconcile with complex
engineering systems due to difficulties in formulating state–space equations. On the other
hand, the direct methods, leveraging the progress in computers and numerical techniques,
can discretize the OC problem and convert it into a Nonlinear Programming (NLP) problem.
This transformation enables the application of a general NLP solver, effectively addressing
the aforementioned challenge. Consequently, the direct collocation (DC) method which
belongs to the latter direct methods finds widespread application in the industrial field [11].

Nonetheless, general DC methods are time-consuming and unstable when applied to
solve the TP problem of robotic manipulators along a specified path due to the ‘curse of
dimensionality’. Therefore, researchers are actively investigating this issue. The related
research began in 1985. J. E. Bobrow et al. solved the minimum-time manipulator control
problem along a specified path by constructing the maximum velocity curve (MVC) in
the phase plane [12]. This method utilizes the so-called Frenet–Serret Frames [13] where
the time-independent variable arc length is used to describe the entire path. As a result,
the number of states is streamlined from twice the degree of freedom (DOF) to just two
variables including arc length and arc velocity, so that the problem can be simplified to
find the MVC in the phase plane consisting of arc length and arc velocity. Finally, a type
of numerical integration method is proposed to solve the specified path TP problem of
three-axis manipulators. For simplicity, we refer to this kind of method as MVC methods.

Meanwhile, O. V. Stryk et al. studied the optimization problem of PTP motion for three-
axis manipulators with several performance indices based on OC methods, and provided
a numerical solution for the OC problem using a combination of a DC method and an
indirect multiple shooting method in 1994 [14].

The above studies constitute prototypes of two main methods for solving OC prob-
lems. They are MVC methods and DC methods. A series of methods based on these two
prototypes have evolved to the present day.

For the former, P. Shen et al. provide a summary of three time-optimal methods for
TP along a specified path, which include Dynamic Programming (DP), Numerical Inte-
gration (NI), and Convex Optimization (CO) [15]. A classical DP approach presented by
K. G. Shin et al. [9] was developed to solve the TP problem for three-axis robotic manip-
ulators. This method includes discretizing the phase plane of MVC into separate grids
and calculating the cost of forward movement between adjacent grids, facilitating the
consideration of multiple performance indices. However, its demand for substantial data
storage space is incredibly huge due to the ‘curse of dimensionality’. Then, the method
proposed by J. E. Bobrow et al. in 1985, as mentioned earlier, is an original NI approach.
This method seeks the limit of the motion performance and possesses a bang–bang structure
of torque inputs, but it can only focus on the time-optimal problem. Furthermore, Q. C.
Pham [16] provides a general, fast, and robust implementation for time-optimal trajectory
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planning (TOTP) using the NI method, improving algorithm robustness by addressing
dynamic singularities [17]. In a related context, E. Barnett and C. Gosselin [18] propose a
simpler and faster bisection algorithm to modify constraint violations during the NI process.
Finally, the CO methods concentrate more on mathematical derivation. The convexity of
the time-optimal path tracking problem should be explicitly studied to find the global
optimal solution. D. Verscheure and F. Debrouwere [19,20] conducted related research.
However, the CO methods may not be suitable for a general solver due to the necessity for
unique mathematical derivations for each problem.

For the latter, since O. V. Stryk et al. proposed a numerical solution framework
for OC problems, numerous methods have been derived. Z. Xiong et al. integrated the
framework with a Functional Mock-up Unit (FMU), accomplishing optimal PTP TP for
six-axis robotic manipulators [21]. However, the above technology is limited to solve the
PTP TP problem. In response to this situation, J. T. Betts et al. published a path-constrained
trajectory optimization method based on DC methods in 1993 [22], which may provide
a way to solve the specified path TP problem. Furthermore, Betts summarized a general
technology framework for solving OC problems in a book in 2010 [23]. Simultaneously,
Victor M. Becerra implemented the program PSOPT based on the book and published it
in the open-source community [24]. Afterwards, M. Kelly published an introduction in
2016 to assist others in solving TP problems using DC methods, including the utilization
of multiphase direct collocation (MPDC) methods [10]. As a result, a brand-new method
inspired by Kelly for solving the specified path trajectory planning problem came out;
Y. Wen improved this MPDC method and successively accomplished a novel 3D path
following a control framework for a robot [11] and a path-constrained and collision-free
OTP scheme [25]. A simple literature review is shown in Figure 1.

Figure 1. The literature [11,12,14,15,23] review.

At the same time, there are some other studies altogether. F. Vesentini adapts a velocity
obstacle algorithm for planning collision-free trajectories for anthropomorphic arms [26].
J. Chen presents a convex TOTP method for industrial robotic manipulators with jerk
constraints and achieves smooth and efficient trajectories enabling contour following and
pick-and-place tasks to validate the proposed method [27]. A. Tika works on the online
TOTP of cooperative robotic manipulators based on a model predictive control algorithm
and realizes synchronous pick-and-place tasks [28]. JG Batista develops a TP method to
avoid collisions for collaborative robotics [29]. G. Wu gives a jerk–continuous TP method
for robotic manipulators by using the fourth-order S-curve to smooth the motion [30].
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In summary, MVC methods and MPDC methods are two ways proven to have the
ability to solve the TP problem along a specified path at present. They have different
features. On the one hand, MVC methods simplify the problem but demand additional
solver design, which can be categorized into NI, DP, and CO. Among them, NI is a simple
and effective method but is limited to solving TOTP problems. DP can accommodate more
performance indices but faces the curse of dimensionality. CO lacks universality due to the
need for unique mathematical skills to transform the original problem into a convex one.
On the other hand, MPDC methods support solving the target problem by a general NLP
solver, and is more direct and general than MVC methods. When we use MPDC methods,
the complex transformation in CO is skipped, the performance indices are not limited, the
calculation storage requirement is reduced, and a local optimal solution can be provided.
As we can see, the MPDC method has greater compatibility which supports its utilization
in a general industrial environment.

What is more, the DC method enables the transition from OC problems to NLP prob-
lems, where each continuous variable is segmented into numerous nodes. It is evident that
the quantity of these nodes significantly influences both solution accuracy and computation
time. In essence, a higher number of nodes leads to increased computation time and a
more accurate solution, while fewer nodes result in shorter computation time and a less
accurate solution. Hence, we can find it is crucial to identify an appropriate number of
nodes to strike a balance between solution accuracy and acceptable computation time. In
light of the above issues, several approaches have been proposed. In 1998, John T. Betts
studied a mesh refinement (MR) algorithm, which outlines a technique for changing the
discretization to enhance the accuracy of the approximation [31]. This allows the nodes
to start with a small quantity and gradually increase until the desired solution accuracy
is achieved. However, each MR iteration happens after an entire NLP solving process.
When the OC problem involves a complex system dynamics, such as a six-axis robotic
manipulator, a single NLP solving process takes too much time, making the MR algorithm
unsuitable for application in this scenario. In 2021, Y. Wen proposed a combined method
that applies a small quantity of nodes to ensure the efficiency of the solving process and
utilizes a self-designed controller to manage experimental accuracy [11].

In this paper, we present a novel sequential optimization scheme for TP problems.
This scheme divides the complex specified path TP problem into two parts. In the first
part, the TP problem is simplified into a path planning (PP) problem. This PP problem
is designed to find a series of key nodes in the joint space to represent the specified path
in Cartesian space. In this regard, a time-independent geometry optimization method is
proposed based on the DC method and the MR algorithm for solving this problem. As a
result, the path discretization error between the ideal path and the continuous approximate
path that passes through these nodes can be minimized. What is more, the solving time
is significantly reduced compared to the traditional use of the MR algorithm, and the
minimum number and distribution of nodes along the specified path can be found to
minimize the path discretization error. In the second part, a general MPDC method can
be enabled by setting the key nodes produced in the first part as the bound conditions. In
this way, we can get the time nodes corresponding to the path nodes, and the resulting
continuous approximate trajectory not only minimizes the path discretization error, but
also maximizes the motion performance. To sum up, a novel sequential specified path OTP
scheme considering the complex system dynamics comes out.

The rest of the paper is organized as follows. Section 2 provides the problem descrip-
tion of the PP process, and gives the presentation of the MR algorithm to control the path
discretization error. Section 3 utilizes the key nodes produced in last section to enable
a MPDC method; the uniform arc-velocity condition is presented to estimate the path
discretization error without another mesh optimization. Finally Sections 4 and 5 show
solutions to verify the validity of the method. The technical roadmap is given in Figure 2.
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Figure 2. Technical roadmap.

2. Path Planning

In the general application of robotic manipulators, the TP problem along the specified
path is typically solved by direct methods, and the resulting solution is discrete. At the
same time, the general controller of robotic manipulators periodically receives the discrete
desired states (referring to joint positions and joint velocities) as input and adjusts the
controls (referring to joint torques and actuator currents) to achieve the trajectory tracking
mission. In conclusion, we have to reduce the path discretization error in Cartesian space by
applying a series of discrete nodes in joint space. It is obvious that both the discretization
process and the transformation from Cartesian space to joint space introduce the path
discretization error. Therefore, we can propose an optimization method that utilizes the
fewest nodes possible to achieve the desired path accuracy. In this section, we regard
the above optimization problem as a PP problem, and present the problem based on DC
methods and the MR algorithm.

2.1. Problem Presentation

In this part, we want to present the PP problem as an OC problem. The general OC
problem presentation is given as follows referring to [10,21,23].

Minimize the performance index:

J = Φ(x(t0), t0, x(t f ), t f ) +
∫ t f

t0

L(x(t), u(t), t)dt, (1)

subject to the following:
the system dynamics:

ẋ(t) = f(x, u, t), t ∈ [t0, t f ], (2)

boundary conditions:
Œ(x(t0), t0, x(t f ), t f ) = 0, (3)

constraints:
C(x(t), u(t), t) ≤ 0, (4)

where J is the performance index. Φ and L are two constituents, referring to boundary cost
and process cost, respectively. f is the system dynamics. Œ is the boundary condition. C is
the general constraint. t0 and t f are the start time and the end time in most situations [23],
but it is noted that we replace them with the arc length s in the following path planning
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problem presentation. u refers to the system control variable. x refers to the system state
variable. ẋ refers to the system differential states.

According to the above problem formulation, the path planning problem can be given
as follows.

Minimize the performance index:

J =
∫ s f

s0

‖R(s)−R(s)‖ds, (5)

subject to the following:
the system dynamics:

q̇(s) = u(s), (6)

path constraints:
R(s) = fKine[q(s)] = R(s) (7)

boundary conditions:
q(s0) = q0, (8)

q(s f ) = q f , (9)

constant constraints:
|u(s)| ≤ umax, (10)

|q(s)| ≤ qmax. (11)

This problem description involves finding an approximate path in the joint space,
aiming to execute the path in Cartesian space as closely as possible to the ideal path
through forward kinematics. Thus, we consider setting joint positions as the states and
the differentials of joint positions with respect to the arc length as the controls. In this way,
the performance index J refers to the integration of the path discretization error along the
ideal path in Cartesian space. R andR refer to positions of the executed path and the ideal
path in Cartesian space, respectively. s refers to the arc length. q refers to the joint position.
q̇ refers to the differential of joint positions with respect to the arc length, and is set as the
control variable u at the same time. fKine refers to the forward kinematic function, which
takes joint positions as inputs and takes positions in Cartesian space as outputs. q0 and
q f refer to the initial and the final joint position, respectively. umax and qmax refer to the
constant constraints of q̇ and q, respectively.

As a result, DC methods can be applied to discretize the OC problem into an NLP
problem. The Hermite–Simpson (H-S) collocation method is used here, and the NLP
problem presentation after discretization referring to [10,21,23] is given as below.

Minimize the performance index:

J =
N−1

∑
k=0

hk
6
(ωk + 4ωk+ 1

2
+ ωk+1), (12)

ωk = ‖R(sk)−R(sk)‖, (13)

subject to the following:
the system dynamics:

qk+1 − qk =
hk
6
(uk + 4uk+ 1

2
+ uk+1), (14)

qk+ 1
2
=

1
2
(qk + qk+1) +

hk
8
(uk − uk+1), (15)
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path constraints:

R(sm) = fKine[q(sm)], m =


k
k + 1

2

k + 1

, (16)

boundary conditions:
q(s0) = q0, (17)

q(sN) = q f , (18)

constant constraints:

max (|u(sk)|, |u(sk+ 1
2
)|, |u(sk+1)|) ≤ umax, (19)

max (|q(sk)|, |q(sk+ 1
2
)|, |q(sk+1)|) ≤ qmax. (20)

A series of nodes are used to discretize the original problem, with a total number of
nodes represented by N + 1. Here, k denotes the serial number of the interval between
nodes. sk indicates the arc length at node k, while hk represents the single step length
between sk and sk+1. Additionally, qk and uk denote the states and the controls at node
k, respectively. qk+ 1

2
and uk+ 1

2
denote the state and the control at the midpoint between

nodes k and k + 1. It is worth noting that the differential constraint is substituted by a
number of algebraic constraints. Consequently, the original OCP transforms into an NLP,
allowing for the utilization of general NLP solvers.

2.2. Mesh Refinement Algorithm

After outlining and resolving the PP problem, we consider the discrete solution nodes
as a mesh. The MR algorithm can construct a new mesh by introducing a specified number
of new nodes to diminish the path discretization error until it reaches an acceptable level.
The execution of the MR algorithm involves adding a node to the interval with the largest
path discretization error in each iteration, repeating this process until the path discretization
error is deemed acceptable.

In the first step, we need to evaluate the discretization error for each interval. Thus,
the ideal path and the execution path in the joint space should be given. Because the ideal
path in the Cartesian space is given as a prior, a suitable inverse kinematic solution can
be derived conveniently. We denote the ideal path in the joint space as x̄ and the inverse
kinematic function as iKine, where inputs and outputs are opposite to those of the forward
kinematic function fKine. Then, we have the following:

q̄(s) = iKine[R(s)]. (21)

According to the H-S collocation method [10], a continuous execution path based on
the NLP solution can be derived as follows.

˙̃q(s) =
2
h2

k
(τ − hk

2
)(τ − hk)uk

− 4
h2

k
τ(τ − hk)uk+ 1

2
+

2
h2

k
τ(τ − hk

2
)uk+1,

(22)

q̃(s) =
∫

˙̃qds

= qk + uk(
τ

hk
) +

1
2
(−3uk + 4uk+ 1

2
− uk+1)(

τ

hk
)2

+
1
3
(2uk − 4uk+ 1

2
+ 2uk+1)(

τ

hk
)3,

(23)
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τ = s− sk. (24)

Then, the local path discretization error in interval k, denoted as εk, is given by
the following:

εk =

∥∥∥∥∥
∫ sk+hk

sk

‖q̃(s)− q̄(s)‖ds

∥∥∥∥∥
∞

. (25)

Furthermore, for ordinary differential equations (ODEs), the global error is O(hp) and
the local error is O(hp+1), where p refers to the order of accuracy. The H-S discretization is
of order p = 4. As a result, the alternative representation of the local path discretization
error is of the form

εk ≈ ‖ck‖h
p+1
k , (26)

where the coefficient ck can be solved. Then, when we insert new nodes into interval k
evenly, the estimation of the local discretization path discretization error of the new mesh,
denoted as ηk, is given by the following:

ηk = ‖ck‖(
hk

1 + Ik
)p+1 = εk(

1
1 + Ik

)p+1, (27)

where Ik refers to the total number of new nodes added in interval k. Consequently, an
MR algorithm is designed to reduce the discretization path discretization error until it is
acceptable (the tolerance error in the joint space is denoted as δ1; the tolerance error in the
Cartesian space is denoted as δ2). Here we show the procedure of Algorithm 1.

Algorithm 1 Mesh Refinement Algorithm

1: start
2: Solve NLP (12)–(20);
3: Estimate path discretization error from (25);
4: Set η = max

k
εk, Ik = 0;

5: while (η > δ1||J > δ2)
6: Add a new node to interval k, Ik ← Ik + 1;
7: Refresh error from (27), η ← η( 1

1+Ik
)p+1;

8: if (Ik > 0)
9: Sort nodes and return to step 2;

10: Output the mesh;
11: end

In conclusion, the PP gives an improved mesh making the discretization path dis-
cretization error acceptable.

3. Trajectory Planning

In the previous section, we obtained a mesh that minimizes the path discretization
error between the ideal path and the continuous approximate path passing through these
mesh nodes. In this section, we utilize the MPDC method with these key mesh nodes to
achieve the trajectory planning task.

3.1. Problem Presentation

In this part, our objective is to find the time law of the key mesh nodes. We assume
each pair of adjacent mesh nodes as a phase and solve the time law by incorporating the
mesh nodes as boundary conditions for each phase within the MPDC method framework.
Here, we present the problem formulation.
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Minimize the performance index:

J =
Np

∑
j=1

[
Φ(j)(x(j)(t(j)

0 ), t(j)
0 , x(j)(t(j)

f ), t(j)
f )

+
∫ t(j)

f

t(j)
0

L(j)(x(j)(t), u(j)(t), t)dt

]
,

(28)

subject to the following:
the system dynamics:

ẋ(j)(t) = f(x(j), u(j), t), t ∈ [t(j)
0 , t(j)

f ], (29)

boundary conditions:

Œ(j)(x(j)(t(j)
0 ), t(j)

0 , x(j)(t(j)
f ), t(j)

f ) = 0, (30)

constraints:
C(j)(x(j)(t), u(j)(t), t) ≤ 0, t ∈ [t(j)

0 , t(j)
f ], (31)

where the superscript (j) refers to the phase number, Np denotes the total phase number,
and other variable definitions are identical to those in (1)–(4). It is noticed that the TP
problem is time-dependent, where t denotes time. t(j)

0 and t(j)
f refer to the start time and the

end time in phase j, respectively.
Then, the TP problem along specified path can be presented as below. To distinguish

MVC methods and demonstrate their broader applicability, a comprehensive performance
index including both time and energy is taken into consideration.

Minimize performance index:

J =
Np

∑
j=1

{
t(j)

f − t(j)
0 +

∫ t(j)
f

t(j)
0

[u(j)]2dt

}
, (32)

subject to the following:
the system dynamics:

ẋ(j) =

[
q̇(j)

q̈(j)

]
=

[
q̇(j)

fFMU(q(j), q̇(j), u(j), t(j))

]
, (33)

path constraints:
R(s(j)) = fKine[q(j)] = R(s(j)), (34)

s(j) = s(j)
0 +

∫ t(i)

t(j)
0

ṡ(j)dt, (35)

boundary conditions:
q(t(j)

0 ) = q(j)
0 , (36)

q(t(j)
f ) = q(j)

f , (37)

q̇(t(1)0 ) = q̇(t
(Np)

f ) = 0, (38)

continuity conditions:
q̇(t(j)

f ) = q̇(t(j+1)
0 ), j 6= Np, (39)

constant constraints:
| u(t) |≤ umax, (40)
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| x(t) |=
[
|q(t)|
|q̇(t)|

]
≤
[

qmax
q̇max

]
. (41)

where the superscript (j), Np, t(j)
0 , and t(j)

f have the same definitions as provided in (28).
u denotes the system controls which refers to the torque of the joint actuator. x denotes
the system states which refers to the joint position q and the joint velocity q̇ in the system
of robotic manipulators. ẋ denotes the differential of the system states which refers to
the joint velocity q̇ and the joint acceleration q̈. fFMU is a black box function constructed
by MWorks and denotes the forward dynamics of the robotic system [21]. Functional
Mock-up Unit (FMU) is used to name the black box function. s(j) is the arc length in
phase j, ṡ(j) is the arc velocity in phase j. s(j)

0 and s(j)
f are the initial and the end arc

length in phase j. Ṙ(s(j)) denotes the velocities of the end effector in Cartesian space and
can be derived by the FMU. t(1)0 and t

Np
f refer to the initial and final time of the whole

multiphase problem. As a result, (35) facilitates executing a uniform motion along the
specified path. q(j)

0 and q(j)
f are the initial joint positions and the final joint positions of

phase j, respectively. Furthermore, the mesh nodes solved in the previous section are
introduced here as the boundary constraints. umax, qmax, and q̇max denote the max torques,
positions, and velocities, respectively.

Finally, the H-S collocation method is used to represent the NLP problem shown
as below.

Minimize performance index:

J =
Np

∑
j=1

{
t(j)

f − t(j)
0

+
N−1

∑
k=0

hk
6

(
(u(j)

k )2 + 4(u(j)
k+ 1

2
)2 + (u(j)

k+1)
2
)}

,

(42)

subject to the following:
the system dynamics:

[
q(j)

k+1 − q(j)
k

q̇(j)
k+1 − q̇(j)

k

]
=

hk
6

 q̇(j)
k + 4q̇(j)

k+ 1
2
+ q̇(j)

k+1

f(j)
FMU,k + 4f(j)

FMU,k+ 1
2
+ f(j)

FMU,k+1

 (43)

q(j)
k+ 1

2

q̇(j)
k+ 1

2

 =
1
2

[
q(j)

k + q(j)
k+1

q̇(j)
k + q̇(j)

k+1

]
+

hk
8

[
q̇(j)

k − q̇(j)
k+1

f(j)
FMU,k − f(j)

FMU,k+1

]
(44)

path constraints:

R(s(j)
m ) = fKine[q(j)

m ], m =


k
k + 1

2

k + 1

, (45)

s(j)
k+ 1

2
=

s(j)
k+1 − s(j)

k
2

, (46)

boundary conditions:
q(t(j)

0 ) = q(j)
0 , (47)

q(t(j)
N ) = q(j)

f , (48)

q̇(t(1)0 ) = q̇(t
(Np)
N ) = 0, (49)
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continuity conditions:
q̇(t(j)

N ) = q̇(t(j+1)
0 ), j 6= Np, (50)

constant constraints:
max (|u(j)

k |, |u
(j)
k+ 1

2
|, |u(j)

k+1|) ≤ umax, (51)

max

([
|q(j)

k |
|q̇(j)

k |

]
,

|q(j)
k+ 1

2
|

|q̇(j)
k+ 1

2
|

,

[
|q(j)

k+1|
|q̇(j)

k+1|

])
≤
[

qmax
q̇max

]
. (52)

where the superscript j denotes the phase number and Np is the total number of phases.
The subscript k denotes the nodes number, N + 1 is the total number of nodes in the phase.
And other variables follow the previous definitions. It should be noted that we set N = 3
when the H-S collocation method is applied. It is noticed that a key variable s is introduced
to build a relationship with the path planning problem. Because the independent variable
of the PP problem is arc length s, while in the TP problem it is time t, a function of s− t
should be constructed. For estimating the path discretization error in the next part, uniform
motion is required. So we have (46) and the following equation:

s(t(j)) = ṡ(j)(t(j) − t(j)
0 ) + s(j)

0

=
s
(Np)

f − s(1)0

t
(Np)

f − t(1)0

(t(j) − t(j)
0 ) + s(j)

0 .
(53)

In this way, the original trajectory planning problem is transformed into two simplified
NLP problems, and can be solved effectively. Furthermore, the PP stage can guarantee the
path discretization error in the TP stage; the derivation process is given in the next section.

3.2. Path Discretization Error Estimation

This part derives the relationship of the path discretization error between the proce-
dures of PP and TP, and proposes the key constraints in the above TP problem presentation.

The path discretization error is set as the difference between the path integrals. The
ideal path integral Qideal,k+1 and the approximate path integral Qapprx,k+1 in interval k are
shown as below:

Qideal,k+1 = Qideal,k +
∫ sk+1

sk

q̄(s)ds, (54)

Qapprx,k+1 = Qapprx,k +
∫ sk+1

sk

q̃(s)ds, (55)

then, we can derive the path discretization error in interval k:

εk = ‖Qapprx,k+1 −Qideal,k+1‖

= ‖Qapprx,k −Qideal,k +
∫ sk+1

sk

q̃(s)ds−
∫ sk+1

sk

q̄(s)ds‖,
(56)

we ignore the error at the beginning of the interval and set Qapprx,k = Qideal,k, which
leads to the following:

εk = ‖
∫ sk+1

sk

q̃(s)ds−
∫ sk+1

sk

q̄(s)ds‖,

≤
∫ sk+1

sk

‖q̃(s)− q̄(s)‖ds.
(57)
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As a result, we get the general formula of the path discretization error. In addition, the
solution path discretization error at interval k in the PP process is mentioned in (25). For
the consistence of notions, we set the following:

εpath,k =
∫ sk+1

sk

‖q̃(s)− q̄(s)‖ds, (58)

in addition, the path discretization error at phase j in the TP problem can be written
as follows:

εtraj,j =
∫ t(j)

f

t(j)
0

‖q̃(t)− q̄(t)‖dt. (59)

The boundary conditions at phase j are based on the states at interval k; we set
the following:

sk = s(t(j)
0 ), sk+1 = s(t(j)

f ), (60)

then, we have the following:

q̃(sk) = q̄(sk) = q̃(t(j)
0 ) = q̄(t(j)

0 ), (61)

q̃(sk+1) = q̄(sk+1) = q̃(t(j)
f ) = q̄(t(j)

f ). (62)

Moreover, (58) can be rewritten as follows:

εpath,j =
∫ t(j)

f

t(j)
0

‖q̃(t)− q̄(t)‖ṡdt, (63)

For uniform motion, we have ṡ(j)
avrg = (s

(Np)

f − s(1)0 )/(t
(Np)

f − t(1)0 ). Finally, (59) can be
rewritten as follows:

εtraj,j =
εpath,j

βṡ(j)
avrg

, (64)

where β denotes the scaling parameters, and belongs to the interval (0, 1]. This parameter
is used to estimate the error that occurs in the arc-velocity transformation between adjacent
phases. We set β = 0.9 here. In this way, a linear dependence between εtraj,j and εpath,j

can be established by giving a suitable value of ṡ(j)
avrg, which can be estimated through a

preliminary TP process.
In conclusion, the path discretization error of the TP process can be estimated and

adjusted during the process of PP. This enables the MR algorithm to be positioned at the
forefront of the entire planning process, avoiding significant computation time for mesh
optimization in the TP process.

4. Numerical Simulation

This section contains a complete simulation planning process for executing a specified
circular path using a six-axis robotic manipulator ROCR6 manufactured by Si Vally, China.
The simulation environment is a personal computer with an AMD Ryzen 7 5800H processor
with 8 cores (3.20 GHz). The device information can be found in the official website or in
the research [21].

The specified circular path in the PP process is shown in Figure 3. The coordinates
of the circle center are [250, 350, 300], the radius is 100, and the starting coordinates are
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[350, 350, 300]. The length unit used in this paper is mm; the joint position unit is rad. The
ideal path functions can be written as follows:

R(s) =


x(s)
y(s)
z(s)

=


250 + 100cos(s/100)
350 + 100sin(s/100)
300

, (65)

so that the path constraints (7) can be given with the forward kinematics.
The boundary and inequality conditions are set as follows:

s0 = 0, s f = 200π, (66)

q0 = q f = [−2.61, 0.47, 0.96, 0.14,−1.57,−2.61]T , (67)

umax = inf6×1, (68)

qmax = [3.12, 2.55, 2.55, 3.12, 3.12, 3.12]T . (69)

Figure 3. The device and the task path.

The initial total number of intervals is set as N = 19. The initial guesses of decision
variables at node k ∈ [0, 19] are given as below:

sk = s0 +
k
N
(s f − s0), (70)

uk = 0, (71)

qk = 0. (72)

Then, a software for large-scale nonlinear optimization named Interior Point OPTi-
mizer (IPOPT) can be applied to solve (12)–(20). In addition, δ1 and δ2 have to be set to
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enable Algorithm 1. It is known that the location accuracy of ROCR6 is 0.02 mm. Fur-
thermore, we can find a linear relationship between the path discretization error in the PP
process and that in the TP process, as indicated by (64). A rough optimization without
constant arc velocity is used to define ṡ(j)

avrg = 0.1256 m/s. Then, we have the following:

εtraj,j = 8.85εpath,j ≤ 10εpath,j. (73)

Therefore, let δ2 be 2× 10−3 mm and δ1 be 1× 10−3 rad according to experiment
experience. Finally, the solutions are presented in Figure 4, where the position function
with respect to the arc length of each joint is given. In addition, the MR algorithm produces
a heterogeneous mesh to minimize the path discretization error.

The PP process includes six iterations where the MR algorithm introduces 8, 11, 15,
21, and 7 nodes into the mesh, respectively. The maximum path discretization error in
each iteration is presented in Table 1, where we can find that the path discretization error
is gradually reduced with the introduction of nodes in each iteration. In addition, the path
discretization error reduction in each iteration is shown in Figure 5. The different color
blocks refer to the path discretization error at different iterations, and we observe a consistent
reduction in the path discretization error across iterations. So far, the PP process is finished.

Figure 4. Path planning solutions.

Table 1. Path discretization error in each iteration.

Iteration Nodes δ1 (rad) δ2 (m)

1 20 6.326× 10−2 3.533804× 10−7

2 28 1.423× 10−2 7.247751× 10−8

3 39 5.426× 10−3 3.885858× 10−8

4 54 2.509× 10−3 1.193616× 10−8

5 75 1.248× 10−3 5.273560× 10−9

6 82 9.342× 10−4 4.087400× 10−9
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Figure 5. Path discretization error reduction in each iteration.

Next, the above solution mesh is used as boundary conditions for the TP process,
where the aim is to find the time law tied to the solution mesh from the PP process. And this
process solves the average arc velocity along the specified path and gives the optimal time
as the result, which can be set as the input of the experimental device ROCR6. The solution
is shown in Figure 6.

Figure 6. Trajectory planning solutions.

5. Experiment

In the above section, we proposed an efficient scheme for simplifying the original TP
problem along the specified path for robotic manipulators by splitting the complex OC
problem into two simple NLP problems. Thus, an optimal trajectory with achievable maxi-
mum constant arc velocity can be derived by using an open source C++ NLP solver called
IPOPT. In this section, we design three groups of control experiments using different arc
velocities to validate the improvement of the proposed method compared to the traditional
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MPDC method. The advantages of the optimal trajectory can be analyzed from two aspects:
the accuracy of path following in the Cartesian space and the ranges of joint currents.

The solutions of these three groups come from the traditional MPDC method, the
proposed method, and manual setting. The traditional MPDC method solutions are un-
stable because of the small quantity of the modes. We set t2s as the average approximate
solution produced by the traditional MPDC method with less than 20 evenly spaced nodes.
topt is the solution of proposed method. t10s is a manual control group with longer time.
The experimental solutions of controlled groups with different arc velocities are presented
in Figure 7, where t2s, topt, and t10s refer to the solutions finished in 2 s, 5.494 s, and 10 s,
respectively. It is obvious that topt and t10s can keep a stable tracking performance. They
have the same error in Z axis varying in the interval between 300 mm and 301.5 mm, and
track the Ideal Path (IP) well in plane X-Y. However, t2s is not allowed because of the
dynamic constraints. We can find that the error in Z axis jumps up to 303 mm, and the IP
cannot be tracked well. The currents in joint 1 to 3 are also presented in Figure 8 to validate
the optimal trajectory. It is noticed that the faster the arc velocity, the more rapid the current
changes. In addition, faster arc velocity also introduces wilder current boundary which
might not be acceptable. In summary, we find the optimal trajectory can be executed well,
and the efficiency of the scheme is validated.

Figure 7. The experimental Cartesian paths.
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Figure 8. The experimental currents.

6. Conclusions

In this paper, we have proposed a sequential OTP scheme for robotic manipulators
along a specified path, utilizing DC methods. This scheme demands a predefined Cartesian
path expressed explicitly in terms of arc length and aims to optimize the motion perfor-
mance of robotic manipulators to accurately track the specified path. For complex systems
like six-axis robotic manipulators, maintaining desired accuracy post-discretization with
DC methods can be time consuming. To address this challenge and enhance solution
efficiency, we divide the original OC problem into two stages: PP and TP. In the PP stage,
we employ a DC method based on arc length and an MR algorithm to identify key nodes
along the specified path. This aims to minimize the approximation error introduced during
discretization. In the TP stage, the identified key nodes serve as boundary conditions for
an MPDC method based on time. This facilitates the generation of an optimal trajectory
that maximizes motion performance, considering constant velocity in Cartesian space and
dynamic constraints while keeping the path discretization error.

In summary, the proposed method has two advantages compared to the traditional
MPDC method. The first one is advancing the MR iterations into the PP process. This
can greatly improve the solving efficiency by avoiding the iterative calculation of the TP
process. The second one is the MR algorithm design in the PP process, which helps us to
identify key nodes along the specified path while minimizing the path discretization error.
Therefore, the solution is guaranteed to be achieved in reality. Simulation and experimental
results are presented to validate the efficiency of the optimal trajectory, demonstrating its
successful execution. In the future, this planning technology can combine with the control
technology to achieve model predictive control and real-time force control. This approach
holds significant potential for a wide range of applications in robotics.
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