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Abstract: Bacterial infections are the second-leading cause of death, globally. The prevalence of
antibacterial resistance has kept the demand strong for the development of new and potent drug
candidates. It has been demonstrated that Src protein tyrosine kinases (TKs) play an important role in
the regulation of inflammatory responses to tissue injury, which can trigger the onset of several severe
diseases. We carried out a search for novel Src protein TK inhibitors, commencing from reported
highly potent anti-bacterial compounds obtained using the Mannich reaction, using a combination
of e-pharmacophore modeling, virtual screening, ensemble docking, and core hopping. The top-
scoring compounds from ligand-based virtual screening were modified using protein structure-based
design approaches, and their binding to the Src homology-2 domain of p56lck TK was predicted
using ensemble molecular docking. We have prepared a database of 202 small molecules and have
identified six novel top hits that can be subjected to further investigation. We have also performed
in silico ADMET property prediction for the hit compounds. This combined computer-aided drug
design approach can serve as a starting point for identifying novel TK inhibitors that could be further
subjected to in vitro studies and validation of antimicrobial activity.

Keywords: e-pharmacophore modeling; virtual screening; ensemble docking; core hopping; ADMET
predictions; protein–ligand interactions

1. Introduction

In 2019, according to the findings published in Lancet by the Global Research on
Antimicrobial Resistance (GRAM) Project, bacterial infections were the second-leading
cause of death globally, yielding 7.7 million deaths [1]. Due to the rise in antimicrobial-
resistant bacteria, the annual global healthcare cost of bacterial infections has increased
dramatically. Some pathogenic bacteria express fibers tipped with adhesins that bind
to and penetrate the epithelial cell surface of the host tissues to reach the mucosa, the
bloodstream, and finally to several organs, causing severe and chronic inflammation [2].
The invasion of bacteria is dependent upon the activation of protein tyrosine kinases
(TKs) [3–5]. Martinez et al. have demonstrated that inhibition of the protein TKs can block
this adhesin-mediated uptake into cells [6]. In another study by Esen et al., it was shown
that TK inhibitors prevent the uptake of pathogenic bacteria into rabbit corneal epithelial
cells [2].

In 2020–2021, several druggable compounds with significant binding affinity towards
the Src homology-2 (SH2) domain of p56lck TKs were synthesized using the Mannich reac-
tion and tested [7,8]. Src protein TKs have demonstrated an important role in the regulation
of inflammatory responses in tissue cells [9–12]. Animal studies have demonstrated that Src
protein TK inhibitors can reduce tissue injury and improve the health of patients suffering
from several pathological conditions that cause inflammatory responses [9]. SH2 domains
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are known to interact with phosphorylated tyrosine residues in proteins and mediate TK
signal transduction [13,14]. P56lck (LcK) is an Src-like, lymphocyte-specific TK which has
an SH2 domain of ~100 amino-acid residues [15]. In this study, we have used a combination
of computer modeling techniques to identify novel small molecules that are predicted to
bind strongly to the SH2 domain of P56lck protein TK and act as inhibitors for the treatment
of bacterial infections. Utilizing the molecular features of the previously-reported highly
potent compounds, we identified top hit compounds from virtual screening, modified the
structures of the hit compounds, and studied their binding affinities to the p56lck protein TK.
Using ligand-based e-pharmacophore modeling, virtual screening, ensemble docking, core
hopping, and in silico pharmacokinetic properties prediction, we obtained hit molecules
that showed high structural similarity to the known potent compounds and are expected
to exhibit significant antibacterial activity. This molecule inhibitor design study can serve
as a starting point for identifying potentially novel Src TK inhibitors that could be further
subjected to in vitro studies for investigating their antibacterial activity.

2. Methods and Materials

Database generation: The ligand studies by Sahoo et al. were used as our train-
ing set for ligand-based e-pharmacophore model generation [7]. All ligands studied in
Sahoo et al. had molecular weights between 350–400 Da and logP values from 2–2.5.
These values were used as cut-off criteria for the molecular weight and logP to obtain
molecules from the ZINC15 database, focusing only on “In-stock” available compounds
with “Standard” reactivity. Additionally, to enhance our searchable database, we allowed
molecules with possible charge of 0 and pH selected from the Reference (ref: pH ~7.4)
and Middle (mid: approximate pH range of 6.4 to 8.4) ranges [16–18]. 782K compounds
(96 tranches) were obtained [16–18]. These compounds were used to prepare a Phase
database [19–21]. The small molecules were subjected to LigPrep preparation using a
previously described protocol [22]. Possible ionization states of the small molecules were
generated at pH 7.0 ± 2.0. High-energy ionization/tautomer states of the molecules were
removed. Duplicate ligands were skipped during database generation. A total of 50 con-
formers were generated and minimized for each small molecule. ADMET properties of
the small molecules were calculated using QikProp during database generation [22,23].
Prefiltering by Lipinski’s rules was performed and LigFilter properties were generated.
This database was then used for ligand-based e-pharmacophore virtual screening.

Ligand-based e-pharmacophore modeling: All 26 small molecules obtained from
Sahoo et al. were aligned using the Ligand Alignment tool in Schrödinger and used as
the input ligands for e-pharmacophore model generation. First, the ligand alignment
tool in Schrödinger was used to align the small molecules using their common structural
elements. Following this, e-pharmacophore modeling was performed using Phase [19–21].
The best alignment and common features pharmacophore method was used. A total
of 50 conformers were generated for each ligand during the pharmacophore hypothesis
generation. A total of 20 ligand-based e-pharmacophore models were generated. The
generated Phase database was screened through the best scored e-pharmacophore model,
and the top hit compounds were retained. The ligands showing a match to all the generated
e-pharmacophore sites in the pharmacophore model were kept for further studies.

Ensemble docking: The protein used in this study is the SH2 domain of p56Ick, which
is expressed in T lymphocytes. The protein p56Ick is a 56 kDa protein TK of the p60src family
which has both SH2 and Src homology 3 (SH3) domains [24]. A total of seven protein
structures that included PDB IDs 1CWD [25], 1CWE [25], 1LKK [26], 1LKL [26], 1BHH [27],
1LCJ [15], and 1BHF [27] were used for molecular docking studies (Figure 1A). All the
seven X-ray crystal structures used in this work are specifically of the Src SH2 domain of
p56Ick. The drawback of protein rigidity in molecular docking is somewhat mitigated by
using ensemble docking, since any variability found in the ensemble of structures can be
thought of as a way of taking into account the protein’s experimentally validated flexibility.
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Schrödinger’s virtual screening workflow was used for the ensemble docking-based virtual
screening. The workflow methodology is shown in Figure 1B.
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Figure 1. (A) Cartoon representation of the 7 protein X-ray crystal structures used for ensemble
docking, superimposed on each other (each protein is shown in distinct color). (B) Virtual screening
protocol adopted in the study.

Generation of protein 3D structure: Water molecules and the co-crystallized ligand
molecules were removed from the 7 protein–ligand PDB X-ray crystal structures. The
Protein Preparation tool was used, and hydrogens were added to the protein structure
using PROPKA at pH 7.0. The OPLS_2005 force field [28–30] was used to minimize the
protein. Two of the PDB structures (PDB ID: 1BHH and 1CWE) are homodimers. In each
case, only one chain was retained for these two PDB structures. All protein structures
were aligned. Receptor grids were generated for each of the seven protein structures. The
centroid of previously identified important binding residues (ResIDs from PDB 1BHF:
Arg134, Lys135, Arg154, Glu157, Ser158, Thr159, Ser162, Lys179, His180, Tyr181, Lys182,
Ile193, Ser194, Tyr209, Asp214, Gly215, and Leu220) was used as the docking box center [7].
The dimensions of the docking grid size used were 30 × 30 × 30 Å3 (inner box) and
35 × 35 × 35 Å3 (outer box). First, the ligands shortlisted after screening through the
generated e-pharmacophore model were docked using the Glide high-throughput virtual
screening (HTVS) protocol. The OPLS_2005 force field was used for the HTVS docking.
The HTVS screened ligands were then subjected to Glide standard precision (SP) docking,
followed by Glide extra precision (XP) docking. In the virtual screening protocol, it is
standard practice to redock the top 10% of the HTVS scored structures with Glide SP, and
then redock the top 10% of SP scored structures with Glide XP [31,32]. Therefore, in our
work, 10% of the best docked ligands were retained at each step. The OPLS_2005 force field
was used for the docking runs [33]. During each docking step, the ligands were considered
flexible and post-docking minimization was performed.

Structure-based drug design: Following the Glide XP ensemble docking, further
structural modifications of the top hits were performed to enhance protein–hit interac-
tions, using Core Hopping (CH) in Schrödinger [34]. Starting with the top hit molecule
obtained from the multi-step docking workflow, ligand-based and receptor-based CH
were performed. CH of the middle scaffold of the reference molecule was performed. To
enhance the interactions exhibited in the protein–hit complexes, a minimum cut-off for
the number of hydrogen bonds required was set to 5 for the receptor-based CH. Heavy-
atom steric clashes with the receptor were limited, with a maximum number of clashing
ligand atoms set to 2 and a clash criterion of <2.20 Å. The Schrödinger CH library (named
core_library_2014.1-86640.sqlite) was used for the scaffold searching.
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3. Results and Discussion

Ligand-based e-pharmacophore models: A total of 20 ligand-based e-pharmacophore
models were generated (Supplementary Table S1). The best e-pharmacophore model
had the highest Survival score and was tied for the highest Phase Hypo score. The best
ligand-based Phase e-pharmacophore model was a five-point model (DHRRR_1) containing
three aromatic rings (R), one hydrogen bond donor (D), and one hydrophobic group (H)
(Figure 2A). It was used for the virtual screening of the generated Phase database.
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Figure 2. Ligand-based e-pharmacophore model and pharmacophore screening scores and predicted
physicochemical and pharmacokinetic properties of the successfully screened ligands. (A) Best ligand-
based e-pharmacophore model generated. (B) Pharmacophore screening scores. (C–E) Predicted
physicochemical and pharmacokinetic properties of the ligands obtained after screening through the
best e-pharmacophore model.

Pharmacophore-based virtual screening of Phase database: The generated Phase
database was screened against the best ligand-based e-pharmacophore model. The top ~35K
molecules were retained that matched 5 of 5 e-pharmacophore sites in the ligand-based
e-pharmacophore model. The ligand and pharmacokinetic properties of the successfully
screened ligands that were retained are shown in Figure 2B–E. The Phase screen scores
and the volume scores after e-pharmacophore screening are shown in Figure 2B. The
ligands showed predicted binding to human serum albumin within a range of −1.0 to +1.0,
thereby falling within the recommended range of values (Figure 2C). A QPPCaco value
(predicted apparent Caco-2 cell permeability in nm/s) of >500 is typically recommended;
all ligands showed a value of >500 (Figure 2D). A predicted IC50 of <−5 for the blockage of
human ether-a-go-go-related gene (hERG) K+ channels (QP loghERG) is not recommended.
Therefore, the ligands that showed a value >−5 could be considered for further drug design
purposes (Figure 2D). The predicted apparent Madin–Darby Canine Kidney (MDCK)
cell permeability values were >500 nm/s, thus falling within the recommended range
(Figure 2E). However, some molecules exhibited a value of <500 nm/s for the MDCK
cell permeability as well. Such molecules could be further investigated using alternate
permeability prediction models for accurate prediction of their permeability properties.
Additionally, the values of the predicted brain/blood partition coefficient also fell within
the recommended range (−3.0 to 1.2) (Figure 2E).

Ensemble docking-based virtual screening: Following the steps as mentioned un-
der Section 2, ensemble docking was performed using the top ~35K ligands that were
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obtained from e-pharmacophore-based virtual screening. At the end of Glide XP docking,
202 molecules were retained. All 202 molecules showed a negative docking score with XP
GScore of <−4.278 kcal/mol. The top hit molecule (Figure 3A) obtained at the end of en-
semble docking showed a docking score of −6.530 kcal/mol. The hit compound exhibited
four hydrogen bonding interactions with the 1LKL protein (Figure 3B). The ligand binding
site is depicted in Figure 3C–D. This hit molecule was then subjected to ligand-based CH
and receptor-based CH for novel small molecule design. The top 10 hit molecules from the
pool of 202 ligands obtained after virtual screening using ensemble docking are shown in
Supplementary Figures S1 and S2. Supplementary Figure S1 shows the 2D structures of the
top 10 hit ligands, while Supplementary Figure S2 depicts the docked poses into the ligand
binding site on the protein.
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Figure 3. Top hit molecule obtained from ensemble docking-based virtual screening (ZINC
ID: ZINC000257313939), IUPAC name: 5-(5-(4-hydroxy-3-methoxyphenyl)-1-(2-hydroxyethyl)-1H-
pyrazol-3-yl)benzene-1,2,4-triol. (A) 3D structure of the top hit molecule. (B) Interactions between the
top hit molecule and the p56lck TK protein residues (PDB ID: 1LKL). (C,D) Two viewpoints of the lig-
and binding site are shown in surface representation. The p56lck TK protein (PDB ID: 1LKL) is shown
in surface representation and colored using the electrostatic potential (red represents an electrostatic
potential value of −0.2 kT/e; blue represents an electrostatic potential value of +0.2 kT/e).

Ligand-based core hopping (LCH): The best scored docked hit molecule obtained
from ensemble docking-based virtual screening (Figure 3A) was used as the reference
in ligand-based core hopping (LCH). Two scaffold growing points were selected on the
reference molecule to replace the middle scaffold of the molecule (Figure 4A). A total of
1933 core hopped structures were obtained. Hits obtained from LCH were grouped based



Appl. Sci. 2024, 14, 4277 6 of 10

on three categories: overlap score, synthesizability score, and side chain root-mean-square
deviation (RMSD) values. The best scored compounds from these three categories were
selected as our potential hit compounds. The overall poses of these three hits (1–3) and the
reference molecule complexed with the protein surface are shown in Figure 4B. The IUPAC
names of the hits 1, 2, and 3 are as follows: 1 ≡ 5-((2R,3R,4S,5R)-4-hydroxy-2-(4-hydroxy-
3-methoxyphenyl)-2,5-dimethyltetrahydrofuran-3-yl)benzene-1,2,4-triol; 2 ≡ 5-(((1R,3R)-
1-hydroxy-3-(4-hydroxy-3-methoxyphenoxy)cyclohexyl)methyl)benzene-1,2,4-triol; and
3 ≡ (1S,2R,3R,5S)-2-hydroxy-1-((4-hydroxy-3-methoxyphenoxy)methyl)-2,5-dimethyl-3-
(2,4,5-trihydroxyphenyl)cyclopentan-1-aminium.
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Figure 4. (A) Template assignment for scaffold growing in core hopping, CH (core between the pink
and purple arrows will undergo hopping). (B) The top three hit compounds (1–3) obtained from
ligand-based core hopping (LCH). Green represents the reference molecule (the top hit from ensemble
docking-based virtual screening). Purple, yellow, and pink represent the top hit compounds obtained
from LCH. The p56lck TK protein (PDB ID: 1LKL) is shown in surface representation and colored
using the electrostatic potential (red represents an electrostatic potential value of −0.2 kT/e; blue
represents an electrostatic potential value of +0.2 kT/e).

Receptor-based core hopping (RCH): The best-scored docked hit molecule obtained
from ensemble docking-based virtual screening (Figure 3A) was used as the reference in
receptor-based core hopping (RCH). This reference hit molecule exhibited four hydrogen
bonding interactions with the SH2 domain of p56lck TK. To enhance the interactions exhib-
ited in the protein–hit complexes, a minimum cut-off for the number of hydrogen bonds
requirement was set to 5. The top two hits (4 and 5) obtained from RCH are shown in
Figure 5. We observed that the novel central scaffold obtained after replacement using
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the core hopping technique can exhibit a significant number of new hydrogen bonding
interactions with the receptor. It should be noted that one of the hits from RCH (shown in
cyan; Figure 5 left) showed a synthesizability score of 0, indicating that the ease of synthesis
of this molecule is a matter of further investigation. The IUPAC names of the hits 4 and 5 are
as follows: 4 ≡ (1R,2R,4R,5R,E)-1-amino-4-hydroxy-2-(4-hydroxy-3-methoxyphenoxy)-5-
(2,4,5-trihydroxyphenyl)-6-thiabicyclo[3.2.1]octan-8-one oxime; and 5 ≡ 6-(4-hydroxy-3-
methoxybenzyl)-2-oxo-N-(2,4,5-trihydroxybenzyl)-2,3-dihydro-1H-thieno[3,4-d]imidazole-
1-sulfonamide.
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ing). Cyan and orange represent the two top hit molecules obtained from RCH. (Top) p56lck TK 
protein (PDB ID: 1LKL) is shown in surface representation and colored using the electrostatic po-
tential (red represents an electrostatic potential value of −0.2 kT/e; blue represents an electrostatic 
potential value of +0.2 kT/e). (Below) All possible hydrogen bonding interactions with the receptor 
(dashed lines) that could be exhibited by the hits obtained from RCH [cyan (left) and orange (right)) 
are shown. 

ADMET prediction of the top hit compounds: The top five compounds obtained 
from the ligand-based and structure-based design strategy of CH, along with the reference 
compound obtained from ensemble-based virtual screening, were subjected to in silico 
ADMET prediction calculations. The pharmacokinetic properties of the six molecules are 
summarized in Table 1. The two hits obtained from LCH (1 and 2) showed improved 

Figure 5. The top two hit compounds (4 and 5) obtained from receptor-based core hopping, RCH.
Green represents the reference molecule (the top hit from ensemble docking-based virtual screening).
Cyan and orange represent the two top hit molecules obtained from RCH. (Top) p56lck TK protein
(PDB ID: 1LKL) is shown in surface representation and colored using the electrostatic potential (red
represents an electrostatic potential value of −0.2 kT/e; blue represents an electrostatic potential value
of +0.2 kT/e). (Below) All possible hydrogen bonding interactions with the receptor (dashed lines)
that could be exhibited by the hits obtained from RCH [cyan (left) and orange (right)] are shown.

ADMET prediction of the top hit compounds: The top five compounds obtained
from the ligand-based and structure-based design strategy of CH, along with the reference
compound obtained from ensemble-based virtual screening, were subjected to in silico
ADMET prediction calculations. The pharmacokinetic properties of the six molecules are
summarized in Table 1. The two hits obtained from LCH (1 and 2) showed improved
percent oral absorption in the gastrointestinal (GI) and apparent Caco-2 permeability
compared to the reference molecule. The model to predict the percent oral absorption is
based on a quantitative multiple linear regression, and a value of <25% for percent oral
absorption is considered poor. The two hits obtained from RCH (4 and 5) exhibited poor
percent oral absorption. The predicted apparent MDCK cell permeability (measured in
nm/s) is considered to be a good mimic for the blood–brain barrier. A value of QPPMDCK
of <25 is considered poor. Two hit compounds from LCH (2 and 3) exhibited poor MDCK
cell permeability. 1 from LCH showed slight improvement in MDCK cell permeability



Appl. Sci. 2024, 14, 4277 8 of 10

compared to the reference molecule. All compounds fell within the allowed range of QP
log Kp for skin permeability (acceptable range in QikProp is −8.0 to −1.0). 3 from LCH and
4 and 5 from RCH showed more negative Log Kp for skin permeability than the reference
molecule and hence are expected to be less skin-permeant.

Table 1. Predicted pharmacokinetic properties, calculated using QikProp, of the reference molecule
and the five hit molecules (1–5) obtained from ligand-based core hopping (LCH) and receptor-based
core hopping (RCH).

Molecule hERG K+ (log IC50) % Oral Abs. in the GI Caco-2 Perm. MDCK Perm. QP log Kp Skin Perm.
Reference −5.569 64 43 16 −4.559

1 (from LCH) −4.138 72 110 45 −4.254
2 (from LCH) −4.956 70 58 23 −4.279
3 (from LCH) −5.451 42 15 5 −6.353
4 (from RCH) −5.651 18 2 M * −7.689
5 (from RCH) −5.672 25 5 M * −5.952

* M indicates molecular weight is outside the training range. Apparent Caco-2 permeability (Caco-2 perm.) and
apparent MDCK permeability (MDCK perm.) are reported in nm/s and QP log Kp for skin permeability in cm/h.

4. Conclusions

The current study utilized a combination of ligand-based and receptor-based molecular
modeling techniques to identify novel small molecules with significant predicted binding
to the SH2 domain of p56lck tyrosine kinase. Using in silico ADMET prediction approaches,
we investigated the pharmacokinetic properties of the five hit small molecules that bound
best to the protein of interest. Most of the hits obtained in this study showed high chemical
synthesizability, indicating the likelihood that the molecules can be easily synthesized
for further in vitro antibacterial studies. Following this study, future investigation using
advanced molecular modeling approaches, such as molecular dynamics simulations and
binding free energy calculations, can be conducted to obtain a detailed understanding of
the protein–hit key pairwise interactions and also to capture the structural dynamics of the
hit molecules. It is important to note that the database of 202 small molecules obtained
after the e-pharmacophore screening and the results of the ensemble docking can serve
as an excellent resource for the discovery of novel inhibitors that can bind strongly to the
SH2 domain of p56lck TK with significant antibacterial activity. We have also identified six
novel hits that can act as an excellent starting point for further investigation.

5. Associated Content

The following file is available free of charge.
The generated e-pharmacophore models and their features; 2D-structures of the top

10 hits from the pool of 202 ligands that were obtained from the virtual screening docking
protocol adopted in the study; docked structures of the top 10 hits from the pool of
202 ligands that were obtained from the virtual screening docking protocol adopted in
the study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14104277/s1, Table S1. The generated e-pharmacophore
models and their features. The hypothesis shown in bold is the top ligand-based e-pharmacophore
that is used for further studies in this work; Figure S1. 2D-structures of the top 10 hits from the pool
of 202 ligands that were obtained from the virtual screening docking protocol adopted in this study;
Figure S2. Docked structures of the top 10 hits from the pool of 202 ligands that were obtained from
the virtual screening docking protocol adopted in this study. The ligand binding pocket is shown
in surface representation. The ligands are shown in gray licorice. The best hit is shown in the first
panel in green licorice. SMILES strings and unique ZINC IDs of the 202 molecules are also listed in
the supplementary materials.
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