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Abstract: The computer-assisted program SiD was developed to assess and select sperm in real time
based on motility characteristics. To date, there are limited studies examining the correlation between
AI-assisted sperm selection and ICSI outcomes. To address this limit, a total of 646 sibling MII oocytes
were randomly divided into two groups as follows: the ICSI group (n = 320): ICSI performed with
sperm selected by the embryologist and the ICSI-SiD group (n = 326): ICSI performed with sperm
selected using SiD software. Our results show a non-significant trend towards improved outcomes
in the ICSI-SiD group across various biological parameters, including fertilization, cleavage, day 3
embryo development, blastocyst development, and quality on day 5. Similarly, we observed a non-
significant increase in these outcomes when comparing both groups with sperm selection performed
by a junior embryologist. Embryo development was monitored using a timelapse system. Some
fertilization events happen significantly earlier when SiD is used for ICSI, but no significant difference
was observed in the ICSI-SiD group for other timepoints. We observed comparable cumulative early
and clinical pregnancy rates after ICSI-SiD. This preliminary investigation illustrated that employing
the automated sperm selection software SiD leads to comparable biological outcomes, suggesting its
efficacy in sperm selection.
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1. Introduction

Since its development in the early 1990s, intracytoplasmic sperm injection (ICSI) has
been the most widely used fertilizing technique for in vitro fertilization (IVF) laboratories
worldwide, and the number of ICSI cycles is constantly increasing [1–3]. One pivotal
aspect of this procedure lies in the selection of the most optimal sperm for injection into the
oocyte. Unlike natural fertilization or conventional IVF, where multiple sperm compete
to fertilize the egg, ICSI involves the precise selection and direct injection of a single
spermatozoon into the oocyte. This innovative method has revolutionized the landscape of
assisted reproductive technology, offering hope to men with severe male factor infertility by
providing them with similar prospects of achieving biological parenthood as couples facing
less severe male factor infertility. Consequently, the selection of the sperm employed in this
technique represents a critical step that significantly influences fertilization outcomes and
subsequent embryo development [4–7].

Over the past decades, considerable efforts have been made in the development of
new techniques to refine sperm selection with the hopes of improving IVF outcomes. These
techniques include swim-up, density gradient centrifugation, hyaluronic binding, magnetic-
activated cell sorting, surface charge Zeta potential, and high-resolution morphological
sperm selection [8–12]. Microfluidics is one of the most recent approaches developed to
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improve sperm selection. These devices typically consist of microchannels and chambers
designed to mimic the natural microenvironment of the female reproductive tract. Sperm
are loaded into the microfluidic device, where they undergo passive or active sorting based
on various physical and biochemical properties, including motility, size, shape, and surface
markers [13,14]. This allows for the isolation of highly motile and morphologically normal
sperm, which are more likely to successfully fertilize an egg. Given its centrifugation-free
nature, this technique appears to closely mimic the natural journey of ejaculated sperm
in the female genital tract. Moreover, it has been reported to select sperm with high
motility and DNA integrity and yield better laboratory and clinical outcomes [12–15].
These compelling results have prompted many IVF laboratories to adopt this technique
for sperm preparation. Nevertheless, there remains a lingering question of how to further
push the boundaries in our methods of selecting the most optimal sperm for ICSI.

The implementation of artificial intelligence (AI) in reproductive medicine has aroused
great interest in a variety of applications including single-sperm selection for ICSI [16–21].
When assessing the fertilizing capacity of spermatozoa, certain parameters are pivotal and
directly correlated. These parameters include the overall morphology of the spermatozoon,
comprising a normal head, midpiece, and tail. Additionally, sperm motility serves as a
crucial indicator of potential, with immotile or non-progressive sperm typically excluded
from consideration due to their limited fertilization potential. However, while certain
characteristics may be relatively clear-cut in their assessment, others present challenges
in their evaluation under the microscope. Notably, factors such as the direction and
velocity of sperm movement offer valuable insights into overall function and fertilization
potential [21]. However, these parameters are challenging to assess accurately through
manual observation under a microscope; for instance, determining the speed of a single
sperm is impractical by visual inspection alone. Consequently, the computer-assisted
program SiD (Sperm ID), was designed to grade sperm, in real time, based on progressive
motility parameters such as VSL (straight-line velocity), LIN (linearity of the curvilinear
path), and HMP (head movement pattern). Subsequently, the program synthesizes these
measurements to generate a quantitative score reflecting the quality of the parameters. SiD’s
assistance is proposed to optimize the selection of the most optimal sperm for ICSI based
on these three parameters. Initial investigations into this program have revealed significant
differences in VSL, LIN, and HMP among SiD-selected spermatozoa. Importantly, higher
SiD scores were shown to be associated with both successful fertilization and blastocyst
formation [21].

The application of sperm selection by AI is expected to have numerous additional
advantages. One notable advantage is its potential to mitigate user bias inherent in em-
bryologists’ selection practices. Similarly, AI-based selection methods have the capacity
to minimize interoperator variability, thereby reducing potential discrepancies in fertil-
ization outcomes. Moreover, addressing the challenge of personnel shortages commonly
encountered in laboratory settings worldwide, AI programs offer a solution to reduce the
impact of user fatigue and ensure consistent selection quality, particularly in instances
of limited training among personnel involved in sperm selection. Although laboratories
uphold rigorous training standards, acknowledging the possibility of human variability
remains imperative. Additionally, the application of AI in sperm selection has the potential
to significantly optimize selection timing, further streamlining the process [21]. Despite
encouraging results from this technology, there are limited studies correlating the usage
of AI for sperm selection with ICSI outcomes [21]. Moreover, many still question if this
technology will have a significant impact.

This prospective study aims to investigate and establish correlations between the
application of AI for sperm selection and the outcomes of ICSI procedures.
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2. Materials and Methods
2.1. Settings

A total of 76 patients undergoing ICSI procedures, who provided informed and signed
consent, were included in this study. The patients had a mean female age of 34.9 years
(±5.6) and a mean male age of 36.7 years (±6.6). Fresh and frozen sperm samples were
included in this study. Fresh sperm samples were collected by masturbation, and the
sample was liquified for 30 min followed by semen analysis. As for frozen sperm samples,
the frozen vial of sperm was incubated at 37 ◦C for 5 min to allow liquefaction. Both
fresh and post-thaw frozen samples underwent microscopic evaluation, assessing sperm
concentration, total sperm count, and motility using a Makler counting chamber. The mean
native concentration of semen samples in this study was 63.8 ± 49.2 million/mL, and the
mean total motility was 58.6 ± 18.3%. Fresh and frozen sperm samples were prepared
using a microfluidic chamber (Zymot™) following the manufacturer’s recommendations.
Briefly, 850 µL of the fresh semen sample or 850 µL of a 1:1 dilution of the post-thaw
frozen sample was inserted into the inlet port of the ZymotTM system. Once the sample
was inserted into the system, 750 uL of Spermwash®was placed on top of the system’s
membrane. The loaded system was then enclosed in a Petri dish, and placed at 37 ◦C
for 30 min, or for the time required to obtain at least 1 million mobile sperm/mL. After
incubation, 100 µL of the sample was taken from the outlet port of the system and the
sample concentration and motility were once again assessed using a Makler counting
chamber. The mean post-preparation sperm concentration was 21.4 ± 24.2 million/mL
and the mean total motility was 91.2 ± 8.1%. ICSI was performed following standard
procedures using an inverted microscope (Zeiss Axio Observer A.1, Camera Watec 221S).
Spermatozoa were released in a PVP droplet to reduce global sperm motility. Over a 1-year
period, 646 sibling MII oocytes were randomly divided into the following two groups:
1—ICSI group (n = 320): ICSI performed with sperm selected by the embryologist, and
2—ICSI-SiD group (n = 326): ICSI performed with sperm selected using SiD software.
Sperm morphology screening was conducted prior to the ICSI procedure in both study
groups. Additionally, the level of experience of the embryologists was factored into the
sperm selection process. An embryologist with less than five years of experience in clinical
embryology was classified as a junior, while those with more than five years of experience
were considered senior embryologists. Embryos were cultured for up to 6 days in the same
conditions in ESCO MIRI® incubators (SAGE 1-step™ Medium, 37.0 ◦C, 5%O2, 6% CO2).
Our laboratory is equipped with one timelapse incubator (ESCOMIRI®TL). As room is
limited in the timelapse incubator, only a subset of the patients had their embryos cultured
and monitored within the timelapse system. There was no selection nor indication of time-
lapse culture. Only single embryo transfers were performed on day 5. Surplus embryos
were vitrified for future use.

2.2. Automated Sperm Selection Software

Each sperm sample underwent video recording using an inverted microscope equipped
with a digital camera (Watec 221S, Watec®, Decatur, GA, USA). Videos captured the move-
ment of spermatozoa from the moment of introduction into the PVP droplet until the
manual selection and immobilization of a spermatozoon for injection. Quantitative analysis
of sperm motility parameters was performed using SiD (RV1.0.0, IVF 2.0 LTD) software. SiD
computed individual values for parameters such as LIN and VSL for every spermatozoon
observed in the field of view and generated a quantitative score and ranking as «Low»,
«Medium», «Good», and «Best» (Figure 1). Sperm categorized as “Best” by the SID software
were prioritized for ICSI.
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Figure 1. SiD software user interface. Analyzed sperms are encircled by the system and scored as
«Low», «Medium», «Good», or «Best» on a red-to-green scale (upper left). The software suggests that
priority for injection should be given to sperm A, then B and C.

2.3. Embryo Vitrification and Warming

Embryos were individually vitrified on a Cryotop® device (Kitazato®, Fuji, Japan)
using a Kitazato vitrification kit following the supplier’s recommendation. Embryos were
dehydrated in equilibration solution for 10 min, exposed to vitrification solution for 1 min,
placed on the Cryotop®, and then directly immersed into liquid nitrogen within 1 min.
Embryo-warming cycles were performed using the Kitazato warming kit. The thawing
solution was warmed up at 37 ◦C. The strip of the Cryotop® was immersed into it, and
the detached embryos were incubated for 1 min. At room temperature, the embryos were
transferred into the diluent solution and washed twice in droplets of wash solution. The
embryos were incubated in SAGE 1-step™ Medium (37.0 ◦C, 5% O2, 6% CO2) at least 1 h
before transfer, and embryo re-expansion, morphology, and viability were assessed before
transfer. The vitrified/warmed embryos were transferred in substitute hormonal treatment
for endometrial preparation.

2.4. Outcome Definitions

Laboratory outcomes were calculated as described in the Vienna consensus [22]. Em-
bryos displaying less than 10% fragmentation with 4 or 8 cells were considered top-quality
embryos on day 2 or day 3, respectively. Blastocyst-stage embryos were graded using the
Gardner system [23]. Top-quality blastocysts showed grade A in both trophectoderm and
inner cell mass and good-quality blastocysts showed grade A or B trophectoderm and
inner cell mass. Embryo development was monitored using a timelapse system (MIRI®,
ESCO, Egaa, Denmark), and embryo morphokinetic parameters were annotated manu-
ally following the nomenclature previously described [24,25]. The morphokinetics events
were annotated only when they could be clearly visualized by the operator. To minimize
observer bias in embryo grading and morphokinetic annotation, the method of sperm selec-
tion was blinded. Preimplantation genetic testing for aneuploidy (PGT-A) was performed
to examine chromosomal abnormalities. Our clinic policy recommends PGTA testing only
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for the following 3 indications: 1—history of recurrent implantation failure (failure to
achieve a pregnancy after 3 transfers of good quality blastocysts); 2—history of repeated
pregnancy loss (3 early or 2 clinical miscarriages); and 3—women with advanced maternal
age (≥37 years of age). Therefore, only a subset of our patients benefitted from this test.
Early pregnancies were assessed by blood hCG detection (>10 U/L). Clinical pregnancies
were confirmed by ultrasound assessment of a fetal heartbeat.

2.5. Statistics

Qualitative variables are expressed as percentages and quantitative variables as means
with standard deviations. Student’s t-test was used to compare quantitative variables and
Pearson chi-square or Fisher’s exact test was used for qualitative variables.

3. Results
3.1. Laboratory Outcomes

There was a non-significant trend towards better outcomes in the ICSI-SiD group for
biological outcomes including fertilization rate, cleavage rate, day 3 embryo development
rate, blastocyst development rate on day 5, good-quality blastocyst development rate on
day 5, and top-quality blastocyst development rate on day 5 (Table 1).

Table 1. Laboratory outcomes in the ICSI-SiD group (n = 326) compared to the ICSI group (n = 320).
* Includes day 5 and day 6 embryos, ns: non-significant. OR: odds ratio, CI; confidence interval.

Outcome (%) ICSI-SiD ICSI OR 95% CI p-Value

Fertilization rate 83.1 82.4 1.1 0.7–1.6 ns
Cleavage rate 97.6 97.2 1.2 0.4–3.7 ns

Day 2 embryo development rate 70.6 74.6 0.8 0.5–1.2 ns
Top-quality development rate on day 2 48.6 52.8 0.9 0.6–1.2 ns

Day 3 embryo development rate 72.9 70.6 1.1 0.8–1.7 ns
Top-quality embryo development rate on

day 3 51.4 51.6 1.0 0.7–1.4 ns

Blastocyst development rate on day 5 49.0 44.8 1.2 0.8–1.7 ns
Good-quality blastocyst development rate on

day 5 45.1 41.5 1.2 0.8–1.7 ns

Top-quality blastocyst development rate on
day 5 25.9 22.2 1.2 0.8–1.9 ns

Blastocyst development rate * 70.2 62.5 1.4 1.0–2.0 ns
Good-quality blastocyst development rate * 57.3 53.6 1.1 0.8–1.7 ns
Top-quality blastocyst development rate * 29.0 24.2 1.3 0.9–1.9 ns

Similarly, a non-significant increase was observed in all biological outcomes including
fertilization rate, cleavage rate, day 3 embryo development rate, blastocyst development
rate on day 5, good-quality blastocyst development rate on day 5, and top-quality blastocyst
development rate on day 5 when sperm selection was performed by a junior embryologist
(Figure 2).

3.2. Embryo Morphokinetics

Embryo development was monitored using a timelapse system. Our data showed
that second polar body extrusion (tPB2) (4.0 h vs. 4.8 h [p = 0.005]) (Figure 3) and early
cleavage (t2) (27.3 h vs. 28.7 h [p = 0.05]) (Figure 4) happen significantly earlier when SiD
is used for ICSI. No significant difference was observed in all other fertilization events
(cytoplasmic wave, tPN1, tPN2, presence of cytoplasmic halo, tPNf, and cytoplasmic halo
disappearance), the other cleavage timings (t3-> t10, tM, tSC, tEC, and tSB), or embryonic
cell cycles (ECC1, ECC2, ECC3, s2, and s3).
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3.3. Genetic and Clinical Outcomes

The euploid rate obtained within the two groups was comparable. Although there
was a tendency toward higher cumulative early and clinical pregnancy rates after ICSI-SiD,
the difference did not reach significance (Table 2).

Table 2. Chromosomal and clinical outcomes in the ICSI-SiD group compared to the ICSI group. ns:
non-significant. OR: odds ratio, CI: confidence interval. * Cumulates pregnancies from fresh and
frozen embryo transfers. # A total number of 15 embryos were biopsied in the ICSI-SiD group and
9 embryos in the ICSI group.

Outcome (%) ICSI-SiD ICSI OR 95% CI p-Value

Number of embryos transferred 51 47

Euploid rate # 53.3 44.4 2.3 0.4–12.8 ns
Cumulative * early pregnancy rate 43.1 34.0 1.5 0.7–3.3 ns

Cumulative * clinical pregnancy rate 27.4 21.3 1.4 0.6–3.6 ns

4. Discussion

This study sought to explore the potential benefits of incorporating AI for optimizing
sperm selection in the context of ICSI. In this preliminary investigation involving sibling
oocytes, the comparison between automated sperm selection and embryologist-performed
selection for ICSI revealed similar laboratory outcomes. Key parameters such as the fertil-
ization rate, cleavage rate, day 3 embryo development rate, blastocyst development rate
on day 5, good-quality blastocyst development rate on day 5, and top-quality blastocyst
development rate on day 5 exhibited a non-significant trend towards improved outcomes
with the use of the automated software. Similarly, clinical outcomes, including the cumula-
tive early pregnancy rate and cumulative clinical pregnancy rate, demonstrated a positive
non-significant trend when the software was involved in sperm selection.

One potential contributing factor to the observed lack of difference could be attributed
to the methodology employed for sperm sample preparation. In this study, the ZymotTM

microfluidic chamber was utilized for sperm preparation, which is a device recognized
for optimizing sperm selection and generating a pre-optimized population of spermato-
zoa [3,12,14,15]. Exploring the impact of SiD automated sperm selection software on bio-
logical outcomes in samples prepared using less effective techniques may reveal divergent
results in future investigations. Despite many outcomes demonstrating a positive trend with-
out reaching statistical significance, conclusive insights into the contribution of SiD to both
laboratory and clinical outcomes may necessitate larger datasets for a definitive conclusion.
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Upon further analysis based on embryologist experience, slightly higher non-significant
biological outcomes were noted when the AI software selected sperm for both junior and
senior embryologists. Importantly, no significant difference emerged in the outcomes
when comparing sperm selection by junior and senior embryologists, indicating that
junior embryologists in the laboratory were highly trained from the outset. These results
suggest that the AI program performed on par with an embryologist in choosing the
most optimal sperm for ICSI. This congruence in outcomes is particularly promising, as it
indicates the AI program’s efficacy. This is especially noteworthy considering the inherent
complexity of evaluating a sperm’s potential with the naked eye of an embryologist. The
embryologist must assess various aspects of sperm mobility, as well as multiple facets of
sperm morphology, encompassing the head, midpiece, and tail. All these evaluations must
be conducted while numerous sperm are present in the same field of vision, each exhibiting
distinct movements. The use of AI in sperm selection addresses these challenges, providing
a standardized and objective approach that overcomes the intricacies associated with
manual assessments. Moreover, the AI tool’s ability to eliminate user bias, mitigate fatigue,
and optimize time management adds significant value to the ICSI process, especially in
scenarios where staff may not be well-trained in sperm selection. Although our study
did not directly measure and compare the time taken by an embryologist to select the
most optimal sperm versus the AI program, the program’s efficiency was notably observed.
Interestingly, future versions of SiD will include automated sperm morphology assessments.
This improvement is expected to have a positive impact on the time taken to select sperm
for ICSI. A similar study should be conducted to re-assess updated versions of the software.
It must be kept in mind that evaluating the cost-effectiveness of AI-driven sperm selection
is imperative for assessing its viability in clinical settings. Conducting an analysis of
potential economic benefits, such as reduced laboratory staffing expenses, shorter procedure
durations, and enhanced resource allocation, can provide valuable insights into its long-
term viability and sustainability within the field of reproductive medicine.

In our investigation into the impact of sperm selection on embryo morphokinetics,
our findings revealed that the extrusion of the second polar body (tPB2) and the first
cleavage to form a two-cell embryo (t2) occurred earlier when SiD was employed for sperm
selection. These specific timing events, i.e., tPB2 and t2, have been associated with critical
aspects such as embryo implantation, day 3 embryo quality, and blastocyst formation and
quality, as documented in previous studies [24,26–30]. Previous research has shown that
embryos falling within the time range of 21.3 h < t2 < 27.9 h exhibit higher implantation
rates compared with those outside this period [29,30]. Not all incubators available in our
laboratory are equipped with a timelapse system to monitor embryo development. This
explains the gap between the number of oocytes in each group (ICSI-SiD and ICSI) and
the number of visualized and annotated morphokinetic events. To draw more definitive
conclusions about the impact of automated sperm selection using SiD on the tPB2 and
t2 timings, further investigation with a larger dataset is needed. We believe that an in-depth
analysis of sperm selected by SiD may help us to interpret this finding.

We do not recommend PGT testing for routine clinical use. Therefore, we performed
such analysis only in a subset of our patients with advanced maternal age or with a history
of recurrent implantation failure or a history of repeated miscarriages. Consequently, only
a limited number of embryos were analyzed in each group and included in the present
study (15 embryos in the ICSI-SiD group and 9 embryos in the ICSI group). Although our
preliminary results are informative, no definitive conclusion can be drawn yet about the
input of SiD in the chromosomal status of developing embryos. The group numbers need
to be increased to consider the results as robust.

It is widely recognized that IVF outcomes are influenced by patient-related factors
(e.g., patient age, oocyte quality, etc.) that need to be controlled while performing statistical
analyses [31–33]. We designed this study with sibling oocytes to mitigate the impact of such
confounding factors on our results. However, we acknowledge although that endometrial
preparation prior to embryo transfer was standardized, endometrial receptivity and thick-
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ness were not considered in our analyses. Clinical outcomes should be interpreted carefully
taking into consideration intraindividual intercycle variability in endometrial receptivity.

5. Conclusions

This pilot study underscores the effectiveness of the automated sperm selection soft-
ware SiD by demonstrating comparable biological outcomes and embryo morphokinetics
to traditional methods. The findings suggest that SiD could be a valuable tool for stan-
dardizing sperm selection processes, particularly in environments with varying levels
of laboratory staff experience. The consistent results in embryo development timelines
and key biological parameters highlight SiD’s reliability in selecting sperm for successful
fertilization and embryo development. While acknowledging the preliminary nature of this
study, these promising results encourage further exploration of SiD’s potential applications
in larger datasets. This automated tool has the potential to streamline and optimize sperm
selection in assisted reproductive technologies, contributing to overall procedure quality
and efficiency. Automated sperm selection is an emerging technology that appears to be a
great asset in the development of the IVF laboratory of the future.
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