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Abstract: A gearbox compound fault intelligent diagnosis method based on the period group sparse
model is proposed for the problem that the fault features are coupled with each other and the fault
components are superimposed on each other and difficult to be separated in the gearbox compound
fault signal. Firstly, a binary sequence is constructed to embed the fault pulse period as a priori
knowledge into the group sparse model to decouple and separate the composite fault signal while
maintaining the amplitude and sparsity of the extracted features. Secondly, the wavelet packet
energy features of the decoupled signals are extracted to improve the data quality while enhancing
the characterization ability of the dictionary in the classification model. Finally, the wavelet packet
energy features are imported into the sparse dictionary classification model, and the fault diagnosis
is completed by outputting the fault categories using the self-driven characteristics of the data. The
results show that the fault identification accuracy using the proposed method is 97%. In addition,
the experimental validation under different states and working conditions with different rotational
speeds allows the superiority and effectiveness of the algorithm in this paper to be tested and has the
feasibility of a practical application in engineering.

Keywords: compound fault; gearbox; sparse representation; feature classification

1. Introduction

With the increasing demand for energy in social development, wind turbines, gas
turbines and other high-end equipment will be the main body of new energy supply under
the carbon neutral strategy. As a key component of energy conversion, gearboxes are sus-
ceptible to irregular alternating loads and impact loads during operation, thus generating
failures [1]. Timely and reliable condition monitoring and fault diagnosis technology is
important in reducing operation and maintenance costs, improving production manage-
ment capability, and providing “foresight” predictive maintenance solutions. Traditional
time-frequency analysis methods, such as wavelet transform [2,3], empirical modal decom-
position [4] and variational modal decomposition [5], have achieved satisfactory results in
single-fault diagnosis. In the actual operating conditions, a single fault will have a chain
reaction with each component of the transmission chain, and multiple faults will occur
in successive cascades to form a compound fault. At the same time, various components
in the signal are affected by the background noise, so that the vibration signal has strong
interference, nonlinearity, weakened fault characteristics, coupling modulation characteris-
tics and other characteristics, resulting in the weakening of the signal fault characteristics.
Therefore, it is difficult to separate the composite fault components using traditional signal
processing methods.

Recently, sparse representation has attracted attention as a novel signal processing
method in many fields, such as target detection [6], face recognition [7], and speech signal
processing [8]. Sparse representation is essentially the use of a small number of atoms to
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describe the internal structure and feature information of a signal without preprocessing
operations such as denoising, the optimal selection of fault features and the stripping of
working condition information, which enables a flexible, concise and adaptive representa-
tion of the signal. The focus of sparse representation is on the construction of the dictionary.
The parametric dictionary consists of predefined basis functions to match the periodic
impulse features in the fault signal. Sun et al. [9] designed a parametric dictionary that
can highly match the bearing fault features and improve the iterative stopping criterion of
the orthogonal matching tracking algorithm to successfully diagnose the rolling bearing
fault signal. Zhang et al. [10] constructed an adaptive adjustment Gabor dictionary with
the residual signal, which solved the shortcomings of the traditional method with large cal-
culation and improved the signal sparsity while ensuring the accuracy of the fault features.
Xia et al. [11] optimized the quality factor in the resonance-based sparse decomposition
(RSSD) using the squirrel algorithm, and the obtained optimal resonance components
effectively improved the separation accuracy of the bearing fault features. However, due to
the variability and unpredictability of the pulse components in the actual vibration signal,
the performance of the parametric dictionary is limited by the atomic structure [12], and
the atoms obtained using explicit mathematical formulas are no longer adaptively adjusted
to the changing characteristics of the signal. For this reason, learning dictionaries such
as the optimal direction method and K-singular value decomposition (K-SVD) provide
new inspiring ideas for fault diagnosis. Wang et al. [13] improved the objective function
and constraints in the K-SVD model to construct a dictionary matching fault features
without considering sparsity, and achieved a feature enhancement of weak bearing faults.
Li et al. [14] used VMD to select the optimal components to form the training set, and then
used K-SVD for dictionary learning. Compared with the parametric dictionary, the method
applied to pipeline leakage vibration signals shows better compressive reconfigurability
and sparsity. When extracting fault features using sparse representation, most studies use
l0 or l1 norm and its deformers, which suffer from algorithmic degradation leading to
amplitude underestimation when approximating the sparsity of the characterized pulse.
For this reason, it has been proposed to embed the structural information of the signal
into SR and exploit the sparsity within and across groups (SWAG) of the features [15] to
improve the extraction accuracy of fault features. Ding et al. [16] constructed a periodic
convolutional sparse representation using a learned dictionary and a Fourier parameter
dictionary to extract fault classification and harmonic components so that the sparse co-
efficients have periodicity and group sparsity. The method performs well in extracting
bearing fault features. Huang et al. [17] combined a sparse fidelity term and a generalized
minimum–maximum concave penalty term in the sparse representation model to effectively
prevent the signal amplitude from being underestimated and improve the reconstruction
accuracy of gear and bearing fault features. Zhao et al. [18] introduced an enhanced sparse
group lasso to improve the SWAG property, and then used an optimized minimization
algorithm (Majorize-Minimization, MM) to iteratively solve the model to effectively ex-
tract the fault features of the inner and outer rings of the bearings while maintaining the
magnitude and sparsity of the reconstructed signals.

In summary, the vibration signal-based gearbox fault diagnosis technology is becoming
increasingly mature, but the following problems still exist:

(1) Most of the existing research focuses on single faults or localized compound faults,
such as gear local faults, and bearing inner and outer ring compound faults. There
is less research on composite faults formed in different positions of bearings and
gears, etc.

(2) Multiple faults in the transmission path due to mutual interference between fault
features and energy loss and other effects of modulation coupling, decoupling sep-
aration that lead to an underestimation of the amplitude, thus leading to the signal
reconstruction effect.

(3) The traditional fault diagnosis using the fault feature frequency detection method; the
detection performance is easily deteriorated due to factors such as part manufacturing
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errors and shaft misalignment. The engagement vibration and background noise can
submerge or interrupt the impulse features of the fault.

According to the above analysis, this paper proposes an intelligent diagnosis method
for compound faults based on the periodic group sparse model. Different from the existing
diagnostic methods, firstly, a binary periodic sequence is constructed to provide periodic
prior knowledge for the fault signal, and a sparse model for handling compound faults is
constructed by combining with a group sparse model with overlapping properties. Then,
the MM algorithm is used to decouple and separate the fault signals; compared with
other conventional methods, the proposed algorithm shows a higher discrimination and
robustness in practical applications. Finally, the energy features of wavelet packets with
the decoupled different fault states are extracted and imported into the sparse dictionary
classification model as the data input to achieve fault feature classification and identification
with the self-driven property of data. So far, the intelligent diagnosis of compound faults in
gearboxes is realized. The effectiveness of the proposed method is verified with the analysis
of the simulation signal and the experimental signal; the overall technology roadmap is
shown in Figure 1.
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Figure 1. General technology roadmap.

The arrangement of the paper is as follows: Section 1 is the introduction of the
article. Section 2 introduces the theoretical basis of performance of different sparse models,
LC-KSVD, and Wavelet packet energy features extraction. Section 3 introduces the fault
diagnosis method proposed in this paper. Section 4 introduces the simulated signal analysis
and results. Section 5 is the conclusion and future work of this paper.

2. Materials and Methods
2.1. Theoretical Methods
2.1.1. Performance Differences and Sparse Effect of Different Models

In actual working conditions, there is a force transmission between several components
in the transmission chain of machinery and equipment. The sparse model using only the
l1 norm cannot better capture the clustering trend among the sparse coefficients. This
leads to its inability to effectively extract multiple fault feature information, while the
l1 parametric number also has the problem that the signal amplitude is underestimated,
which will reduce the reconstruction accuracy of the signal.
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The performance of different sparse models and their sparse effects are different, and
the expressions of the related sparse models are shown below for the Lasso model, group
Lasso model and group sparse model, respectively.

ψ̂LASSO = argmin
ψ

∥y − Xψ∥2
2 + λ1∥ψ∥1 (1)

argmin
ω1,ω2

∥y − Φ1ω1 − Φ2ω2∥2
2 + ∑j1+1

j=1 λ1,j
∥∥ω1,j

∥∥
1 + ∑j2+1

j=1 λ2,j
∥∥ω2,j

∥∥
1 (2)

ψ̂Group−LASSO = argmin
ψ

∥y − Xψ∥2
2 + λ2∥ψ∥2 (3)

ψ̂SGL = argmin
ψ

∥y − Xψ∥2
2 + λ1∥ψ∥1 + λ2∥ψ∥2 (4)

where X ∈ RN×Q is the dictionary matrix, y ∈ RN is the test signal, and ψ ∈ RQ is the
corresponding sparse coefficient vector.λ1 and λ2 are the adjustment parameters. The
sparse effect of each model is shown in Figure 2. From the figure, it can be seen that the
Lasso model, as a typical representative of the parametric-based sparse model, is based
on the principle of optimizing the selection of each group of original signals so that each
group of data maintains good sparsity. The RSSD objective function shown in Equation (2)
is a typical Lasso model. The Group-Lasso model mainly groups the original signals and
eliminates the relevant intra-group data, so that each group of data between the signals
maintains good sparsity, but the processed data still have more redundant information.
The group sparse model further optimizes the redundant data within groups by combining
the advantages of both models, which can reduce the influence of redundant information
on the signal to a greater extent and keep a small amount of data to reveal the essential
information in the signal. It is a good balance of the inter-group sparsity and intra-group
sparsity of signal. Therefore, this paper selects the group sparsity-based model to deal with
compound faults.
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2.1.2. Label Consistency Dictionary Classification Algorithm

Since the traditional dictionary learning algorithm does not contain discriminative
information, i.e., it cannot find an explicit correspondence between dictionary atoms and
fault categories labels. To solve this problem, Jiang et al. [7] proposed a label consistent
KSVD(LC-KSVD) dictionary learning algorithm. The algorithm adds label consistency
discriminative sparse coding terms and optimal classification error terms to the objective
function, so that dictionary atoms and fault categories are associated. The dictionary is
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forced to make the sparse coefficients distinctive during the learning process through the
discriminative sparse encoding matrix, i.e., the same class of signals produces similar
sparse encoding. The dictionary reconfigurability and discriminability are maintained
while integrating the advantages of traditional dictionaries. This algorithm has been widely
used in face recognition and other fields.

The objective function of LC-KSVD as follows:

⟨D, A, W, X⟩ = argmin
D,A,W,X

∥Y − DX∥2
2 + α∥Q − AX∥2

2 + β∥H − WX∥2
2

s.t. ∀i, ∥si∥0 ≤ T
(5)

where ∥Y − DX∥2
F is the sparse fidelity term, i.e., denotes the reconstruction error. Where

Y = [y1, . . . yN ] ∈ Rn×N is the set of N and n-dimensional training signals an
D = [d1, . . . dK] ∈ Rn×K is an overcomplete dictionary composed of K atoms.
X = [x1, . . . xN ] ∈ RK×N is the coefficient of the training signal after sparse decompo-
sition. ∥Q − AX∥2

F denotes the discriminative sparse coding error, i.e., the label agreement
term, which aims to constrain samples of the same class to produce similar sparse coding,
and A ∈ RK×K denotes the linear transformation matrix, with Q = [q1, . . . , qN ] ∈ RK×N

denoting the discriminative sparse coding. ∥H − WX∥2
F denotes the classification error

term of the classifier model, which helps to obtain H ∈ RL×N , which denotes the category
label matrix of the training samples and W ∈ RL×K denotes the linear classifier parameters.
α and β are the weighting coefficients between the control correlation terms.

As shown in Figure 3, discriminative sparse coding is used to obtain the best classifi-
cation results. Assume that the training sample matrix contains three classes of training
signals Y = [Y1, Y2, Y3], where Y1 contains two samples y1 and y2. Y2 contains three sam-
ples y3, y4, y5,Y3 contains four samples y6, y7, y8, y9. The dictionary D contains three
sub-dictionaries of the three categories, and each sub-dictionary Di(i = 1, 2, 3) has three
atoms, thus obtaining the ideal discriminative sparse coding matrix.
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To facilitate the solution, Equation (5) is rewritten in the following form:

⟨D, A, W, X⟩ = argmin
D,A,W,X

∥∥∥∥∥∥
 Y√

αQ√
βH

−

 D√
αA√
βW

X

∥∥∥∥∥∥
2

F

s.t.∀i, ∥xi∥0 ≤ T

(6)

Ỹnew =
(

YT ,
√

αQT ,
√

βHT
)T

(7)

D̃new =
(

DT ,
√

αAT ,
√

βWT
)T

(8)
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The merged atoms in the new dictionary are normalized by parametrization, and then
the optimization problem is equated to the following form:〈

D̃new, X
〉
= argmin

D̃,X

∥∥∥Ỹ − D̃newX
∥∥∥2

F
s.t.∀i, ∥xi∥0 ≤ T (9)

This type of model is equivalent to the optimization problem of the K-SVD algorithm,
therefore, four variables, i.e., dictionary D, linear transformation matrix A, linear classifier
W, and sparse coefficients X, are solved simultaneously using the K-SVD algorithm to
obtain the global optimal solution. Then, the sparsity coefficient of the test sample is solved
with the following equation.

x′ = argmin ∥y − Dx∥2
2 s.t. ∀i, ∥xi∥0 ≤ 0 (10)

Finally, the linear classifier is used to obtain the class label vector l of the test samples,
and the maximum value of the index corresponding to the selected l can distinguish the
different fault classes in the test samples.

l = W ′x′ = [l1, . . . , lL]
T label(yi) = argmax

j
abs(lj) (11)

2.1.3. Wavelet Packet Energy Features Extraction

The decoupled and separated fault signal are both sparse, i.e., a large number of
data sampling points in the signal are zero, and there is a presence of certain interference
components in the decoupled single fault signal. Therefore, the direct segmentation of the
fault signal as a dictionary and for learning will inevitably lead to the degradation of the
dictionary quality and consume more computation time. For this reason, wavelet packet
decomposition is firstly used to improve the data quality and enhance the variability of the
energy distribution of different health states, which provides prerequisites for subsequent
fault classification and identification.

Wavelet packet decomposition adds the decomposition of the high frequency part of
the signal to the wavelet transform. Through the multi-scale decomposition of frequency
bands, the decomposition process is neither redundant nor loose, and at the same time more
detailed and comprehensive, so that it has stronger transient information extraction ability.
It has a better performance of time-frequency localization analysis and thus improves the
time-frequency resolution.

Wavelet packet decomposition obtains the signal components of the corresponding
sub-bands using the multi-level division and multi-scale decomposition of the signal
frequency bands. The characteristic information contained in the original vibration data is
dispersed into the sub-band signals, and according to the different energy distributions of
the signals in different frequency intervals that will be healthy, the difference in the energy
characteristic distribution can be used as an important criterion for fault classification and
identification. The steps for wavelet packet energy feature extraction are as follows:

(1) The fault signal is decomposed into 2n frequency bands, Si,j denotes the decomposed
signal of the jth node in the i-th layer. The wavelet packet coefficients of the node
are xi,j.

(2) The corresponding low-frequency and high-frequency coefficients are obtained after
multiple layer decomposition, and the signal is reconstructed, and the expression of
the reconstructed signal is as follows:

S = S(i,0) + S(i,1) + . . . + S(i,2n−1) (12)
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(3) Calculate the energy of each sub-band signal.

Eij =
∫ ∣∣Si,j(t)

∣∣2dt =
n

∑
k=1

xi,j(k) (13)

(4) Calculate the total energy and obtain the fault feature vectors with different energy
percentages after normalization.

E =
2i−1

∑
j=0

Ei,j (14)

T =

[
Ei,0

E
,

Ei,1

E
, . . . ,

Ei,2n−1

E

]
(15)

2.2. Proposed Fault Diagnosis Method
2.2.1. Compound Fault Diagnosis Method Based on Period Group Sparse Model

Suppose that the fault signal x is recovered from the noisy signal y, where x is with the
group periodicity property. However, the large magnitude coefficients in the signal do not
exist independently of each other, but are composed in group clusters. The l1 parametric
and other sparse models cannot capture the clustering trend of the coefficients, so He
et al. [19] proposed an overlapping group sparse model to recover the fault signal through
constructing an objective function containing a nonconvex penalty function. However, in
practical fault diagnosis, the pulse lengths of various types of fault information cannot
be determined in advance, so the penalty function is improved by assuming that each
group has the same size and maximum overlap [18] and defined as shown in Equation (16).
Define the index sets Ω and ψ as shown in Equation (17).

P(x) = λ ∑
i∈Ω

([ ∑
j∈ψ

|x(i + j)|2]
1
2 + ρ ∑

j∈ψ
|x(i + j)|)

= λ ∑
i∈Ω

(∥xi,K∥2 + ρ∥xi,K∥1)
(16)

Ω = [1, . . . N] ψ = [0, 1, . . . K − 1] (17)

where λ and ρ are the regular term parameters. The length of the signal is N and each group
has the same size K.i is the group index and j is the coefficient index.
xi,K = [x(i), . . . , x(i + K − 1)] ∈ RK indicates that the size of the ith group is K.

To decouple multiple faults from a composite fault signal, the penalty term of the
overlapping group sparse group model is modified by the feature frequencies of the faults.
A binary sequence is used to make the penalty term concise and highly structured.

b = [1, 1, . . . , 1︸ ︷︷ ︸
N1

, 0, 0, . . . 0︸ ︷︷ ︸
N0

, 1, 1, . . . , 1︸ ︷︷ ︸
N1

, . . . , 0, 0, . . . 0︸ ︷︷ ︸
N0

, 1, 1, . . . , 1︸ ︷︷ ︸
N1

]

︸ ︷︷ ︸
K

(18)

N0 + N1 ≈ Fs/ fc, N0 + N1 = (K + N0)/M (19)

where N1 is the estimated length of the oscillation wave and N0 is the time interval between
each pulse. K is the size of the group. Fs and fc denote the sampling frequency and fault
characteristic frequency, respectively. M is the number of N1 in each group. The three
parameters satisfy the relation in Equation (19).

The penalty term and the corresponding term in the binary sequence are element-
wise multiplied so that inter-group sparsity is maintained between different faults, while
intra-group sparsity is formed by maintaining a certain degree of sparsity in the feature
information of individual faults. Where the first part of the penalty term represents
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intergroup sparsity and the second part represents intra-group sparsity. ⊙ denotes the
multiplication between corresponding elements in the matrix.

P(x; b) = ∑
i∈Ω

ϕ(∥b ⊙ xi,K∥2) + ρMN1∥x∥1,w (20)

ϕ is a non-convex penalty function, such as an absolute value function. The nature
of the function is proved in the literature [20]. The convexity of the model is maintained
while promoting sparsity. The expression of the group sparse model is formed as follows:

min
x1,...x2

1
2

∥∥∥∥∥y −
L

∑
l=1

xl

∥∥∥∥∥
2

2

+
L

∑
l=1

λl P(xl ; bl) (21)

The basic idea of the MM algorithm is to define an easily solvable auxiliary function to
replace the optimization problem to be solved when the optimization problem is difficult
to solve, and to indirectly achieve the solution of the original optimization problem by
iteratively optimizing the auxiliary function several times, thus accelerating the conver-
gence speed and reducing the time of the computation [21]. The optimized model is solved
iteratively using the MM algorithm to obtain the decoupled sparse reconstructed signal.

x(k+1)
l = Q−1

l so f t(p, µλlρMN1w) (22)

Q−1
l = diag(1 + µλlr(·; xk

l )) (23)

so f t(x, t) = sign(x)max(|x| − t, 0) (24)

where k denotes the number of iterations and l denotes the number of faults.

2.2.2. Main Steps in the Proposed Method

In summary, the main steps of the method proposed in this paper are as follows:

(1) Decoupling of compound fault signals using a periodic group sparse model.
(2) Wavelet packet energy feature extraction: The single fault features decoupled in the

first part are extracted using wavelet packet energy features to fill in the gaps in the
reconstructed signal except for sparse non-zero terms, so as to improve the data quality
and thus the characterization ability of the dictionary. At the same time, compared
with the traditional signal directly used for segmentation, the dimensionality of the
data after wavelet packet processing is reduced, which reduces the computational
time and increases the differentiation between different health states.

(3) Dictionary training and learning: Set the category labels of different health states, and
import the wavelet packet energy features into the dictionary classification model
for dictionary training. By discriminative sparse coding in the model, the dictionary
and classifier are obtained by solving the model using algorithms such as K-SVD
and OMP.

(4) Fault classification and identification: The test samples are decomposed on the dic-
tionary to obtain sparse representations of different health state signals, and after
calculating the sparse coefficients and classifier products, the index term correspond-
ing to the largest element of them is used for fault identification and classification.

3. Simulated Signal Analysis

The proposed method is compared and analyzed with the resonance decomposition
approach based on the l1-parametric penalty term to verify the effectiveness of the pro-
posed algorithm. In this section, two simulations are used to verify the analysis. First, a
simulation signal containing two different fault components is constructed to show the
intra-group sparsity of a single fault and the inter-group sparsity between different faults
after decoupling the proposed model.
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The simulation signal with two fault components of 55 Hz and 30 Hz is shown in
Figure 4. In Figure 4a, the apparent periodic component cannot be found. From Figure 4c,
it can be seen that the 55 Hz fault feature and its multiplication are obvious, and the 30 Hz
component has been drowned out by the noise.
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The decoupling separation is performed through the use of RSSD in reference [11] and
the method proposed in this paper, and the processing results are shown in Figure 5. The
resonance decomposition, as a typical sparse model based on the l1-parametric penalty
term, can only keep good inter-group sparsity between single faults since there is no
constraint effect of the l2 norm penalty term fails to produce good sparsity among different
faults. From Figure 5a,c, it can be seen that the fault frequencies and their multiplicities are
not obvious and are affected significantly from the disturbance components. Figure 5b,d
show the performance difference between the sparse model based on the periodic group
and the sparse model based on the l1 norm. Two different fault features are clearly extracted
by the decomposition of the proposed method, and the two fault components maintain
good inter-group sparsity, while the within-group sparsity between single fault components
is good. In addition, the magnitude of the decoupled signal is not underestimated due
to the weighting effect of the vanes in the penalty term, which gives the model good
amplitude preservation and maintains a good reconstruction accuracy.
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Subsequently, a compound fault simulation signal containing a bearing fault x1(t), a
gear fault x2(t) and a Gaussian white noise n(t) is constructed as follows:

x(t) = x1(t) + x2(t) + n(t) (25)

x1(t) = ∑
k

akh1(t − kT1 − τk) h1(t) = e−2ξπ fn1t sin
(

2π fn1

√
1 − ξ2t

)
(26)

x2(t) =
M

∑
m=0

Am

[
1 +

K

∑
k=0

Am,k cos(2πk frt + αm,k)

]
cos(2πm fzt + βm) (27)

where, the pulse amplitude of the bearing fault ak = 1, the bearing fault period T1 = 1/70,
resonance frequency fn1 = 2000, damping ratio ξ = 0.02; the amplitude of the gear fault
signal Am = 0.6, the rotation frequency of the shaft where the gear is located fr = 15 Hz,
the gear meshing frequency fz = 200 Hz, and the phase of the order meshing frequency βm
is 0. The kth amplitude Am,k and phase αm,k of the m order meshing frequency is 0; add a
noise with a variance of 0.5.

The simulation signals of the composite fault are shown in Figure 6. Figure 6a,b
show the fault signals of the bearing and gear, respectively. Figure 5c shows the simulated
signal of the composite fault containing noise, from which no significant periodic pulse is
found. The envelope spectrum of Figure 6d reveals only the meshing frequency fm and the
rotational frequency fr, with no bearing-related fault information.

The proposed method is used to decouple the composite fault signal. Where, the
values of N0 and N1 are set to 4 as recommended in the reference [22]. The processing
results are shown in Figure 7. As shown in the time domain plots in Figures 6c and 7a, the
periodic fault pulse components of the bearings and gears are very obvious.

From the envelope spectrum in Figure 7b, it can be seen that the fault characteristic
frequency fo of the bearing and its multiple frequency 2 fo are very obvious. In Figure 6d, the
rotational frequency fr and its multiples 2 fr and 3 fr are found to be significant. Meanwhile,
the information of the fault characteristics centered on the meshing frequency fm and
with fm + fr and fm − fr as the side bands is clear, thus proving the existence of bearing
fault characteristics and gear fault characteristics in the signal, and also verifying that the
proposed model has good performance in intra-group sparsity for a single fault and inter-
group sparsity between different faults, which shows the effectiveness of the algorithm.
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Figure 6. Constructed simulation signal of bearing-gear: (a) bearing fault signal; (b) gear fault signal;
(c) simulation signal of compound fault of bearing-gear including noise; (d) the envelope spectrum of
the bearing-gear compound fault.
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Figure 7. Decoupled two fault signals: (a) time domain of bearing fault signal; (b) envelope spectrum
of bearing fault signal; (c) time domain of gear fault signal; (d) envelope spectrum of gear fault.

4. Experimental Verification and Analysis
4.1. PHM Data Challenge Fault Dataset

Gearbox failure data from the 2009 PHM Data Challenge dataset. These vibration data
represent the operating condition of a typical industrial gearbox. The gears on the input
and output shafts have 32 and 80 teeth, respectively. The two gears on the intermediate
shaft have 96 and 48 teeth, respectively. The primary and secondary ratios are 3 and 1.67,
respectively, and one sensor is installed on the input and one on the output side of the
gearbox for data acquisition. The gearbox structure used for data collection is shown in
Figure 8. In this paper, the performance of the proposed algorithm is tested by using the
data set of spur gears with the output side sensor with a significant coupling modulation
of the output side signal.
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Figure 8. Internal structure of gearbox.

The fault data set contains two groups as shown in the green area (group A) and red
area (group B) in Figure 8. Group A contains three fault types: input shaft unbalance,
intermediate shaft rolling body fault (input side), and output shaft outer ring fault (input
side). Group B contains six fault types: input shaft unbalance, input shaft inner ring fault
(input side), intermediate shaft rolling body fault (input side), output shaft outer ring
fault (input side) and output shaft 80 gear broken teeth. The bearing parameters are the
following: the rolling body diameter is 7.94 mm, the bearing pitch diameter is 33.5 mm,
and the rolling body number is 8. The sampling frequency is 66.67 KHz.

The input shaft speed of 1800 rpm/min in the data set of group A was selected and
the fault frequencies were calculated to be 30 Hz, 19.92 Hz and 18.31 Hz. The composite
fault signal is shown in Figure 9. The fault features are submerged except for the rotational
frequency component.

The proposed algorithm is used to decouple the compound fault signals. The root
mean square error (RMSE) is shown in Equation (8). The RMSE indicates the ability to
maintain the amplitude of the features. λ and ρ balance the inter-group sparsity and
intra-group sparsity, respectively. The RMSE of the two parameters at different ranges are
shown in Figure 10, and λ = ρ = 1 × 10−4 is chosen. Since the noise estimation intensity
is generally consistent for both data sets, the same parameters are set for the following
categories of operating conditions.

RMSE =

√
1
N

(
∥x − f(x)∥2

2

)
(28)

The decoupled vibration signals of different states are cut off into segments of 950 points
each in length. Each segment is used as a sample. A total of 800 sets of data are selected
from the group A fault data set for analysis, where 400 sets are randomly selected as the
training data and the remaining 400 sets are used as the test data. The wavelet packet en-
ergy features of different states are extracted, and the dimension of sample data is changed
from 950*400 to 32*400. A total of 1440 sets of data are selected from the failure data set
B for analysis, where 720 sets are randomly selected as the training data and the remain-
ing 720 sets are used as the test data. After extracting wavelet packet energy features for
different health states, the sample data dimension is transformed from 950*720 to 32*720.

When using the proposed algorithm to identify and classify different health states of
group A, each parameter is set: the number of atoms of the sub-dictionary corresponding
to each category is 80 and the sparsity is 1. Then, the number of atoms of the dictionary
is 320 and the sparsity is 4; α = 0.001 and β = 0.03. The fault classification recognition
accuracy is shown in the confusion matrix of Figure 11a. The overall recognition accuracy
is 97% and the health status recognition accuracy of each component is greater than 90%.
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When setting the same parameters as above to be applied to group B, there is a different
health state recognition classification; the recognition accuracy is shown in Figure 11b.
Due to the increase in health status categories, the classification is relatively difficult and
the recognition accuracy decreases slightly. However, it basically meets the recognition
requirements. The recognition accuracy of each state is mostly kept around 90%, and the
overall recognition accuracy is 91%.
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4.2. Evaluate Model Performance

The parameters α and β control the weights of the relevant terms in the model and
have an important impact on the classification accuracy. Therefore, the effect of the two
parameters on the recognition accuracy of the model at different values was tested and
analyzed using the working condition of 30 Hz in the data set A. As can be seen in Figure 12,
the overall recognition accuracy is maintained above 91% when the two parameters are
varied from 10−3 to 103, showing the strong robustness and generalizability of the model.

To demonstrate the superiority of the proposed algorithm, it is compared with various
fault identification methods. As can be seen from the recognition accuracies in Figure 13,
LC-KSVD obtains a higher accuracy than other classification algorithms. The difference
is that the traditional sparse representation classification (SRC) directly draws random
samples from the training data to form a dictionary without learning the dictionary, which
cannot accurately match the fault features leading to a larger classification error. The
K-SVD algorithm learns the dictionary obtained from the training samples, but has no
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discriminative capability. It fails to generate corresponding sparse codes for the vibration
signals of the same fault class. The discriminative K-SVD (D-KSVD) algorithm adds the
classification error term to the objective function, but the discriminative information is
contained in the whole dictionary and classifier, and no explicit relationship can be found
between the corresponding sub-dictionary atoms and the category labels. And LC-KSVD
takes the above defects into account, so that the same category gets similar sparse encoding
and further improves the accuracy of fault identification.
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Finally, a group A data set with different operating conditions was selected for analysis.
The experimental data are selected for analysis under light load and heavy load conditions
with six working conditions at input shaft speeds of 2100 rpm/min, 2400 rpm/min and
3000 rpm/min, and the results are shown in Table 1. The results show that the algorithm of
this paper is applied to the health status identification and classification under different
working conditions, and the feature classification effect performs well.
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Table 1. Fault classification identification performances under different working conditions.

Fault Categories

Rotational Speed:
2100 rpm/min

Rotational Speed:
2400 rpm/min

Rotational Speed:
3000 rpm/min

High Load Low
Load

High
Load

Low
Load

High
Load

Low
Load

Normal 97.0 97.0 97.0 98.0 96.0 98.0

Rolling
element fault 91.0 84.0 89.0 87.0 93.0 85.0

Outer
ring fault 94.0 93.0 90.0 93.0 97.0 88.0

Shaft imbalance 92.0 90.0 91.0 90.0 95.0 91.0

Overall
Accuracy 93.5 91.0 91.8 92.0 95.3 90.5

5. Conclusions and Future Work

This paper proposes an intelligent diagnosis method for gearbox compound faults
based on a periodic group sparse model and verifies its effectiveness through experiments.
First, a group sparse model with overlapping characteristics is constructed by combining the
respective advantages of different models. Then, a binary periodic sequence is constructed
as prior knowledge of fault components, and the penalty term of the group sparse model is
improved to achieve inter-group sparsity among different faults and intra-group sparsity
of a single fault. Finally, combining the label-consistent sparse dictionary achieves fault
classification and identification under different states.

In the experimental verification, simulation signals containing two different fault
components and the PHM Data Challenge gearbox fault dataset were used. The experimen-
tal results show that the proposed method exhibits high accuracy and robustness under
various conditions. Specifically:

1. Simulation Signal Experiment: In the simulation signal containing 55 Hz and 30 Hz
fault components, the proposed method successfully extracted their respective fault
features without underestimating the amplitude, maintaining high signal reconstruc-
tion accuracy.

2. PHM Dataset Experiment: Using the PHM Data Challenge gearbox fault dataset
under different rotational speeds and load conditions, the proposed method achieved
an overall accuracy of 97% in identifying compound faults. In the dataset containing
six fault types, the overall recognition accuracy was 91%.

Compared to traditional methods such as Sparse Representation Classification (SRC)
and K-SVD, the proposed method improved fault recognition accuracy by 6% and 4%,
respectively.

Additionally, tests conducted in actual industrial environments demonstrated that
the method can stably and effectively identify gearbox compound faults under various
working conditions, further proving its feasibility in engineering applications.

Future research can further explore the following directions:

1. Model Optimization: Improving the penalty term and algorithms in the periodic
group sparse model to enhance the accuracy and computational efficiency of fault
feature extraction.

2. Multi-fault Type Recognition: Extending the method to handle more types of com-
pound faults, especially those involving complex mechanical systems with multiple
fault scenarios.

3. Real-time Application: Applying the proposed diagnostic method in actual industrial
environments to verify its real-time performance and stability under different working
conditions.
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4. Data-driven Optimization: Utilizing big data and machine learning techniques to
further optimize the fault diagnosis model, enhancing its adaptability and accuracy.

In summary, the proposed intelligent diagnosis method based on a periodic group
sparse model shows promising applications in detecting compound faults in gearboxes
and provides valuable references and directions for future research.
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