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Abstract: The maritime industry is addressing environmental issues, and “cold ironing” offers a
promising solution. This method involves supplying ships at port with energy, reducing fossil fuel
dependence and emissions, and aiding in global climate change efforts. It is especially important for
islands like Lesvos, which suffer from high energy costs and environmental issues due to imported
fossil fuel reliance. However, research gaps exist in using renewable energy sources (RES) for cold
ironing, mainly due to insufficient data on power needs and lack of monitoring for precise calculations
and the very limited applications for the case of non-interconnected islands. This study uses real data
from the port of Lesvos to evaluate power requirements for cold ironing and assesses the viability
of a wind power park for an electrified port with the novelty and uniqueness of developing the
application on a non-interconnected island. It also examines potential CO2 emission reductions. Data
from Marine Traffic S.A. were used, considering factors like ship arrivals, hoteling duration, and
engine types. This study also includes a simulation using RETScreen software for a 20 MW wind park
intended for port operations. The findings show that the monthly energy demand at Mytilene port
is around 6118 MWh, with an average power demand of 8.2 MW. The simulated wind park could
supply about 72,080 MWh yearly, with a significant surplus (14,956 MWh annually) exportable to the
grid. However, demand fluctuations mean the port might need an extra 924 MWh from the main
grid. This underscores the need for additional strategies like energy storage and demand–response
practices to fully transition to 100% RES-powered operations.

Keywords: electrification; green transition; wind power; electric ports; maritime

1. Introduction

The maritime sector plays a crucial role in global trade by facilitating the movement of
goods and commodities via seas and oceans. However, it also contributes significantly to
environmental issues, such as air pollution and greenhouse gas emissions. As the global
community focuses on fighting climate change and reducing environmental impacts, the
marine industry is under pressure to adopt sustainable practices [1]. Maritime electrifi-
cation, particularly “cold ironing” (also known as shore power or alternative maritime
power), is emerging as a solution [2]. Cold ironing involves providing power to docked
ships from the shore, allowing them to turn off their generators and engines, thus reducing
reliance on fossil fuels and decreasing emissions. This paper discusses cold ironing, cover-
ing its best practices, ongoing and future developments, and its transformative potential
for the maritime industry. By connecting to onshore power grids, cold ironing substantially
reduces greenhouse gas emissions and air pollutants like sulfur and nitrogen oxides, im-
proving local air quality and contributing to global climate change mitigation efforts. This
makes it a prime example of environmental best practice in the maritime field [3]. Cold
ironing plays a pivotal role in mitigating port emissions by enabling docked ships to utilize
electricity from the shore instead of relying on their auxiliary engines. This technology
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significantly reduces emissions such as NOx, SOx, and particulate matter from cruise ships
during hoteling, contributing to cleaner air in port areas [4]. A prominent example of
its effectiveness is observed in the Copenhagen cruise ship pier, where cold ironing has
demonstrated substantial socio-economic advantages by lowering health-related costs from
air pollution [5]. By aligning with both maritime and land-based environmental regulations,
cold ironing not only substantially diminishes harmful emissions but also underscores the
importance of sustainable practices in port operations. Although the initial investment for
setting up cold ironing infrastructure is considerable, the long-term environmental and
health benefits strongly advocate for its broader implementation in ports worldwide [6].

In addition to its considerable environmental advantages, cold ironing offers financial
benefits for ship operators. Operating onboard generators powered by diesel or heavy fuel
oil can be more expensive and energy-intensive than accessing electricity from the shore.
Cold ironing proves to be a financially and environmentally desirable option due to its
effectiveness, leading to significant cost savings and improved operational efficiency for
vessel owners. Traditional shipboard generators often consume more fuel than onshore
power sources [7]. By eliminating the need for ships to burn fuel for power generation,
cold ironing reduces operating costs and decreases reliance on fossil resources. As a
result, ship owners can enjoy lower fuel costs, especially during extended port calls where
ships would otherwise continuously remain idle and burn fuel. Cold ironing emerges as
a mutually beneficial solution for the marine industry and the environment, delivering
economic and environmental benefits [8]. An area of active research and development is
the incorporation of alternative energy sources into cold ironing systems. Using solar, wind,
and battery storage systems can help ships when they are in port run more sustainably
and environmentally, supporting international efforts to switch to greener energy sources
and lowering the carbon footprint of the sector [9]. Setting a new benchmark for maritime
electrification and demonstrating the industry’s commitment to a more sustainable and
ecologically conscious future, cold ironing represents hope for cleaner port operations [10].

A point of interest is the development of cold ironing on islands that are non-
interconnected and rely on primarily diesel engines to cover their electricity demand [11].
In these cases, the focus on deploying and embracing renewable energy sources (RES)
has intensified due to concerns about addressing climate change, decreasing reliance on
fossil fuels, and ensuring energy security [12]. For islands, the transition to renewable
energy is crucial as they heavily rely on imported liquid fossil fuels to meet their energy
needs. This dependency leads to negative consequences such as high energy costs, supply
vulnerabilities, environmental degradation, and adverse impacts on local economies [13].
Despite these challenges, many islands recognize RES as a feasible and sustainable alter-
native. RES technologies provide benefits like abundant resource availability, potential
cost savings, and positive environmental effects. However, the successful adoption of
RES on islands depends on various factors unique to each case. In the case of Lesvos,
the island’s isolated grid and dependence on a diesel power plant make its energy pro-
duction carbon-intensive, costly, and reliant on external resources. This highlights the
potential of RES as a viable and sustainable alternative for Lesvos, with opportunities
and barriers that need careful consideration [14]. Lesvos is the third biggest island in
Greece and is located in the North Aegean. The island has significant opportunities in
energy transition, including the potential for energy independence using local resources
and reducing reliance on imported fossil fuels. This not only enhances energy security
but also addresses environmental concerns by mitigating climate change and reducing
air pollution and greenhouse gas emissions. As mature technologies like photovoltaic,
wind power, and certain biomass applications become economically viable, there is an
opportunity for cost savings compared to traditional energy sources [15]. Additionally,
Lesvos can capitalize on its agricultural and food industry by repurposing organic waste
for renewable energy, creating economic opportunities and reducing the environmental
impact of energy production [16]. The energy transition also offers social benefits, foster-
ing the development of energy communities that enable local generation, storage, and
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distribution of energy, encouraging active participation, social cohesion, and renewable
energy production [17].

In the framework of the above-mentioned information, a research gap has been iden-
tified in the field of RES development for the support of cold ironing operations on non-
interconnected islands. There is a lack of specific data for the power demand that is
necessary for such operations and—to date—studies have not provided monitoring data
that would allow such calculations. In addition, there are limitations of small-scale grids
that need to be assessed prior to the electric transition of ports and transportation [18]. The
scope of this study is the utilization of real monitoring data from the port of Lesvos in order
to assess the power demand of a potential cold ironing application in order to provide a
blueprint for the green transition of ports. On a second level, this study aims to analyze the
deployment of a wind power park for covering the energy requirements of an electric port
and assess the reduction of CO2 emissions.

2. Materials and Methods
2.1. Available Data from Shipping Routes

The data of shipping routes to and from Mytilene were obtained by utilizing the
database of Marine Traffic S.A. This database played a crucial role in providing comprehen-
sive information, including the number of arrivals per ship, deadweight tonnage (DWT),
draught, distance traveled, and ship types. Additionally, publicly available data were
used in this study to identify the engines employed by each shipping vessel. The data
depicted in Figure 1 show the arrivals at the Mytilene port categorized by deadweight
tonnage (DWT). Passenger ships, specifically those with a DWT of 6148, represent a notable
portion, with 36 arrivals recorded in June. Smaller passenger vessels operating on short-sea
international routes, within the range of 50 to 180 DWT, contribute to a total of 151 arrivals,
predominantly servicing the MJT-AYK international route. Other passenger ships with
relatively higher DWT, such as those measuring 3348 DWT (28 arrivals) and 7622 DWT
(31 arrivals) in June 2019, also play a substantial role in the overall arrival figures. Passen-
ger ships dominate the total arrivals, accounting for 42.4%, followed by ro-ro/passenger
vessels at 33.9%, and ro-ro cargo ships at approximately 3.5% of the total arrivals. These
three categories, operating on regular schedules, collectively constitute around 80% of the
arrivals. Additionally, there are other vessels engaged in vital supply services, including
the transportation of heavy fuel oil and cement to the island. It is worth noting that Figure 1
excludes military vessels and other non-scheduled shipping practices that could impact the
total arrival count.
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Figure 1. Total monthly arrivals at the port of Mytilene sorted by deadweight tonnage (DWT), with
passenger ships in green color and short-sea shipping vessels in red color.

The calculation of the in-port utilized energy per ship relied on the number of arrivals,
the hoteling time, and the engine type of the ships. The nominal engine power of each ship-
ping vessel was adjusted using data from Tables 1 and 2. It is important to note that main
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engines are minimally utilized during hoteling, operating only 5% of the time. Although
some studies recommend a 0% usage during hoteling, this study adopts the values from the
EMEP/EEA report while recognizing the validity of the alternative argument [19]. Table 1
was employed in order to convert the nominal power of engines for each ship into adjusted
values corresponding to specific actions such as cruising, maneuvering, and hoteling. To
offer numerical insights while maintaining the anonymity of the shipping vessels, it can be
noted that passenger ships have an average main engine power of 7668 KW, ro-ro cargo
ships have an average main engine power of 11,600 KW, and small (short-sea) passenger
ships have an average main engine power of 1300 KW. The auxiliary engine output power
ranges from 27% to 39% of the main engine output power for each case. The values for
power output and operation hours are adjusted for each action in alignment with the
information in Table 1.

Table 1. Percentage of engines’ operation (ME: main engine, AE: auxiliary engine).

% Load ME % Time ME % Load AE

Cruise 80 100 30

Maneuvering 20 100 50

Hoteling 20 5 40

Table 2. Parameters for cruising and in-port ship activity.

Ship Type Cruise (km/h) Maneuvering (h) Hoteling (h)

Ro-ro cargo 27 1 6

Passenger 39 0.8 6

Passenger (short sea) 25 0.6 2

Table 2 provides the time required for various actions, with a focus on data from
the summer (June 2019), accounting for reduced hoteling–idling times. During winter,
hoteling–idling times range from 14 to 15 h for passenger and ro-ro cargo ships, but during
summer, they are reduced to approximately 6 h, coinciding with a significant increase in
arrival frequency. Maneuvering times remain consistent throughout the year but only the
hoteling–idling times play a crucial role in calculating the in-port energy demand [20].

By utilizing the above-mentioned data, this study will present the power of the main
and auxiliary engines of the ships that have hoteling–idling times in the port of Mytilene.
Part of the main scope of the study is the calculation of the power demand for supporting
in-port activities in order to present an electrification scenario that could be partially
supported by renewable energy technologies in the framework of green transition.

With Ht as hoteling time, Ep as engine power (of a given engine), % ME as main
engine load factor, and % AE as auxiliary engine load factor, the total energy produced for
the hoteling of each ship can be seen in Equation (1).

Total energy per ship: Ht × [(Ep × % ME) + (Ep × % AE)] (1)

The total energy of all the shipping vessels is subsequently calculated and added in
order for the total energy to be assessed. The average power demand is calculated by
taking into account the total hoteling time of each shipping vessel and a power demand
fluctuation of 80% during the day [21].

2.2. Methodology and Software for the In-Port Energy Demand Analysis

The energy analysis utilized RETScreen, which is free software that was launched
by Canada’s Ministry of the Environment. It is developed in a Microsoft Excel environ-
ment and is designed for (among other uses) assessing energy production from potential
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projects involving renewable energy sources. RETScreen not only provides information
about emissions but also evaluates the economic aspects and risks associated with specific
projects [22]. This tool is valuable for decision-making, assessing the feasibility of future
renewable energy projects, and identifying additional solutions for profitable energy pro-
duction. The energy analysis component evaluates the generated energy from the proposed
energy system. The cost analysis estimates the initial and annual costs for the project. The
emission analysis assesses the reduction in greenhouse gas emissions resulting from the
development of renewable energy sources. Lastly, the financial analysis calculates the net
present value of the project, offering insights into its overall economic sustainability. In
this framework, this study considers the development of a 20 MW wind park that can
electrify the in-port operations of Mytilene port. Figure 2 utilizes the real average wind
data of Lesvos island as it has been presented by the publicly available data provided by
HEDNO S.A., i.e., the Hellenic Electricity Distribution Network Operator [23]. The average
wind speed data of the existing operating wind parks are considered as a baseline for
our analysis. On the one hand, the exact geolocation for the installation of the wind park
exceeds the scope of this study, and on the other hand, it cannot be assumed that any new
installations will be vastly different than the already-operating ones.
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As mentioned above, RETScreen’s uniqueness lies in its ability to evaluate not only
emissions data but also the financial aspects and associated risks of specific renewable
energy initiatives. Such features render it an essential asset for making informed deci-
sions, determining the viability of prospective renewable energy projects, and identifying
profitable energy production opportunities. The software’s capabilities encompass sev-
eral critical areas. Firstly, the energy analysis component is tasked with measuring the
energy output from proposed renewable energy systems. In parallel, the cost analysis
module provides estimates of both the upfront costs and ongoing yearly expenses tied to
the project. Overall, RETScreen serves not just as a tool but as a comprehensive solution for
assessing and progressing renewable energy projects, ensuring their environmental and
economic feasibility. In this case, RETScreen is used for the design and analysis of a 20 MW
wind park, and the operation of the software assists with not only the energy analysis
but also the extrapolation of a robust set of wind speeds that can be used reliably for
modeling purposes.

The two-parameter Weibull distribution is the method of choice for wind energy
assessments due to its proven ability to represent the skewness more accurately in wind
speed distributions compared to other statistical functions. The two-parameter Weibull
distribution incorporates a scale parameter “c” (in wind speed units) defining the wind
speed distribution’s horizontal scale, and a dimensionless shape parameter “k”, which
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indicates the distribution’s breadth. The software calculates wind fluctuations using the
Weibull distribution, where the default setting for the Weibull K factor is 2. This approach
enables precise modeling of wind variability, essential for accurate wind energy assessment.
The wind turbine output is calculated with Equations (2)–(4):

F(v) = (k/c) × (v/C)k−1 × [−(v/c)k] × exp (v > 0; k, c > 0) (2)

Uhub = Uanem × [(ln (Zhub⁄Z0))/(ln (Zanem⁄Z0))] (3)

where

Uanem: wind speed at anemometer height,
Zhub: height of the wind turbine,
Zanem: height of the anemometer,
Z0: surface roughness length.

The power output of a wind turbine is calculated based on its power curve, initially
computed for standard air density and then adjusted to reflect the actual air density
conditions. This approach ensures a more precise measurement of the turbine’s energy
generation capabilities under varying atmospheric conditions.

P = (ρ/ρ0) × PSTP (4)

where

ρ: actual air density,
ρo: air density at standard air density,
PSTP: wind power output at standard air density.

Table 3 presents the characteristics of the wind turbine ENERCON—48–76m, which
has been selected as the wind turbine that could potentially be installed in the framework
of this analysis. The design and operational characteristics have been extracted by the
product database of the software RETScreen. The software has also incorporated the power
curve of the wind turbine, and the wind fluctuation has been calculated by means of a
Weibull distribution, with the default setting of the Weibull K factor at 2. Analyzing power
curve data aids in selecting suitable turbine models for specific locations, considering the
prevailing wind conditions. It also facilitates the development of effective control strategies
to enhance energy capture and minimize turbine stress [24]. Ultimately, a comprehensive
understanding of power curve data is fundamental for the successful integration and
utilization of wind energy, contributing to sustainable and renewable power generation.

Table 3. Design and operational parameters of the selected wind turbine type.

Model ENERCON—48–76 m

Parameter Unit Value

Power capacity per turbine kW 800

Number of turbines 25

Total power capacity kW 20,000

Hub height m 76

Rotor diameter per turbine m 48

Swept area per turbine m2 1809.6

Air temperature—annual ◦C 17.1

Atmospheric pressure—annual kPa 99.6

Wind shear exponent 0.14

Shape factor 2
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3. Results

The power requirements of both main and auxiliary engines are significant consid-
erations for passenger shipping vessels, particularly those with extended hoteling times
in the port of Mytilene. The main engines, responsible for propulsion, play a crucial role
in providing the necessary power for the vessel’s movement. Simultaneously, auxiliary
engines support various onboard functions during hoteling, such as maintaining lighting,
air conditioning, and other essential systems. The power capacity of these engines is
determined by the vessel’s size, design, and the range of amenities and services offered
during hoteling. Understanding and optimizing the power of both main and auxiliary
engines are key factors in ensuring the operational efficiency and passenger comfort of
these vessels during their extended stays in the port of Mytilene. Figure 3 presents the
nominal power of main and auxiliary engines for the passenger shipping vessels with the
highest hoteling times in Mytilene port.
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The energy requirements of shipping vessels constitute a pivotal element within the
maritime sector, encompassing the power needs for propulsion, auxiliary systems, and
various onboard functions. Shipping vessels utilize a range of energy sources, including
traditional marine fuels like heavy fuel oil (HFO), marine diesel oil (MDO), liquefied natural
gas (LNG), and an increasing focus on renewable energy alternatives. The energy demand
in shipping is influenced by factors such as the size, type, and operational characteristics of
the vessel [5]. Larger vessels, particularly container ships and oil tankers, face substantial
power demands to ensure efficient navigation and cargo handling. Ongoing technologi-
cal advancements, marked by the development of more energy-efficient engines, hybrid
propulsion systems, and exploration into alternative fuels, are crucial in addressing the
continually evolving energy needs of the industry. With the maritime sector aiming to align
with environmental sustainability objectives, there is a growing emphasis on improving
energy efficiency, reducing emissions, and transitioning towards cleaner and more sustain-
able energy solutions for shipping operations. By using equation 1, we can obtain the total
energy demand for main and auxiliary engines for the passenger shipping vessels with the
highest hoteling times in Mytilene port, as shown in Figure 4. The total energy demand for
the month of June (2019) for all shipping vessels in the port of Mytilene has been calculated
to be 6118 MWh with an average power demand of 8.2 MW.



Environments 2024, 11, 84 8 of 12Environments 2024, 11, 84 8 of 12 
 

 

 
Figure 4. The total energy demand for main and auxiliary engines for the passenger shipping vessels 
with the highest hoteling times in Mytilene port (June 2019). 

The power curve data represent the relationship between the wind speed and the 
electrical power output generated by a wind turbine. Typically, the power output in-
creases with rising wind speeds, reaching a peak at the turbine’s rated capacity. Beyond 
this point, the turbine operates at its maximum output. Table 4 shows the power and en-
ergy curve data of a simulated 20 MW wind park at Lesvos island and follows exactly the 
previously described pattern, with the wind turbines not producing any energy for wind 
speeds lower than 3 m/s and higher than 15 m/s. Each turbine has a simulated gross en-
ergy production of 3481 MWh with a specific yield of 1810 kWh/m². 

Table 4. Power and energy curve data of a simulated 20 MW wind park at Lesvos island. 

Wind Speed (m/s) Power Curve Data (kW) Energy Curve Data (MWh) 
0 0 - 
1 0 - 
2 2 - 
3 12 234.07 
4 32 575.20 
5 66 1084.68 
6 120 1697.24 
7 191 2330.31 
8 284 2926.60 
9 405 3458.51 

10 555 3916.83 
11 671 4299.86 
12 750 4608.18 
13 790 4843.49 
14 810 5009.13 
15 810 5110.46 
15 0 - 

According to the simulation analysis, the electricity delivered annually to the port 
equals to 72,080 MWh, while a significant part of electricity remains unutilized and is ex-
ported to the grid. This amount equals 14,956 MWh annually and the projected monthly 
fluctuation is presented in Figure 5. 

Figure 4. The total energy demand for main and auxiliary engines for the passenger shipping vessels
with the highest hoteling times in Mytilene port (June 2019).

The power curve data represent the relationship between the wind speed and the
electrical power output generated by a wind turbine. Typically, the power output increases
with rising wind speeds, reaching a peak at the turbine’s rated capacity. Beyond this point,
the turbine operates at its maximum output. Table 4 shows the power and energy curve
data of a simulated 20 MW wind park at Lesvos island and follows exactly the previously
described pattern, with the wind turbines not producing any energy for wind speeds lower
than 3 m/s and higher than 15 m/s. Each turbine has a simulated gross energy production
of 3481 MWh with a specific yield of 1810 kWh/m2.

Table 4. Power and energy curve data of a simulated 20 MW wind park at Lesvos island.

Wind Speed (m/s) Power Curve Data (kW) Energy Curve Data (MWh)

0 0 -
1 0 -
2 2 -
3 12 234.07
4 32 575.20
5 66 1084.68
6 120 1697.24
7 191 2330.31
8 284 2926.60
9 405 3458.51
10 555 3916.83
11 671 4299.86
12 750 4608.18
13 790 4843.49
14 810 5009.13
15 810 5110.46
15 0 -

According to the simulation analysis, the electricity delivered annually to the port
equals to 72,080 MWh, while a significant part of electricity remains unutilized and is
exported to the grid. This amount equals 14,956 MWh annually and the projected monthly
fluctuation is presented in Figure 5.
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electrical grid.

It should be highlighted that due to the fluctuations in demand, the in-port activities
require an additional amount of 924 MWh that has to be provided by the main electrical
grid. This result shows that although the net balance of the electricity that is required
can be covered from the operation of the proposed wind park, other actions need to be
implemented to support the gradual transition to 100% RES-powered operations. These
practices could include energy storage and demand–response practices, which in the case of
ports would entail the adjustment of the incoming and outcoming shipping routes in order
not to increase the power demand beyond specific limits. Therefore, this study suggests
that future work on cold ironing designs should be conducted with cooperation between
the shipping route designers and the energy planners. Additionally, national policies on
energy storage, hydrogen production, and net metering legislation will vastly influence the
success of cold ironing practices.

4. Discussion

Concerning the energy independence of cold ironing by means of RES installations,
a study by Bakar et al. [25] focused on creating a cost-effective, environmentally sustain-
able hybrid microgrid for seaports. Utilizing solar photovoltaics, wind turbines, and
cold ironing facilities, the study’s optimal design significantly decreases reliance on tra-
ditional energy sources, with over 80% of electricity demand met through renewables.
This approach aligns with maritime industry goals for green energy and sustainability,
demonstrating potential for broader application in seaport energy management. Therefore,
the case of interconnected ports may have the potential to be flexible in the short term, and
this is a very interesting outcome that is in agreement with the outcome of the study by
Colarossi et al. [9], where the authors showed that installation of RES in ports could
potentially reduce CO2 emissions by up to 87%. Karapidakis et al. [26] explores the imple-
mentation of cold ironing at Heraklion port, showing its potential to significantly reduce air
pollution by replacing ship-generated emissions with shore-side electricity. The research
estimates the energy requirements for ships at berth and evaluates environmental benefits,
including substantial reductions in CO2, nitrogen, and sulfur emissions. It concludes that
cold ironing is a feasible and environmentally beneficial practice, particularly considering
Crete’s high potential for renewable energy sources. The study of Piccolli et al. [27] on cold
ironing in the Adriatic Sea examined its implementation in Italy, Croatia, and Greece, high-
lighting significant environmental benefits through reduced emissions and demonstrating
its economic viability with potential for quick paybacks. It explores the alignment of this
technology with the EU’s regulatory framework, particularly the Emissions Trading System,
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and discusses the necessary technical details for implementation. The study emphasizes
the importance of coordinated policies and investments among countries to maximize the
technology’s environmental and economic advantages. A study by Glavinovic et al. [28] re-
vealed that 40% of these ports currently have high-voltage connections over 1 kV, crucial for
effective cold ironing implementation. However, a significant portion, 60%, lacks adequate
infrastructure, indicating a need for substantial investment. Surveys among port experts
and stakeholders highlighted the varied implementation timelines, with most predicting
a 1-to-5-year period for operational readiness. The study underscores the importance of
strategic investment and collaboration among government, private sector, and academia to
meet environmental goals and enhance maritime safety. Cold ironing, where ships connect
to onshore power grids during port stays, effectively reduces emissions and pollution.
Enforced by regulations like the IMO’s MARPOL Annex VI, this practice reduces sulfur
and nitrogen oxide emissions, improving air quality and meeting environmental stan-
dards. It offers multiple benefits including energy efficiency, noise reduction, regulatory
compliance, and reduced fuel costs for ship operators. This approach demonstrates the
maritime industry’s dedication to sustainability and environmental responsibility [29].
Cold ironing’s global expansion requires significant port infrastructure investment. Ports
are enhancing their capacity for cold ironing by developing necessary electrical connections
and facilities to cater to more ships. This infrastructure is key to maximizing cold ironing’s
environmental benefits. Upgrades include electrical systems, dock renovations, and stan-
dardized connectors for various vessel types. These developments are making it feasible
for ships of all sizes to use onshore power, aligning with international sustainability goals.
Technological advancements, such as wireless charging and automated plug-in systems,
are simplifying the process and are expected to further encourage cold ironing adoption,
making it a convenient and cost-effective option for ship operators [30].

In relation to the future of cold ironing, the maritime industry is actively embracing
sustainability, focusing on integrating renewable energy sources like solar, wind, and bat-
tery storage into cold ironing systems for reducing carbon emissions. This eco-friendly
initiative enables ships at port to leverage solar and wind energy, supplemented by reliable
battery storage, to minimize their environmental impact. Ongoing research and technologi-
cal innovations, such as automated plug-in procedures and wireless charging, are making
these systems more accessible and appealing. Additionally, the concept of smart ports
complements cold ironing by using automation and data analytics for efficient energy
use and streamlined logistics. This holistic approach enhances not only environmental
responsibility but also operational efficiency and security in marine operations. Global
standardization efforts, led by organizations like the International Maritime Organization
(IMO), are crucial in ensuring the effective implementation of cold ironing across the world.
By establishing uniform protocols and technical standards and offering incentives such
as financial benefits and tax exemptions, these initiatives are making cold ironing a more
feasible option for the industry. Collaboration among stakeholders and educational pro-
grams are vital for raising awareness and fostering a comprehensive understanding of
cold ironing’s benefits. This collaboration is key to overcoming barriers and promoting the
widespread adoption of these sustainable practices. In conclusion, the maritime sector’s
journey towards sustainability, spearheaded by the adoption of cold ironing and supported
by smart port technologies, has the potential to significantly reduce the industry’s envi-
ronmental impact and lead global shipping towards a cleaner, more responsible future. In
this framework, upcoming work on cold ironing should also co-assess the integration of
environmental considerations [31] but also the co-utilization of RES and smart systems [32].

5. Conclusions

This study provides a comprehensive examination of the potential for renewable
energy sources (RES) to support cold ironing operations at the port of Mytilene, Lesvos, a
non-interconnected island reliant on fossil fuels. The findings underscore the feasibility
of integrating a 20 MW wind park to meet the port’s energy demands, demonstrating



Environments 2024, 11, 84 11 of 12

that RES can significantly enhance maritime electrification while mitigating environmental
impacts. The analysis was based on real data from the port and showed that the proposed
wind park could produce approximately 72,080 MWh annually, significantly exceeding the
port’s monthly demand of 6118 MWh. This surplus energy, approximately 14,956 MWh
per year, could be exported to the main grid, illustrating the potential of RES to contribute
to broader energy needs beyond maritime operations. Despite these promising results,
fluctuations in demand and the inherent variability of wind energy highlight the neces-
sity for supplementary strategies such as energy storage systems and demand–response
initiatives. These measures would stabilize supply, enhance grid resilience, and support
the transition towards 100% renewable-powered operations. The potential success of cold
ironing at Mytilene port could serve as a blueprint for other non-interconnected islands
and similar maritime hubs, and could be used to advocate for increased investment in RES
to ensure sustainable, efficient, and environmentally friendly maritime operations. Future
research should focus on the integration of diverse renewable sources and the optimization
of energy storage solutions to fully harness the environmental and economic benefits of
maritime electrification. This will not only propel the green transition of ports but also
contribute significantly to global efforts in reducing maritime emissions and achieving
energy independence.
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