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Abstract: Wastewater-based epidemiology has garnered considerable research interest, concerning the
COVID-19 pandemic. Restrictive public health interventions and mobility limitations are measures
to avert a rising case prevalence. The current study integrates WBE monitoring strategies, Google
mobility data, and restriction information to assess the epidemiological development of COVID-19.
Various SARIMAX models were employed to predict SARS-CoV-2 cases in Liechtenstein and two
Austrian regions. This study analyzes four primary strategies for examining the progression of the
pandemic waves, described as follows: 1—a univariate model based on active cases; 2—a multivariate
model incorporating active cases and WBE data; 3—a multivariate model considering active cases
and mobility data; and 4—a sensitivity analysis of WBE and mobility data incorporating restriction
policies. Our key discovery reveals that, while WBE for SARS-CoV-2 holds immense potential for
monitoring COVID-19 on a societal level, incorporating the analysis of mobility data and restriction
policies enhances the precision of the trained models in predicting the state of public health during
the pandemic.

Keywords: wastewater-based epidemiology; SARS-CoV-2; restriction policies; SARIMAX model

1. Introduction

For decades, data collected from the inflow of wastewater treatment plants (WWTPs)
have been recognized as an important source of information for the detection of human dis-
eases, as well as drug consumption [1]. Similarly, for analyzing the SARS-CoV-2 pandemic,
multiple studies have found wastewater-based epidemiology (WBE) to be a potential
tool for the monitoring and management of the disease [2,3]. The virus signal found in
wastewater is closely connected to the prevalence information, that is, information on all
infected persons in the watershed. However, official reporting and statistics relies on the
data derived from individual test programs, which includes only a subset of the overall
infection and is a function of the test strategy [4]. The determination of the true number of
infections, also named prevalence data, is a delicate task due to the high number of asymp-
tomatic and mildly infected patients [5]. However, the clinical data are still used as the
backbone of SARS-CoV-2 management. These epidemiological data are usually denoted as
the incidence value, typically given as the 7- or 14-day notification rate of new infections for
100,000 inhabitants [6,7]. Despite the differences in the properties of the WBE-driven and
test-based data, studies have reported a significant statistical agreement between the two,
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thereby indicating the functionality of wastewater data as a complementary surveillance
strategy to clinical data [8].

Betancourt et al. [9] integrated wastewater-based epidemiology (WBE) with clinical
testing to combat COVID-19 outbreaks within a localized setting, underscoring the efficacy
of WBE in bolstering virus detection efforts. Kumar et al. [10] investigated the influence
of geographical location on lead time estimation, emphasizing the indispensable role of a
robust sewage network in facilitating the monitoring of SARS-CoV-2 in wastewater systems.
They also showed the effect of seasonality and climatic conditions in COVID-related WBE.
Cao and Francis [11] employed multivariate time series data analysis, in order to forecast
the COVID-19 cases at a community level using the viral RNA copies in the wastewater,
and suggested long-term SARS-CoV-2 monitoring for a more reliable forecasting [12].

In terms of pandemic management, WBE prevalence has a profound advantage both
as supplementary data and as an alternative to individual testing. Furthermore, WBE
was found to give a slightly earlier signal as compared to the clinical recognition of SARS-
CoV-2 [2]. Thus, a mathematical model capable of predicting the incidence values from
the wastewater signal is a valuable tool in pandemic management. Besides WBE data,
Google mobility data are another factor that helps in the prediction of the COVID cases
through time series analysis [13]. Mobility data are published by Google as a series of
COVID-19 community mobility reports [14]. This daily region-level dataset provides the
mobility record of individuals in different places, e.g., transit stations, groceries, workplace,
etc., compared with a baseline period before the pandemic. Indeed, these mobility trends
reflect the changes within social behavior, which is considered an explanatory factor in
SARS-CoV-2 infection spread analyses [15]. Our data resources also included the policy
and restriction factors set in the studied region for controlling the pandemic. The deployed
restrictions effects are shown in the supplementary material to this paper.

In order to assess the predictive power of statistical models trained with WBE and
Google mobility data, the current study investigates the correlation between SARS-CoV-2
time series derived from wastewater sampling, COVID-19 incidence values, and Google
mobility reports [14]. The dataset used in this study is composed of time series (dura-
tion approx. 24 months) at a wastewater treatment plant of the Principality of Liechten-
stein [16], Google mobility [14], and epidemiology data [17–19]. Variants of the autoregres-
sive moving-average model (ARIMA) with exogenous variables, such as wastewater data
and Google mobility data, and/or seasonality artifacts were investigated to predict SARS-
CoV-2 cases under varying data inputs. Following the analysis of forecasting scenarios for
Liechtenstein, the chosen methodology is applied to data from different sources to predict
COVID-19 cases in two Austrian regions. This allows the examination of the robustness of
our method on different datasets.

2. Methods
2.1. Case Study Selection

The map in Figure 1 depicts the location of the microstate, the Principality of Liecht-
enstein, located between Austria and Switzerland. There, samples were taken from the
only wastewater treatment plant in the country, which is located at 9.5 E, 47.2 N. This
wastewater treatment plant covers a population of around 39,000 people in Liechtenstein.
At this point, the measured wastewater is domestic sewage, with a small percentage of
industry, hospitals, specific infrastructure, etc. After analyzing the best strategy for data
prediction using the wastewater data from Liechtenstein, we applied the optimum method
to two Federal States of Austria, which are shown in Figure 1, as well. Table 1 summarizes
key figures of the studied regions, including their population. This process of out-of-sample
cross-validation is oriented to design a methodology that is robust to unseen data in the
training process.
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Figure 1. Location of Liechtenstein and two federal states of Austria: Vienna and Vorarlberg. 

Table 1. Key figures of the studied regions. 

Country  Region Population Area (km2) 
Liechtenstein  39,055 160 

Austria 
Vienna 1,923,825 414 

Vorarlberg 400,469 2601 

Our dataset started from 20 September 2020 and ended on 14 August 2022, covering 
a range of approx. 24 months. The data were down-sampled to weekly time series for 
wastewater, epidemiological, and mobility data. All the time series were smoothed and 
interpolated to weekly arranged datasets, as described in [5]. 

2.2. Epidemiological Data 
The epidemiological information was obtained from the health services of Liechten-

stein and Austria and included the daily time series of the total number of people who 
tested positive (Nt), as well as the number of deaths (Nd) and recovered patients (Nr). As a 
base variable for our model structures, we had two choices: the use of active cases or an 
incidence value [20]. Both these models may cause uncertainties. The number of active 
cases assumes that the infected individuals—if not dead—will regain health in 14 days. 
On the other hand, the incidence value accounts for an arbitrary summation over a period 
of, e.g., 7 or 14 days. We used the number of active cases—instead of incidence rate—as 
this parameter represents the actual duration of the infection. The number of active cases 
(Na) was determined as follows: 𝑁௔ =෍𝑁௧ −෍𝑁ௗ −෍𝑁௥ (1)
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the works of Daleiden et al. [21] and Markt et al. [16] and the key points are reiterated 
therein. The SARS-CoV-2 sampling in the Liechtenstein wastewater is carried out at the 
influent (raw wastewater) point of the WWTP, according to the guidelines in [16]. The 
population size marker NH4+ was used to normalize the SARS-CoV-2 concentration to 
consider fluctuation in the population size of the catchment area [22]. In Austria, the 
wastewater data are gathered through composite sampling, which involves the collection 
of multiple grab samples over a specified period to obtain a representative composite sam-
ple. In the case of WBE, 24 h composite samples are often collected by automatically com-
bining smaller aliquots of wastewater taken at regular intervals throughout the day. The 
viral load Lv per day for each infected person was calculated as follows [16]: 
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Table 1. Key figures of the studied regions.

Country Region Population Area (km2)

Liechtenstein 39,055 160

Austria
Vienna 1,923,825 414

Vorarlberg 400,469 2601

Our dataset started from 20 September 2020 and ended on 14 August 2022, covering
a range of approx. 24 months. The data were down-sampled to weekly time series for
wastewater, epidemiological, and mobility data. All the time series were smoothed and
interpolated to weekly arranged datasets, as described in [5].

2.2. Epidemiological Data

The epidemiological information was obtained from the health services of Liechten-
stein and Austria and included the daily time series of the total number of people who
tested positive (Nt), as well as the number of deaths (Nd) and recovered patients (Nr). As a
base variable for our model structures, we had two choices: the use of active cases or an
incidence value [20]. Both these models may cause uncertainties. The number of active
cases assumes that the infected individuals—if not dead—will regain health in 14 days. On
the other hand, the incidence value accounts for an arbitrary summation over a period of,
e.g., 7 or 14 days. We used the number of active cases—instead of incidence rate—as this
parameter represents the actual duration of the infection. The number of active cases (Na)
was determined as follows:

Na = ∑ Nt − ∑ Nd − ∑ Nr (1)

2.3. Viral Wastewater Data

The Austrian wastewater surveillance for COVID-19 was widespread and was adopted
early in the pandemic. The national WBE undertaking is extensively covered in the works
of Daleiden et al. [21] and Markt et al. [16] and the key points are reiterated therein. The
SARS-CoV-2 sampling in the Liechtenstein wastewater is carried out at the influent (raw
wastewater) point of the WWTP, according to the guidelines in [16]. The population size
marker NH4

+ was used to normalize the SARS-CoV-2 concentration to consider fluctuation
in the population size of the catchment area [22]. In Austria, the wastewater data are
gathered through composite sampling, which involves the collection of multiple grab
samples over a specified period to obtain a representative composite sample. In the case
of WBE, 24 h composite samples are often collected by automatically combining smaller
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aliquots of wastewater taken at regular intervals throughout the day. The viral load Lv per
day for each infected person was calculated as follows [16]:

Lv = Cv
Q
P

, (2)

where Cv is the measured concentration of virus in the WWTP (viral copies/m3/d). Q and
P represent the inflow and the population connected to the WWTP, respectively.

2.4. Mobility Data

A decrease or an increase in the population mobility is likely to impact the number
of active cases [23]. Therefore, the population’s internal mobility was analyzed as an
exogenous variable, besides the epidemiological test results. These data were derived
from Google, where they are accessible as a time series of COVID-19 community mobility
reports for each region [17]. These data were calculated based on the percentage of mobility
within a specific branch versus a reference time period—extracted from anonymized and
aggregated cellphone data [24]. In our study, the main branches were the transit within
public transport systems and the mobility in workspaces, which were selected as the main
mobility indicators.

2.5. Statistical Analysis

SARIMAX (Seasonal Autoregressive Integrated Moving Average with eXogenous
variables model) is a data analysis statistical tool for time series, which was suggested by
Box and Jenkin in [25]. SARIMAX is a forecasting model consisting of three main functions:
autoregression (AR), integration (I), and moving average (MA). Furthermore, seasonality (S)
effects and exogenous variables (X) were considered to enhance the model. The SARIMAX
model tuples are (p, d, q) (P, D, Q) [s], where p is the order of AR, d represents the rate of
difference in trend, and q is the order of MA. In the second term, P is the seasonal AR lag
value, D represents the rate of seasonal difference, Q is the seasonal MA value, and s is the
length of the cyclical pattern [26,27]. A SARIMAX model is described by [28] as follows:

Yt = α + β1Yt−1 + β2Yt−2 + . . . + βpYt−p + φ1ϵt−1 + φ2εt−2 + . . . + φpϵt−p (3)

where α denotes the intercept term, which the model examines. Yt-i represents the ith lag of
the series, and βi is the coefficient of ith lag, which the model examines. The terms with
εt−i are the errors of the equations. Yt represents the output value that depends on its
own lagged values and lagged predicted errors. To ensure the suitability of the SARIMAX
model, it is imperative that the datasets exhibit stationarity [28]. This entails removing
autocorrelation, ensuring that the time series is free of trends.

2.6. Rolling Forecast Cross-Validation

Rolling forecasting cross-validation is a technique used in time series analysis to
evaluate the performance of a model. This involves updating the training set with each
new observation within the test set, creating a rolling window that moves through the
data. This allows the model to be retrained on unseen data and evaluated on its ability
to forecast the next time step [29]. Since COVID-related datasets are subject to structural
changes over time, rolling forecasting cross-validation is useful for assessing the accuracy
of time series models.

2.7. Modeling Strategy

For this study, SARIMA (and SARIMAX) regression models were employed due to
their ability to account for seasonality. In order to examine the effect of exogenous regression
variables on the active cases, wastewater and Google mobility data were incorporated into
the models. The modeling was conducted with four different approaches and objectives,
exemplified in Table 2.
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Table 2. Forecasting strategies for COVID-19 active cases.

Strategy No. Model Response Variable Exogenous Variable

1 SARIMA

Active cases

-

2
SARIMAX

Wastewater data
3 Google mobility data

4 Sensitivity analysis * Wastewater and
Google mobility data

* Sensitivity analysis is performed using SARIMAX by perturbing the input data.

In the first strategy, the best plausible model structure is identified using a validation
subset. This is in contrast with the traditional model selection using autocorrelation
functions (ACFs). To do so, we will identify a very preliminary model structure using
ACF and partial autocorrelation function (PACF) diagrams; then, the model parameters are
perturbed around the selected structures. In the next step, for any pair of perturbed model
parameters, a model diagnostic check will be performed for a prediction horizon. This was
deemed necessary, as the risk of overfitting by data mining during the calibration step is
substantial. In the second and third strategy, the same methodology will be deployed as in
the first strategy, in addition to imposing two external time series as exogenous variables.
This makes our univariate SARIMA model a multivariate SARIMAX one. The exogenous
variable in the second strategy was wastewater data and in the third strategy it was the
mobility time series, i.e., the percentage change of transit and workplace. In the fourth
analysis, the target was to identify the effectiveness of exogenous variables—i.e., mobility
and viral load in wastewater data on the model response. The model selection approach
was the same as the other strategies; however, a very simple sensitivity analysis was
conducted to find the most sensitive exogenous variables.

3. Time Series Preprocessing

Any modeling with classic time series tools, including SARIMA models, requires a
stationarity and normality check of the time series. As a very first step, the trend in the time
series was checked using the Mann–Kendall (MK) test, and the corresponding p-values
for examining the hypothesis were computed. The null hypothesis in the MK test was as
follows: the time series is trending, and the alternative one is vice versa. After checking
the time series, we detrended the time series using a first-order differentiation (detrending
the data before normalizing the data results in better prediction model performance).
Furthermore, to check the dataset for stationarity, the augmented Dickey–Fuller (ADF) test
was employed [30].

Since the MK trend test showed that the time series required differentiation, the
differentiation function was employed to detrend the data. Afterward, the normality
of the data was tested. A preliminary approach to check for normality of the data is a
visual inspection of the data histogram and the QQ-plot [31,32]. To formally asses the
normality characteristics of the data, the Shapiro–Wilk test was used [32]. For observing
the histogram and QQ-plot diagrams at this stage, see the Supplementary Material. The
diagrams and Shapiro–Wilk test results illustrate that the time series was not normally
distributed and required further manipulation. In order to normalize the time series, a
Box–Cox transformation was used to normalize the dataset [33]. The Box–Cox parameter,
lambda, was optimized using a very simple grid search with a precision of 0.01 (the best
value for lambda was calculated as 0.27). Figure 2 shows the histogram and the QQ-plot of
the transformed data.
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certain periods, such as the middle of 2022, the ratio of viral load in wastewater to the 
number of active cases was higher than that during other time periods. This can indicate 
the impact of virus mutations. Specifically, the symptoms associated with the Omicron 
variant, which started spreading at the end of 2021 were less severe as compared to the 
Delta variant. As a result, there were fewer clinical tests conducted and a lower number 
of reported active cases. Advantageously, viral shedding into the sewer system is unaf-
fected by the volume of the testing, and wastewater surveillance demonstrated the pres-
ence of the virus among the population. 
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As depicted in Figure 2, once we had the Box–Cox-transformed time series, our data
were normalized. Therefore, we plotted the ACF and PACF, which are shown in Figure 3.
The dotted lines depict the 95% confidence bounds.
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Figure 3. ACF (a) and PACF (b) plots of the transformed Liechtenstein data.

Figure 4 depicts the wastewater time series (represented by the red dotted line) su-
perimposed with the active cases (shown as gray bars). The dependency of the viral load
on positively tested active cases was observed throughout the two investigated years. In
certain periods, such as the middle of 2022, the ratio of viral load in wastewater to the
number of active cases was higher than that during other time periods. This can indicate
the impact of virus mutations. Specifically, the symptoms associated with the Omicron
variant, which started spreading at the end of 2021 were less severe as compared to the
Delta variant. As a result, there were fewer clinical tests conducted and a lower number of
reported active cases. Advantageously, viral shedding into the sewer system is unaffected
by the volume of the testing, and wastewater surveillance demonstrated the presence of
the virus among the population.

The ACF and PACF plots indicate periodic behavior in the time series, with ACF
values crossing the 95% significant levels from lag 1 to lag 8 and PACF spikes at lag 1,
corresponding to a one-week cycle. We divided the data horizon into two parts: the main
section, which included all the data except the last four weeks (calibration period), and
the last four weeks (validation period). The reason for this is that time series analysis for
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predicting COVID-19 trends is more reliable in the short term, while the forecast window
of one month was already stretching the predictive power of the data [2,5].
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4. Results

In this section, the results of the investigated strategies are reported. SARIMA(X)
models were employed, and the predictive power was assessed. A sensitivity analysis was
also carried out.

4.1. Strategy 1: SARIMA Model with Active Cases

The first strategy focused on clinical epidemiological data, i.e., active cases derived
from testing. Each model structure was applied to the calibration period, and subsequently,
through a rolling forecast cross-validation, the fitness of the model structure was examined.
The fitness of each SARIMA model structure was tested within the calibration section,
by employing a range of model diagnostics, i.e., root mean square error (RMSE) and
correlation analysis. Regarding correlation, the Pearson correlation coefficient was used,
which is the most common type of correlation coefficient. Regarding RMSE, it should
be noted that it is a metric to quantify the accuracy of a predictive model by measuring
the average difference between the predicted values and the actual observed values. This
measure is highly dependent on the data amplitude and is not suited for comparison among
various time series. Different populations with varying ranges, variances, or patterns may
result in different RMSE values, even if the same predictive model was used. Thus, when
comparing RMSE values across different populations, it is essential to consider the context
and characteristics of each population to make meaningful comparisons. In addition, to
assess the performance of each strategy, considering the observed data, we also calculated
the root mean square percentage error (RMSPE).

According to the conducted simulation sets, the Akaike information criterion (AIC)
was computed. The AIC metric indicates the sweet spot model complexity by balancing the
number of model parameters with the available empirical data. The AIC metric worsens as
the models become more complicated (i.e., has more parameters). It should be noted that the
model with the minimum AIC is not necessarily the optimum model structure, especially
in terms of model complexity. Hence, among the best five percentile AIC equivalent model
structures, the structure with the least complexity was selected as the best model. Applied
to the current setting, the optimal model structure was SARIMA(0,2,1; 2,1,2), named as
model No. 232 (all model structures are listed in the Supplementary Material), according to
the metrics described. Figure 5 shows the prediction results for the calibration period, based
on the best model structure for the epidemiology data of the Liechtenstein wastewater data.
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including WBE data in the calibration period. Predictions over 4 weeks after were used for validation
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As seen in Figure 5, the model predictions in the 4-week validation period matched
the observation visually with moderate accuracy. For the selected structure, the correlation
was calculated as 0.30, the RMSE as 97.82, and the RMSPE as 87%.

In spite of the successful implementation of SARIMA for the calibration period, it is
beneficial to examine the diagnostic metrics for the validation data horizon as well. For
selecting the best model structure with respect to the validation period, we checked the
fitness of our models with the observations within the validation period. The RMSE and
correlation for a selection of good model structures (above 95th percentile) were plotted
through a Taylor diagram, shown in Figure 6. The standard deviation of the residuals
between model prediction and ground truth is shown in radial distance. The azimuth angle
displays correlation between predicted and ground truth. The RMS error is shown by the
distance from the centered observation in purple.
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Figure 7 shows model predictions in the training and validation period; however, the
best model structure was selected on account of the validation period. The RMSE and
correlation for the employed model structure was calculated as 71.31 and 0.44, respectively
(the RMSPE was calculated as 66%).
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4.2. Strategy 2: SARIMAX Model with WBE Data

As outlined in the methodology section, this portion of this study employed the
SARIMAX model class to explore and identify optimal model structures, incorporating
the exogenous variable wastewater data. Similar to the procedure in the first strategy, the
SARIMAX model was applied to the validation set. Model No. 238 was selected as the best
model structure—which was SARIMAX (0,1,2; 2,1,2), according to the performance metrics.
The selected model structure led to results with an RMSE of 100.03, an RMSPE of 95%, and
a correlation of 0.54.

According to Figure 8, the model fitness was almost at the same level as compared to
the univariate model without the wastewater data as an exogenous variable. The best model
structures, employing the univariate strategy, resulted in RMSEs of 97.82 and 71.31, and
correlations of 0.30 and 0.44 (depending on checking the calibration or the validation horizon).
However, it is shown that by adding the WBE data as the exogenous variable, although the
RMSE did not improve, the correlation between the results and the observations increased
(the correlation for the best model structure with the WBE data was 0.54).
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4.3. Strategy 3: SARIMAX Model with Mobility Data

After evaluating the effect of wastewater data on COVID-19 prediction, the effect
of the Google mobility data on total COVID-19 active cases was analyzed. Initially, the
optimum model structure was obtained based on the validation set. Similar to the second
strategy, model No. 323 showed the optimum results—SARIMAX (1,2,2; 2,2,2). The RMSE
and correlation for this structure were 33.08 (the RMSPE was 91%) and 0.46, respectively.
The model predictions were plotted during both the calibration and validation horizons, as
depicted in Figure 9.
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Figure 9. Prediction of COVID-19 active cases, based on the best multivariate model structure with
clinical data and Google mobility data within the validation period.

As seen in Figure 9, the fitness further improved, especially within the calibration
horizon, as compared to other strategies, i.e., the univariate model (first strategy) and
the multivariate model with WBE data (second strategy). This can mainly be attributed
to the increase in model parameters, allowing it to better fit the data. The correlation
stayed at similar levels, and the RMSE decreased considerably to 33 (the RMSE for other
model strategies was between 70 and 100). In fact, the optimum model structure with
mobility data had the best performance. This emphasizes the impact of social distancing
and mobility restrictions during the course of the pandemic. However, the capability of
WBE data in predicting the disease active cases should not be undervalued. In order to
elaborate two main factors of mobility data—i.e., transit and workplace—and to further
analyze and compare the effect of WBE data on the performance of the model structures, a
sensitivity analysis was carried out.

4.4. Sensitivity Analysis of WBE and Mobility Data

A sensitivity analysis of the model performance influenced by the exogenous variables
is displayed in this section. Additionally, the aim was to measure the uncertainty of each
model prediction with respect to the model structures. The experiments were performed
in the same way as in the previous strategies. However, the number of experiments was
conducted equal to the number of exogenous variables. In other words, within a given trial,
the model was evaluated across all plausible structures under the absence of one specific
exogenous variable. This procedure was repeated for all the variables.

This part of this study includes three sets of exogenous variables: WBE data, Google
mobility data in the transit sector, and Google mobility data in the workplace. Firstly,
the WBE data were omitted from the calculations, and all the model structures (possible
parameters of p, q, d, P, Q, and D) were tested on the validation set and evaluated with
Pearson correlation. Similarly, this procedure was carried out for the mobility data in transit
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sector and workplace. The result is summarized and visualized as smoothed histograms of
each strategy in Figure 10.
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Figure 10 depicts the dependency of the model performance on each exogenous
variable. In order to interpret this, the main factor to be considered was the mode (peak)
of each density plot. It was seen that the peak of the workplace mobility lay below
0.3 correlation, which is the minimum amount, compared to the mobility data in transit and
WBE data. This means that omitting the variable of mobility in the workplace had a high
impact on the model performance. For model structures omitting WWT, the correlation
increased moderately at around 0.5, which denotes that the model structure parameters
possessed a high level of uncertainty. The uncertainty of model parameters was observable
in all scenarios, when the WBE data or the mobility data in transit were omitted. The peaks
of the two scenarios without WBE data and mobility data in transit stayed between 0.3 and
0.4. However, for the scenario without mobility data in transit, the peak lay closer to 0.4.
This implies that the role of WBE data and mobility data in transit sector was similar in
prediction efficiency.

4.5. Austrian Data

In order to further analyze the capability of the second strategy—using only WBE data
as an exogenous variable—for predicting COVID-19 cases, we applied the WBE data of two
federal states of Austria to the active cases as the main variable in Vienna and Vorarlberg,
in a longer prediction horizon. To check the model’s prediction performance over a longer
period, the prediction horizon was increased to twenty weeks. Indeed, the first 80% of the
observations were dedicated to the calibration period, and the last 20% were categorized as
the validation period. Afterward, the fitness of all the possible model structures against the
observations was examined. The results are summarized in Figure 11. Figure 11a illustrates
the model fitness performance in Vienna, and Figure 11b shows the model fitness for the
validation horizons in Vorarlberg.

Figure 11 shows the model prediction and ground truth data in both Vienna and
Vorarlberg. This exemplifies that the strategy of using a multivariate model with WBE
data as an exogenous time series variable is capable of predicting the circulation of the
SARS-CoV-2 virus in time periods longer than four weeks, although with less precision.
However, the fitness of the optimum model result was lower, as compared to that for
four-week time periods. With respect to the Vienna data, the optimum SARIMAX model
structure was model No. 136 SARIMAX(0,0,0; 2,1,1). The RMSE and correlation for this
structure were 32 and 0.66, respectively. As described before, the increase in RMSE was due
to the higher case magnitude in the observed data in Vienna, compared to Liechtenstein.
Thus, we need to consider the RMSPE, which was 56% in the case of Vienna. It can be seen
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that the employed strategy with WBE data produced satisfying results in predicting over
long-term periods.
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Figure 11. Prediction of COVID-19 active cases in Vienna (a) and Vorarlberg (b) based on the best
multivariate model structure with clinical and WBE data within the validation period.

5. Conclusions

As forecasting the infection incidence of COVID-19 has a significant influence on
restriction policies, finding the best strategy for the accurate prediction of active cases is
necessary. Additionally, examining the correlation between restriction policies and active
COVID-19 cases is crucial. The current study conducted several time series analyses to
identify the optimal model structure for predicting disease prevalence. Our findings were
as follows:

• The optimal model fitness for predicting the number of COVID-19 cases was reached by
employing SARIMAX models with either WBE or Google mobility data as exogenous
factors, forecasting up to four weeks.

• Transit mobility data and WBE data demonstrated similar capabilities in predicting
active cases.

• When the WBE data and mobility data were integrated into forecast models, they
served as supplementary information to aid decision makers taking significant and
appropriate restriction policies. The forecast accuracy was a function of finetuning the
model parameters and the choice of exogenous variables.

Further exploration of the fundamental factors contributing to case prevalence and
an investigation into other restriction policies, such as stay-at-home measures, workplace
closures, event cancelations, and testing policies, is a prospect of future research.
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//www.mdpi.com/article/10.3390/environments11050100/s1: Figure S1: different policies and
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policies and COVID active cases. Shape and colour of the circles outline the sign and strength of the
correlation; Figure S3: the histogram (a) and QQ-plot (b) of Liechtenstein active cases time series,
before BoxCox transformation; Figure S4: the histogram (a) and QQ-plot (b) of Vienna active cases
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