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Abstract: This study aims to generate visually useful imagery by preventing cropping while main-
taining resolution and minimizing the degradation of stability and distortion to enhance the stability
of a video for Augmented Reality applications. The focus is placed on conducting research that
balances maintaining execution speed with performance improvements. By processing Inertial Mea-
surement Unit (IMU) sensor data using the Versatile Quaternion-based Filter algorithm and optical
flow, our research first applies motion compensation to frames of input video. To address cropping,
PCA-flow-based video stabilization is then performed. Furthermore, to mitigate distortion occurring
during the full-frame video creation process, neural rendering is applied, resulting in the output of
stabilized frames. The anticipated effect of using an IMU sensor is the production of full-frame videos
that maintain visual quality while increasing the stability of a video. Our technique contributes to
correcting video shakes and has the advantage of generating visually useful imagery at low cost.
Thus, we propose a novel hybrid full-frame video stabilization algorithm that produces full-frame
videos after motion compensation with an IMU sensor. Evaluating our method against three metrics,
the Stability score, Distortion value, and Cropping ratio, results indicated that stabilization was more
effectively achieved with robustness to flow inaccuracy when effectively using an IMU sensor. In
particular, among the evaluation outcomes, within the “Turn” category, our method exhibited an 18%
enhancement in the Stability score and a 3% improvement in the Distortion value compared to the
average results of previously proposed full-frame video stabilization-based methods, including PCA
flow, neural rendering, and DIFRINT.

Keywords: video stabilization; dual modality; cross-interaction; IMU sensor; neural rendering;
full-frame video; augmented reality

1. Introduction

As Augmented Reality (AR) technologies, particularly those utilizing Head Mounted
Displays (HMDs), become increasingly integrated with our reality, the necessity for video
stabilization is becoming more pronounced [1,2]. This technology, essential for correcting
the shake induced by user-handled cameras, has been progressively developed since the
early 2000s alongside the rapid advancement of camera technology. The need for video
stabilization stems from the advancements in image sensor fabrication technology, which,
while improving resolution, also amplifies the challenge of identifying images without
post-correction due to significant shaking. Employed not only in everyday smartphone
cameras but also in action cams that are mounted on displaying devices through modules
known as image stabilizers, the demand for this technology continues to grow, reflecting
an expanding market size. This trend underscores the critical role of video stabilization
in enhancing the user experience in AR environments, ensuring seamless integration of
virtual and physical worlds.
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Highlighting the necessity of research, this paper addresses the limitations of exist-
ing video stabilization techniques. Video stabilization can be divided into three main
processes: motion estimation that estimates the movement of objects, motion smoothing
that smoothens the path of object movement, and stable frame generation that creates
stabilized frames using calculated values. Previously, visual tracking technologies like
the KLT tracker [3] based on good features to track have enhanced motion estimation
performance, and motion smoothing methods such as robust L1 optimal camera paths [4]
or Kalman filters have been developed. The process involves warping fields, calculated
to transform frames, leading to two primary issues: cropping, which reduces resolution
by cutting off image edges during the warping process, and distortion, which causes pixel
value distortions leading to visual artifacts like blur and wobble.

Firstly, the rolling shutter effect, due to the type of a recording mechanism of image
sensors, causes the top of the frame to be recorded slightly earlier than the bottom one
recording mechanism, when scanning from the top to the bottom of a sensor (see Figure 1).
This results in a stretching appearance and can lead to more pronounced shake in the
footage when the camera is in motion. The rolling shutter effect introduces various visual
artifacts, including wobble, skew, and blur, necessitating the need for motion compensation.

Figure 1. Example of rolling-shutter effect.

Secondly, cropping occurs, a phenomenon where the edges of the video are cut off,
reducing the resolution, due to the warping process based on the pixel values between
adjacent frames (see Figure 2). This reduction in resolution implies a loss of information at
the video’s periphery.

Figure 2. Example of cropping: (left) input, (right) cropped.

Thirdly, distortion manifests as a spatial warping or stretching of the image, creating
an illusion of fluttering, primarily due to camera movement, vibration, or the rolling-shutter
effect (see Figure 3). This is further compounded by visual artifacts such as shakiness, blur,
and wobble.
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Figure 3. Example of distortion, (left) input, (right) distorted.

To alleviate those issues, video stabilization techniques are broadly used and can be
categorized into mechanical and digital methods, with mechanical stabilizers like gimbals
and Optical Image Stabilizers (OIS). These methods have drawbacks related to cost and
bulkiness. Despite the surge in technology development with the advent of deep learning,
digital methods still face performance limitations. Our approach uses only the camera’s
visual sensor in a digital method, enhanced by the Inertial Measurement Unit (IMU) sensor
found in most mobile electronic devices today, reducing additional costs and improving
performance over existing digital methods to provide visually useful imagery. To mitigate
performance degradation caused by the aforementioned issues, our method first uses an
IMU sensor to reduce the rolling-shutter effect due to dynamic motion. This advantage
allows motion compensation using input frame and sensor data to lessen the rolling-shutter
effect. Secondly, to address cropping, a process is required to fill unknown pixel value areas
with surrounding regions to create a full-frame image of the same size as the input frame.
However, dynamic scenes introduce additional factors like lighting changes that cause pixel
value changes, and panorama image stitching for frame rendering can severely exacerbate
visual artifacts, necessitating the application of neural rendering [5] using convolutional
and Encoder–Decoder-based networks for performance enhancement. Previous research
studies have developed technologies for video stabilization using IMU sensors or creating
full-frame images with a Cropping ratio of 1 using deep learning-based methods. Our
video stabilization algorithm first synchronizes IMU sensor data with the video, receiving
timestamp (s), gyroscope (rad/s), accelerometer (m/s2), and magnetometer (µT) values,
and applies motion compensation to input video frames using the Versatile Quaternion-
based Filter (VQF) [6] algorithm and AKAZE-based [7] optical flow. Then, to improve
cropping, PCA-flow-based video stabilization [8] is performed. Final stabilized frames are
produced by applying neural rendering to address distortion occurring during the full-
frame video creation process. Our method, which performs motion compensation using
sensor data followed by deep learning-based full-frame video stabilization, represents a
novel hybrid approach to video stabilization not previously explored. To quantitatively
assess our method, we employ various metrics: the Stability score, indicating video stability;
the Distortion value, depicting the extent of video deformation or alteration; the Cropping
ratio, denoting the proportion of peripheral areas removed during video stabilization.
Furthermore, we evaluated visual quality with the following metrics: the LPIPS assesses
alignment with human visual perception; the SSIM measures structural similarity between
images; the PSNR gauges image quality loss. The specifics of these evaluation metrics are
elaborated in Section 4.2. The applicability and expected effects of our proposed technique
include the following: First, correcting video shake to contribute to an accurate stabilization
making it valuable across various industries. Second, it offers the advantage of producing
visually useful imagery without the bulkiness and cost issues associated with the usages of
gimbals and OIS.

In summary, the contributions of this paper are as follows:
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• For the first time, we combined an IMU sensor with a deep learning-based full-frame
video stabilization method, demonstrating an increase in stability.

• To address the main issues of video stabilization, such as cropping and distortion
degradation, we integrated PCA flow and neural rendering.

• Our technology contributes to correcting video shake for accurate target detection and
tracking and has the advantage of generating visually high-quality videos at low cost.

2. Background
2.1. Motion Estimation

Optical flow is a technique commonly used to estimate the motion of objects between
video frames. Based on the calculated warping field, it contributes to compensating for this
information in subsequent processing stages, making it widely employed across various
fields. Motion estimation techniques employing optical flow can be broadly categorized
into sparse and dense approaches. Sparse optical flow defines and detects features such
as ORB corner points [9], subsequently estimating motion using a KLT tracker based on
these detected outcomes. Conversely, dense optical flow provides information about the
magnitude and direction of pixel movement, performing motion estimation without relying
on feature bases. Although dense optical flow boasts high accuracy, its comprehensive
computation across unnecessary areas results in slow processing speeds. To overcome
these limitations, RAFT (Recurrent All-Pairs Field Transforms) optical flow [10], which
utilizes dense optical flow and R-CNN (Region-based Convolutional Neural Network)
features [11], has been developed. This method, structured around an R-CNN involving
feature extraction, visual similarity, and iterative updates, enhances accuracy with each
learning phase by repetitively updating the flow vector. Recently, research has been
conducted on Gyroflow+ [12], which integrates gyroscope data with optical flow and
homography. For this purpose, a self-guided fusion module and a homography decoder
have been proposed. Attempts to overcome the limitations of the dense optical flow
approach have continued; among them, Xiao et al. [13] experimented with a method
using a module that deep-couples optical flow with deformable convolution. Specifically,
they proposed a method capable of robust motion estimation even in scenarios with large
motion. Additionally, in scenarios such as satellite video, an efficient computation method
was developed by applying temporal difference for temporal compensation [14] as an
alternative to optical flow for motion compensation.

Another method of motion estimation employs an affine transform, utilizing matrix
operations for coordinate transformation between input and output. This encompasses
techniques such as homography, per-pixel warp fields, and multi-grid methods. Homogra-
phy applies perspective transformation matrices derived from features extracted across
two planes. Per-pixel warp fields generate warp fields at the pixel level based on histogram
differences, identifying similarities between feature trajectories and pixel profiles in static
backgrounds and differences in dynamic objects. Multi-grid techniques learn a series of
set mesh-grid transformations from previous stabilized camera frames to generate camera
paths. Bundled camera paths define a bundled of spatially variant camera paths through
measured local homographies, optimizing these paths for video stabilization after motion
smoothing. IMU sensor-based motion estimation selects between optical flow (KLT tracker)
and IMU-aided motion estimator based on the camera’s angular velocity threshold. How-
ever, a limitation exists as cropping may occur in all scenarios regardless of the threshold
applied. Lately, GlobalFlowNet [15], an unsupervised method for performing video sta-
bilization, has been developed. It utilizes a foreground mask in preprocessing for robust
homography-based motion estimation and employs low-level confidence features. This
approach enhances the capture of consistent spatial correspondence.

2.2. Video Completion

Full-frame video stabilization with motion inpainting addresses missing areas in
stabilized videos by constructing image mosaics using neighboring frames. It utilizes
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local motion estimation for applying global transformation only to common coverage
areas between frames and calculates optical flow between frames to eliminate unwanted
motion fluctuations, thereby achieving stabilized motion paths. However, this method
may produce visible artifacts in non-planar and dynamic scenes and create visible color
seams when combining propagated color from different frames due to effects like lighting
changes, shadows, and vignetting.

Temporally coherent completion of dynamic video presents an automatic video com-
pletion algorithm that synthesizes missing areas in videos in a temporally coherent manner.
Despite limitations in handling discrepancies due to dynamically changing video frames
and mismatched image-space motion vectors, this algorithm is well-suited for processing
dynamic scenes captured with moving cameras. It utilizes optical flow and color, matching
colors temporally using pixel-wise forward/backward flow fields, although it may not
accurately repaint the screen using motion-based features. However, in videos containing
rapid movements, there are difficulties in accurately estimating the flow, which results in a
decline in the quality of color completion.

Flow-edge-guided video completion improves upon traditional issues of being unable
to synthesize sharp flow edges and often producing over-smoothed results by jointly
synthesizing colors and flow, propagating color along flow trajectories to enhance temporal
consistency. This approach alleviates memory issues, allows for a high-resolution output,
and avoids visible seams by operating in the gradient domain, performing video completion
through dense flow fields. In some cases, such as with dynamic textures, optical flow
estimation can be inaccurate, leading to visual artifacts. Additionally, image composition
becomes challenging when large areas are obscured throughout the entire sequence.

2.3. View Synthesis and Rendering

Deep blending for free-viewpoint image-based rendering (IBR) addresses the difficul-
ties of traditional IBR when moving far from input frames due to numerous visible artifacts.
It employs novel view synthesis using held-out real image data to learn blending weights
for combining input photo contributions. Accurate geometry provision is crucial for CNNs
to find correct blending weights, yet direct blending in image space can result in visible
artifacts and glitches, especially when flow estimates are unreliable. For instance, there is
a limitation of flickering occurring in the resultant image when composing images with
significant or inconsistent lighting differences.

Free view synthesis overcomes the limitations of traditional methods that rely on
camera grid and stereo matching, which restrict the layout of input views. It generates a
free view synthesis from unstructured input images of general scenes by correcting input
images with Structure from Motion (SfM) and calculating 3D proxy geometry through
Multi-View Stereo (MVS). Utilizing depth maps and 3D proxy geometry, it maps encoded
features to the target view, blending them using an Encoder–Decoder network. Since it
only composes images on a frame-by-frame basis, there is a drawback of lacking temporal
consistency. Additionally, visual artifacts occur when the proxy 3D model used for mapping
misses significant parts of the scene.

Out-of-boundary view synthesis towards full-frame video stabilization [16] signifi-
cantly improves upon traditional grid-based and pixel-based warping methods through
a two-stage coarse-to-fine method. It notably contributes to minimizing cropping in the
boundary areas and reducing jitter. However, in cases of significant movement of dynamic
objects between adjacent frames, the accurate generation of out-of-boundary regions may
be challenging due to discontinuities.

In addition, methods based on progressive fusion and temporal fusion have been
explored to reduce distortion. Jiang et al. [17] proposed a Multi-Scale Progressive Fusion
Network (MSPFN) to eliminate various degrees of blurring. They generated a Gaussian
pyramid of rain images and employed a coarse fusion module with Conv-LSTM to capture
global textures. Subsequently, a fine fusion module was introduced to fuse correlated
information in a cascading manner, forming progressive multi-scale fusion. Ultimately,
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the utilization of a residual module facilitated the generation of high-quality images. Xiao
et al. [18] addressed the challenge of limited and difficult-to-extract information provided
by frames by proposing temporal grouping projection fusion and Multi-Scale Deformable
(MSD) convolution alignment. Temporal fusion was applied to regroup continuously input
frames into different poses, thereby reducing the complexity of projection while enabling
the learning of more complementary information from frames. Following this, a multi-
scale residual block was utilized to learn complex motion information for accurate frame
alignment. Finally, a temporal attention module was employed to generate images that
maintained a high level of consistency with the reference frame.

2.4. Video Stabilization Using IMU Sensors

Image deblurring using IMU sensors estimates blur function from gyroscope and
accelerometer data during shooting [19]. Known blur function allows image improvement
through non-blind deconvolution for deblurring. Since the algorithm assumes a constant
depth of the scene, there is the limitation of an inaccurate blur estimation due to depth
differences in real scenes. Digital video stabilization and rolling-shutter correction using
gyroscopes measures camera motion with gyroscopes to perform digital video stabilization
and rolling-shutter correction efficiently. Despite its strength under poor lighting and sig-
nificant foreground motion, it may introduce shaky motion-induced visual artifacts. Deep
online video stabilization using IMU sensors synthesizes stabilized images through deep
motion estimation using data from IMU sensors. It identifies various motion types with a
Deep Neural Network (DNN) classifier and employs Long Short-Term Memory (LSTM) [20]
for extracting temporal features, effectively removing shaky artifacts, performing strongly
across datasets with less time consumption, although it requires sufficient training data for
accurate predictions. Deep online fused video stabilization employs both gyroscope sensor
data and image content in an unsupervised learning DNN for video stabilization. The net-
work fuses motion representations combining optical flow with real/virtual camera pose
histories, where LSTM cells infer new virtual camera poses for generating warping grids to
stabilize video frames. Although numerous studies are underway to enhance stabilization
performance using IMU sensors, the issue of cropping still persists in video stabilization.

2.5. Limitations

Conventional methods have several limitations. Firstly, shooting with cameras that
utilize sensors with a rolling-shutter mechanism, where the shutter closes sequentially,
results in stretched and shaken photographs. Secondly, cropping occurs, a phenomenon
where the edges of the video are cut off, reducing the resolution, due to the warping process
based on the pixel values between adjacent frames. Lastly, distortion exists, a condition
where pixel values are distorted due to visual artifacts including shakiness, blur, and
wobble caused by the camera’s movement or vibration, making the space appear twisted,
elongated, and wavering.

3. Proposed Method: Cross-Interaction-Based Video Stabilization
3.1. Methodology

To address the performance issues caused by the major problems identified, we
propose a combination of three technologies. This holistic approach integrates hardware
and software solutions to significantly enhance the quality of video stabilization, aiming for
a comprehensive improvement over existing methods. Firstly, considering the necessity for
IMU sensors to perform motion compensation from shaky input data, we sought to improve
motion estimation performance. It was essential to establish a portable connection between
sensor data and video data, necessitating the integration of a developing board, an IMU
sensor, and a camera, which operates within the given power consumption. The data could
be collected once the communication between the IMU sensor and the developing board
was established. To achieve our research objectives, we developed a technique that began
with synchronizing sensor data with video footage using a Raspberry Pi to communicate
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with an IMU sensor. This synchronization enabled precise motion compensation in the
preprocessing stage for each frame of the input video. To enhance the accuracy of the sensor
data, the VQF method was applied alongside a Low-Pass Filter (LPF) to correct the errors in
sensor data, followed by the utilization of the AKAZE optical flow. Motion compensation
was executed using the collected IMU sensor data with Gyroflow (v1.5.4) [21]. Secondly,
to address cropping, we utilized PCA-flow-based video stabilization [8]. This method
could also improve the slight cropping caused by motion compensation in our approach.
However, applying PCA-flow-based video stabilization [8] has the disadvantage of a low
visual quality due to increased distortion. Lastly, to further mitigate distortion that arose
during the full-frame video creation process, we applied neural rendering [5], culminating
in the production of the stabilized frames. Therefore, we achieved a final full-frame
stabilization video with improved stability and distortion. This comprehensive approach
aimed at addressing the key challenges in video stabilization, significantly improving the
quality and usability of the output video footage. Our method represents a novel approach,
utilizing sensor data for initial motion compensation followed by a deep learning-based full-
frame video stabilization process, a strategy not previously explored in existing research.
Additionally, our technique offers the advantage of being applicable to videos of any type,
providing a versatile solution to video stabilization challenges. This comprehensive method
integrates hardware and software to refine the stabilization process, ensuring the output
video maintains high fidelity to the original scene dynamics while correcting for unwanted
motion artifacts.

3.2. Implementation
3.2.1. Stage 1: Motion Compensation

We began by synchronizing sensor data with video footage through communication
between the IMU sensor and a Raspberry Pi. We utilized the ROBOR RB-SDA-V1 IMU
sensor for data collection, setting the initial state by resetting angle and position, and col-
lecting timestamp, gyroscope, accelerometer, and magnetometer data. Given the original
video data’s specifications of a 1920 × 1080 resolution at 25 fps, we fixed the transmis-
sion period for sensor data collection at 40 ms to ensure consistency in data points. The
sensor data utilized for motion compensation underwent noise reduction through a VQF
filter. Gyroflow [21], utilizing gyroscope data for stabilizing a video along with optional
accelerometer and magnetometer data, was chosen for motion compensation. Motion
compensation at the image level was performed using the AKAZE optical flow [7] with
sensor data from which noise had been removed. Subsequently, to maintain execution
speed while applying neural rendering [5], we used f f mpeg [22] to resize the video data
from 1920 × 1080 (1080p) to 854 × 480 (480p) as part of the preprocessing steps.

3.2.2. Stage 2: Video Stabilization

Previous methods have attempted to implicitly learn frame motion in color videos
through learning-based video stabilization. The learning video stabilization using optical
flow [8] method proposes a novel neural network that infers per-pixel warp fields for video
stabilization from the optical flow fields of input videos. This technique relies on the optical
flow for motion analysis and directly learns stabilization, proposing a pipeline for motion
inpainting and warp-field smoothing, offering resilience to moving objects, occlusion, and
optical flow inaccuracies. The first step involves preprocessing through computing an affine
transformation to eliminate large motions. It then generates masks indicating accurate areas
of optical flow for each frame and employs the first five principal components suggested
by the PCA flow for inpainting inaccuracies. The absence of masking and inpainting would
lead to motion discontinuity and distortion. The stabilization network, as the second step,
takes the inpainted optical flow field as network input, generating per-pixel warp fields
for frame motion compensation. The third step, postprocessing, considers the potential
issues of local discontinuities at valid/invalid boundaries of the optical flow, ensuring
warp field continuity and replacing raw warp fields with resulting low-frequency fits.
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The output, utilizing a low-frequency warp field for warping the input video, results in a
rectangularly cropped image. While this technique achieves full-frame image generation
and high stability, it has the drawback of a significant distortion. We prioritized video
completion using this technique as the initial step.

3.2.3. Stage 3: Neural Rendering

Applying a motion inpainting algorithm for full-frame image generation introduces
distortion. To address this visually uncomfortable effect, a hybrid neural fusion for full-
frame video stabilization [5] was developed by applying neural rendering. Traditional
methods for improving distortion encode CNN features and perform fusion in the feature
space before transforming the fused features into output frames through a decoder, often
producing overly blurred images. This method extracts abstract image features, fuses
warped features from multiple frames, and decodes them along with fused feature maps for
each source frame into output frames and related maps, employing a weighted averaging
of generated images for rendering the final output frame. This enhances the output frame’s
sharpness while avoiding ghosting and glitch artifacts. Additionally, it does not require
retraining and can be applied even when accurate camera poses are difficult to obtain. In
other words, it applies PCA-flow-based video stabilization [8] to improve cropping results
in the loss of high-frequency components and the occurrence of distortion. To recover this,
the residual details of the frame are extracted and added to the fused image. The structure
used for the image fusion is an Encoder–Decoder network utilizing ResNet blocks and an
average pooling layer. The description of the three stages is visually presented in Figure 4.

Figure 4. The overall pipeline of the proposed cross-interaction-based hybrid full-frame video
stabilization framework. (Stage 1) We first perform motion compensation using IMU sensor data.
(Stage 2) Then, the motion compensated frames are estimated using the optical flow and these are
input into a stabilization network to create stabilized frames. (Stage 3) Finally, multiple frames are
fused and residual details are combined to generate the final rendered stabilized frames.

4. Experiment
4.1. Environment

In this study, we employed a hardware and software setup consisting of a Raspberry Pi
4B (Raspberry Pi Foundation, Cambridge in England) running Ubuntu 20.04, a RB-SDA-V1
IMU sensor (ROBOR, Ansan in Republic of Korea), an GeForce RTX 3080 GPU (NVIDIA,
Santa Clara in United States) with CUDA support, and a Canon EOS 60D DSLR camera
equipped with an EF-S 18–55 mm IS STM lens (Canon, Tokyo in Japan). The hardware
configuration was designed for the simultaneous collection of IMU sensor data and video
data, attaching the Raspberry Pi and the IMU sensor to the DSLR. The Raspberry Pi utilized
Ubuntu 20.04 as its operating system and communicated with the RB-SDA-V1 IMU sensor
via a USB port (see Figure 5).
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Figure 5. Hardware configuration.

The collected CSV sensor data were converted into GCSV format, which is recognizable
by Gyroflow [21], to apply motion compensation to the original video data. As part of
the preprocessing steps, the video resolution was resized from 1080p to 480p to accelerate
the processing. Subsequently, we utilized the computing power of the NVIDIA RTX
3080 GPU to perform full-frame video stabilization, leveraging the PCA-flow-based video
stabilization [8] and neural rendering [5] algorithms.

4.2. Evaluation Metrics

This setup was aimed at testing the efficacy of our proposed method in improving
video stability while minimizing the visual artifacts typically associated with rolling-shutter
effects and camera movements. By integrating IMU sensor data for motion compensation
and applying advanced video processing techniques, we sought to achieve a high level of
stabilization without the loss of video quality due to cropping or distortion. The experi-
ments were designed to validate the performance improvements in video stabilization, as
facilitated by our hardware and software integration, and to demonstrate the potential of
our approach for real-world applications. We sought to quantitatively assess the improve-
ments made to address the key issues identified by applying three major metrics used in
the literature [5,23,24]: the Stability (S) score, the Distortion value (D), and the Cropping
ratio (C).

Firstly, the Stability score (S) serves as an indicator of a video’s steadiness. The compu-
tation process involves calculating the accumulated optical flow, then transforming it into
the frequency domain using a Fast Fourier Transform (FFT), and finally, calculating the ratio
of selected energy over total energy for quantitative assessment. Here, the accumulated
optical flow represents the cumulative path of pixel movement from previous to current
frames, based on optical flow vectors, with the initial frame as a reference point. Secondly,
the Distortion value (D) indicates the degree of deformation within a video. This metric
requires aligning the input with the stabilized output to estimate the extent of transforma-
tion, utilizing transformation matrices for this estimation. The calculation of the Distortion
value is defined as the worst ratio of the two largest eigenvalues of the affine component
across all frames of the video. Thirdly, the Cropping ratio (C) quantifies the proportion of
the area lost during the warping process between the input and the stabilized output.

To quantitatively evaluate how much the visual quality had improved due to mitiga-
tion of visual artifacts, we utilized metrics such as the LPIPS (Learned Perceptual Image
Patch Similarity), SSIM (Structural Similarity Index Measure) [25], and PSNR (Peak Signal-
to-Noise Ratio). The LPIPS, introduced by Zhang et al. [26], measures the perceptual
similarity between images. This metric was proposed to address the discrepancy between
human perception and the results obtained from high-resolution images by traditional
methods like the PSNR and SSIM. By extracting image features using a pretrained deep
neural network and calculating the distance between these features, the LPIPS assesses the
perceptual differences between two images. Importantly, using the intermediate layers of a
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pretrained neural network allows for the capture of high-level image features, enabling a
more accurate measurement of perceptual similarity. The SSIM is a method used in digital
image processing to compare two images by measuring their structural similarity. Unlike
the PSNR, the SSIM takes into account the characteristics of the human visual system to
evaluate image quality. The PSNR measures the objective difference based on the square
of errors, whereas the SSIM evaluates how well the image quality matches the subjective
human visual experience, addressing issues where images may appear similar but are
distinguished significantly by the PSNR. The PSNR represents the ratio of the maximum
possible power of a signal to the power of corrupting noise. It is widely used in image
and video compression to quantify the difference between two images, measuring the
quality of compressed images with higher PSNR values indicating better image quality.
PSNR calculations are based on the Mean Squared Error (MSE) between the original and
compressed images and are typically expressed in decibels (dB).

The Learned Perceptual Image Patch Similarity (LPIPS) metric is often used to assess
the perceptual similarity between two images. It is a sophisticated metric capturing more
nuanced differences that are perceptible to the human eye.

LPIPS(x, y) = ∑
l

1
HlWl

∑
h,w

∥ϕl(x)h,w − ϕl(y)h,w∥2
2 (1)

where x and y are the images being compared, l indexes layers in a pretrained network,
ϕl(x) and ϕl(y) are the feature maps at layer l for each image, Hl and Wl are the dimensions
of the feature maps at layer l, and ∥ · ∥2 denotes the Euclidean (L2) norm.

The Structural Similarity Index (SSIM) is used for measuring the similarity between
two images. The SSIM index is a full reference metric; in other words, it measures the
image quality based on an initial uncompressed or distortion-free image as a reference. The
SSIM considers changes in structural information, luminance, and contrast, rather than
aggregating errors over pixels like traditional methods such as the MSE.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

where µx is the average of x, µy is the average of y, σ2
x is the variance of x, σ2

y is the variance
of y, σxy is the covariance of x and y, C1 = (k1L)2 and C2 = (k2L)2 are two variables to
stabilize the division with a weak denominator, and L, k1, and k2 define the dynamic range
of the pixel-values.

The Peak Signal-to-Noise Ratio (PSNR) is used as a measure of quality for images
and videos. the PSNR represents a ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its representation. It is often
expressed on the logarithmic decibel scale.

PSNR = 10 · log10

(
MAX2

I
MSE

)
(3)

where MAXI is the maximum possible pixel value of the image (e.g., for an 8-bit-per-
channel image, MAXI = 255), MSE is the Mean Squared Error between the original and
compressed image, defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (4)

where I(i, j) is the pixel value of the original image at position (i, j), K(i, j) is the pixel value
of the compressed image at position (i, j), and m and n are the dimensions of the images.
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4.3. Result
4.3.1. Qualitative Results

To rigorously assess enhancements in full-frame video reconstruction, along with
mitigation in cropping, distortion, and reductions in visual artifacts, we executed a com-
prehensive visual analysis and engaged in an in-depth discussion of the findings. The
empirical outcomes, as illustrated in Figure 6, exhibited a pronounced divergence from the
L1 path methodology [4], which is notably susceptible to cropping anomalies. Conversely,
our novel methodology adeptly ensured the generation of complete full-frame visuals,
circumventing the loss of pivotal visual information. Furthermore, despite maintaining
a consistent ratio between the ground truth and our rendered outcomes, we observed
a subtle deviation in the field of view, attributable to the methodological integration of
sequential data via the fusion of multiple frames, refined through warping with the RAFT
optical flow [10].

A detailed visual inspection within the “Stairs” category revealed that although PCA-
flow-based video stabilization [8] significantly addressed the cropping issues inherent in
conventional methodologies such as the L1 path [4], it inadvertently amplified the distortion
manifested through texture seams and blurring (refer to Figure 7). Notably, our approach
manifested superior visual quality by strategically employing both motion compensation
and neural rendering techniques.

(a) Ground Truth (b) L1 path

(c) PCA flow (d) NR

(e) DIFRINT (f) Ours
Figure 6. Qualitative comparison results (category: Run).
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(a) Ground Truth (b) L1 path (c) PCA flow

(d) NR (e) DIFRINT (f) Ours

Figure 7. Qualitative comparison results (category: Stairs).

In our empirical analysis, we particularly concentrated on discrete segments within
the test footage to critically evaluate the efficacy of our motion compensation technique.
This intensive examination was aimed at ascertaining the capability of our technology
in restoring complex details typically obliterated due to camera motion or instability.
Implementing our proposed methodology resulted in a discernible enhancement in main-
taining fine details, such as the distinct morphology characteristics of foliage, the precise
grid patterns on masonry, and the intricate textures of terrestrial surfaces (as depicted in
Figure 8). These insights were corroborated by robust experimental validation, signifying
that our motion compensation methodology substantially augmented the visual lucidity
of these aspects. The revitalization of these intricate details within the visual footage
accentuated the proficiency of our methodology in preserving the fidelity of intricate
scenes, ensuring that both natural and architectural elements were accurately rendered
and readily identifiable, thereby delineating our endeavor to advance the frontiers of video
stabilization technologies.

Figure 8. Qualitative analysis of our result on specific regions: (left) Tree, (center) Brick, (right)
Sand regions.

4.3.2. Quantitative Results

To quantitatively assess the extent of improvements made against the primary issues
arising during video stabilization, we analyzed these improvements using the Stability
score (S), Distortion value (D), and Cropping ratio (C) metrics. The Stability scores range
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between zero and one, with values closer to one indicating a better quality of stabilization
result. Distortion values also range between zero and one, with values closer to one
signifying less flutter and more visual comfort. Cropping ratios, similarly, range between
zero and one, with values closer to one indicating lesser cropping compared to the original
footage. Experimental results are presented in Table 1 and show that our results employing
IMU sensor for motion compensation as well as applying neural rendering increased the
Cropping ratio by 36.2% per category (Stairs, Walk, Run, and Turn) compared to the L1 path
method [4], generating full-frame images (see Figure 9). Secondly, our method produced
videos with reduced visual artifacts, with a Distortion value increasing by 0.4–7.5% per
category compared to the PCA-flow-based video stabilization method [8]. Our method
obtained a better Stability score, which indicated more stable footage. Notably, traditional
techniques such as the L1 path method, despite a good Stability score, suffered from a
significant lower Distortion value and Cropping ratio due to nonlinear wobble and warping,
leading to poor visual quality.

Table 1. Quantitative comparison according to the average result of all four categories. The first rank
is marked in red color, while the second rank is marked in blue color.

Method Stability (S) ↑ Distortion (D) ↑ Cropping (C) ↑
L1 path 0.890 0.636 0.734

PCA flow 0.786 0.896 1.000
NR 0.776 0.940 1.000

DIFRINT 0.786 0.911 0.962
Ours 0.815 0.924 1.000

Figure 9. Quantitative comparison using four different categorical data.
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Furthermore, we employed metrics such as the LPIPS, SSIM, and PSNR to quan-
titatively evaluate the extent of improvement in visual quality resulting from the video
stabilization. LPIPS values closer to zero reflect a better perceptual similarity and alignment
with human perception, especially for images with fine changes or complex textures. SSIM
values closer to one suggest a greater similarity between two images, while the PSNR, used
to measure the quality between the original and compressed images, indicates better image
quality with higher values. The experimental results, utilizing the data from the “Stairs”
category and evaluating the methods based on patches such as “Tree”, “Brick”, and “Sand”
(see Figure 8), showed our method outperforming all methods in LPIPS, SSIM, and PSNR
metrics for “Tree” (see Table 2). SSIM and PSNR values notably dropped for the L1 path
and PCA-flow-based methods when adopting the IMU sensor compensation, possibly due
to the preprocessing for motion compensation with the sensor output before applying the
algorithm, leading to pixel value discrepancies in the input frames due to distortion.

However, with respect to the computational efficiency, our method prioritized com-
pensation using the IMU sensor and underwent processes involving PCA flow and neural
rendering, resulting in a limitation of the extended runtime. As faster methods, the L1
path and DIFRINT methods ranked first and second, respectively (as shown in Table 3).
Consequently, research conducted to date has primarily focused on verifying the poten-
tial for performance. Future efforts will necessitate improvements in lightweight and
speed enhancements.

Table 2. Quantitative comparison on a specific region. The first rank is marked in red color, while the
second rank is marked in blue color.

Metric
Tree Brick Sand

LPIPS
↓

SSIM
↑

PSNR
↑

LPIPS
↓

SSIM
↑

PSNR
↑

LPIPS
↓

SSIM
↑

PSNR
↑

L1 path 0.174 0.294 20.740 0.118 0.353 15.924 0.071 0.213 22.820
PCA flow 0.106 0.418 23.496 0.138 0.407 17.296 0.046 0.383 24.783

NR 0.068 0.558 24.271 0.021 0.866 24.853 0.016 0.818 28.711
DIFRINT 0.086 0.579 23.774 0.069 0.591 18.962 0.029 0.629 25.535

Ours 0.040 0.856 28.689 0.031 0.846 22.771 0.024 0.744 27.481

Table 3. Computational time comparison according to the average result of all four categories. The
first rank is marked in red color, while the second rank is marked in blue color.

Method Computational Time Per Frame (Second) ↓
L1 path 0.674

PCA flow 1.512
NR 5.400

DIFRINT 0.677
Ours 5.669

5. Conclusions

The primary objective of our research was to generate visually useful imagery for
Augmented Reality applications by preventing cropping through resolution maintenance
and enhancing stabilization performance by minimizing the degradation of stability and
distortion. In pursuit of this goal, we maintained a focus on improving performance while
adequately preserving execution speed, leading to the proposal of a novel hybrid full-frame
video stabilization algorithm, based on dual-modality cross-interaction using neural ren-
dering, not previously explored. Our method was evaluated using stability, distortion,
and cropping metrics, demonstrating enhanced stabilization, especially when utilizing an
IMU sensor to robustly counter flow inaccuracies. Overall, our method uniquely achieved
TOP2 in the S/D/C metric and showed the most significant improvement in Turn envi-



Appl. Sci. 2024, 14, 4290 15 of 16

ronments. Further, the visual quality induced by the Distortion value was quantitatively
compared using the LPIPS, SSIM, and PSNR metrics, providing a detailed analysis. The
use of the combination of an IMU sensor and neural rendering technique showed that
while maintaining the Distortion value, it resulted in increased Stability score outcomes,
effectively reducing visual artifacts caused by shaking. Our technology has proven valuable
in correcting video shake, contributing to accurate target detection and tracking.

The application of our technology is contingent upon the availability of IMU sensor
values measured concurrently with the original video capture, which presents a limitation
in terms of applicability to the vast array of videos available online. Despite this challenge,
given that modern AR/VR devices and smartphones are inherently equipped with IMU
sensors, leveraging these to acquire videos and applying our technology can result in
visually superior, stabilized videos. Additionally, since the warping field depends on
optical flow and the IMU sensor values are globally reflected across frames, visual artifacts
may still persist at the video edges.

Looking forward, we propose three areas for future work. First, we aim to achieve
superior motion compensation by fusing the transformation matrices generated by deep
learning-based optical flow calculations, assigning greater weights to the transformation
matrices as the IMU sensor values increase. Moreover, there is a need to locally reflect this
in the frame to enhance compensation at the video edges. By applying this method, perfor-
mance in motion estimation is expected to improve since it does not solely rely on optical
flow, and consequently, it can reduce visual artifacts caused by large motion and environ-
mental changes during the warping process. Second, we aim to implement superior feature
extraction by adding SE (Squeeze-and-Excitation) blocks that perform actions similar to
self-attention. This method allows for more accurate calculations of the optical flow across
the frame while reducing the parameter size for better efficiency and overcoming accuracy
degradation. Third, to ensure the generalization of the proposed method, it is necessary to
enrich the dataset with data from daytime/nighttime or sunny day/rainy day/foggy day
scenarios and extend the experiments. These future directions underscore our commitment
to refining the balance between stabilization, visual quality, and computational efficiency,
thereby pushing the boundaries of video stabilization techniques.
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