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Abstract: Performing joint genomic predictions for multiple breeds (MBGP) to expand the reference
size is a promising strategy for improving the prediction for limited population sizes or phenotypic
records for a single breed. This study proposes an MBGP model—mbBayesAB, which treats the same
traits of different breeds as potentially genetically related but different, and divides chromosomes
into independent blocks to fit heterogeneous genetic (co)variances. Best practices of random effect
(co)variance matrix priors in mbBayesAB were analyzed, and the prediction accuracies of mbBayesAB
were compared with within-breed (WBGP) and other commonly used MBGP models. The results
showed that assigning an inverse Wishart prior to the random effect and obtaining information
on the scale of the inverse Wishart prior from the phenotype enabled mbBayesAB to achieve the
highest accuracy. When combining two cattle breeds (Limousin and Angus) in reference, mbBayesAB
achieved higher accuracy than the WBGP model for two weight traits. For the marbling score trait in
pigs, MBGP of the Yorkshire and Landrace breeds led to a 6.27% increase in accuracy for Yorkshire
validation using mbBayesAB compared to that using the WBGP model. Therefore, considering
heterogeneous genetic (co)variance in MBGP is advantageous. However, determining appropriate
priors for (co)variance and hyperparameters is crucial for MBGP.

Keywords: genomic prediction; multi-breed; Bayes; heterogeneous genetic (co)variances; matrix
prior; hierarchical inverse Wishart prior

1. Introduction

Genome prediction (GP) estimates genome breeding values (GEBVs) using genetic
markers (usually single-nucleotide polymorphisms [SNPs]) covering the whole genome [1]
and is widely used in animal and plant breeding practices [2]. GP can achieve higher
genetic gains than traditional pedigree-based methods for estimating breeding values [3,4].
The accuracy of GP is influenced by factors such as the size and composition of the reference
population [5], the relationship between the reference and predicted populations [6], and
the genetic structure of the traits [7]. Increasing the number of individuals in the reference
group is the most direct and effective method for improving GP accuracy [8]. However,
obtaining an ideal GP reference population is challenging due to the high cost of genotyping,
the difficulty of phenotyping, and the limited population sizes of some local breeds [9,10].

One way to overcome these limitations is to perform multi-breed genomic prediction
(MBGP), in which information from multiple breeds is combined to form a large reference
population to improve prediction accuracy [11–14]. The most direct approach to MBGP is
blending individuals from different populations and estimating GEBVs using univariate
models, assuming a genetic correlation of one between all breeds. This method has been
proven to be effective when merging closely related populations, such as those originating
from the same breed [15–17]. However, when merging distantly related breeds or pop-
ulations, this rough processing method does not improve prediction accuracy and may
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yield lower accuracy than within-breed GP (WBGP) [18–20]. Consequently, researchers
have attempted to apply multi-trait models for joint prediction, treating same traits from
different populations as potentially correlated traits [21–23]. By considering their genetic
correlations, the multi-trait model offer flexibility in managing populations with diverse
genetic backgrounds. This allows for the weighting of information from different breeds
according to the estimated genetic correlations to derive the GEBVs of validation individ-
uals. If there is a non-zero genetic correlation between breeds due to common breeding
objectives for target traits, information regarding individuals of different breeds within
the reference population can be borrowed [24]. Similar to fitting heterogeneous genetic
(co)variance in multi-trait models [25,26], allowing for different genetic correlation sizes
between breeds in different genomic regions is more reasonable than assuming uniform
genetic correlations across the whole genome. This key point is not considered in MBGP,
and overestimating or underestimating of local genetic correlations among breeds decreases
the prediction accuracy.

The multi-trait Bayesian model provides a flexible solution to the aforementioned
problems, allowing the fitting of heterogeneous genetic (co)variance for different genome
blocks [27]. Additionally, estimating reliable genetic correlation values for different blocks
of the genome increases the accuracy of information sharing among breeds [23]. Owing
to its conjugate properties and computational simplicity, the inverse Wishart (IW) distri-
bution is commonly used as a prior for the covariance matrix in multivariate Bayesian
models [28]. Researchers usually assume that the degrees of freedom (df) and scale matrix
(S) parameters in the IW prior are known, and these are referred to as hyperparameters. In
practical analyses, the determination of these hyperparameters significantly affects model
performance [29]. The df and S are normally set to p + 1 and the identity p × p matrix Ip,
respectively, where p represents the number of traits in multi-trait models [30–32]. However,
this default parameter setting may affect the accuracy of the inference for posterior distribu-
tions [33,34]. Additionally, assuming an IW prior leads to a strong relationship between the
variance and correlation, potentially introducing bias into the inference [32]. One solution
is to specify a hierarchical inverse Wishart (HIW) prior to the (co)variance matrix of the
random effects. That is, assuming that S is unknown but follows a specific distribution, and
then obtaining estimates of S from the posterior distribution [29]. The estimation error of
the genetic correlation is superimposed with an increase in the number of genome blocks,
which significantly decreases the prediction accuracy. Therefore, carefully determining the
priors in the model that fit a specific SNP effect (co)variance matrix for different genome
blocks is critical.

This study explores whether a multivariate genomic prediction model can improve
MBGP. This model treats the same trait from different breeds as different traits with potential
genetic correlations while allowing for the variation of genetic correlations between breeds
in different genomic blocks. We used two publicly available datasets, including cattle
populations comprising Limousin and Angus breeds, and pig populations comprising
Yorkshire and Landrace breeds for methods validation. Traits analyzed included marbling
score, fat area ratio in the image, yearling weight, and weaning weight. The impact of
hyperparameter choices on the IW prior and the model’s performance using an alternative
HIW prior to the SNP effect (co)variance matrix was investigated based on real pigs and
beef cattle data. This study will confirm the importance of considering heterogeneous
genetic (co)variance in MBGP and provide novel insights and perspectives for exploring
joint prediction models.

2. Materials and Methods
2.1. Dataset

In many studies, the accuracy of genomic prediction has been reported to vary with
population and trait. Therefore, to validate whether the method proposed in this study has
advantages in joint prediction, we analyzed real data from two different species (pigs and
beef cattle).
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2.1.1. Real Pig Data

The real pig dataset used in this study was obtained from Xie et al. [35]. This study used
two purebred populations of 228 Landrace (LL, 141 sows and 87 barrows) and 641 Yorkshire
(YY, 407 sows and 234 barrows) pigs. All pigs were raised in Muyuan Food Co., Ltd. (Henan,
China), which adopts a large-scale intensive raising model. Two traits, marbling score (MS)
and fat area ratio in the image (PFAI), were analyzed. PFAI, the digital intramuscular fat con-
tent, was calculated using the formula PFAI = (Fat area pixel − Target area pixel)× 100%,
where the fat area pixel and target area pixel were obtained from digital images of the
longissimus dorsi muscle (LDM) slice captured by a digital camera. The MS were provided
by members of a professional meat quality scoring team based on LDM slice images. The
scoring ranged from 1 (minimum marbling) to 10 (maximum marbling), and the final MS
was determined as the average score of those reported by the three team members. All
individuals in the dataset had phenotypes and genotypes. Genotyping was performed
using the CC1 PorcineSNP50 BeadChip (51,368 SNPs) according to the manufacturer’s
protocol. Quality control was performed to exclude SNPs with a call rate of <95% and
minor allele frequency of <1%. Following quality control, 37,304 SNPs were retained for
subsequent analyses.

2.1.2. Real Beef Cattle Data

The real beef cattle dataset used in this study was obtained from Lee et al. [36]. Two
purebred populations, 1907 Limousin (LIM) and 800 Angus (AAN), were used in the
analyses. The common traits of yearling weight (YWT) and weening weight (WWT) in beef
cattle breeding were analyzed. The phenotypes and genotypes for all individuals were
available. All animals were genotyped with the Illumina BovineSNP50 BeadChip, and
54,609 SNP markers were retrieved. Quality control was carried out to exclude SNPs with
a call rate of <95% and minor allele frequency of <1%. After quality control, 37,150 SNPs
were retained for subsequent analyses.

2.2. Multi-Breed Joint Prediction Model mbBayesAB

To fit the heterogeneity (co)variance of different genomic regions, the following model
is proposed:

yl = Xlb + ∑s
i=1 ∑mi

j=1 mijlaijl + el

where yl is the response variable vector of breed l; b is the fixed effect vector assigned
with a uniform prior. In MBGP models, the intercept and breed were included as fixed
effects. Additionally, an extra sex fixed effect was added to the analysis of pig data. In the
WBGP model, except for the absence of breed fixed effects, the settings are the same as
those in the corresponding MBGP models. aijl is the allelic substitution effect of breed l at
SNP j in block i; and mi is the number of SNPs in block i. Unless specified otherwise, each
chromosome is divided into blocks based on the number (in 100) of adjacent SNPs. aij is
the SNP effect vector following a multivariate normal distribution. The prior of the SNP
in block i is N(0, Gi); Gi is the (co)variance matrix of all the SNP effects in block i, where
its prior is the IW distribution IW(d f , Bi); Bi is a hyperparameter that must be provided,
which is often considered an estimate of the value of Bi; el is the residual effect vector of
breed l and e ∼ N(0, I

⊗
R0), where R0 ∼ IW(d f , B0) is the (co)variance matrix of the

residual effect. According to Bayesian theory, the posterior distribution of these effects and
their (co)variance matrix can be derived as

Post(b|ELSE ) ∝ N
[(

X′R−1X
)−1

X′R−1y*,
(

X′R−1X
)−1

]
Post

(
aij
∣∣ELSE

)
∝ N

[(
M*′

i R−1M*
i + B−1

i

)−1
M*′

i R−1y†,
(

M*′
i R−1M*

i + B−1
i

)−1
]
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Post(Gi|ELSE) ∝ IW

[
v + mi,

(
n

∑
i=1

aija′ij + Bi

)]

Post(R0|ELSE) ∝ IW

[
v + n,

(
n

∑
k=1

eke′k + B0

)]
R = Ip

⊗
R

0
, y∗ = y − ∑s

i=1 M∗
i ai, M∗

i = diag(Mi, · · · , Mi)p, y† = y − Xb − ∑s
t ̸=i M∗

t at

where IW means that the variable follows the inverse Wishart distribution; Mi is the allele
content matrix encoded as 0,1,2; M∗

i is a diagonal matrix in which all diagonal elements
equal Mi; y∗ and y† are vectors of corrected phenotypic values in different scenarios; ek
is the residual effect vector of individual k; n is the total number of individuals in the
population being analyzed; and p is the number of breeds.

Determination the hyperparameter df and scale matrix B in the aforementioned model
is essential for a posteriori inference. First, df was set as p + 1 [29–31], and then the influence
of the scale matrix on the model’s performance was studied using different calculation
methods based on B. The scale matrix was assumed to be derived from the identity matrix
and set to Ip and df × Ip [37]. Because of the small additive genetic variance explained
by each SNP in GP, a scale matrix of 0.01 × Ip was used. Additionally, the scale matrix

from the phenotypes were obtained, where Bi =
∼
h

2
P/
[
∑m

j=1 2pj
(
1 − pj

)]
;
∼
h

2
is the prior of

heritability (we used 0.5); P is the diagonal matrix with diagonal elements as phenotypic
variance; pj is the allele frequency of SNP j; and m is the total number of SNPs in the
analyses. For the residual effects, when the scale matrix information was derived from the
identity matrix and its scaled form, the setting value was consistent with that of the SNP

effect. When attempting to obtain the scale matrix from the phenotype, B0 = (1 −
∼
h

2
)P

was set in our study. The choice of df determines the variance uncertainty in the IW
prior [38]. In this study, df was as p, p + 1, p + 2, p + 3, and p + 4. Additionally, because
each genome block contains 100 SNPs, the df in the posterior distribution of the SNP effect
(co)variance matrix was set to df + 100. Considering that a smaller df may have less impact
on posterior inference, the impact of a relatively large df (p + 98) on posterior inference
was explored.

Huang and Wand [39] proposed that, compared with the IW prior, specifying a HIW
prior for the (co)variance matrix provides high flexibility in selecting the scaling matrix
while retaining the conjugate property. Therefore, in this study, two types of HIW priors
were used to replace the IW prior, and their application effect in mbBayesAB was explored.
First, a Wishart prior to the scale matrix was assigned in the IW prior (HIW-WI) [40]:

Gi ∼ IW(d f + p − 1, 2d f Di), Di = diag
(
1/ai1, . . . , 1/aip

)
aik

ind.∼ IG
(

1/2, 1/A2
)

, k = 1, . . . , p; i = 1, . . . , s

R0 ∼ IW(d f + p − 1, 2d f DR), DR = diag
(
1/aR1, . . . , 1/aRp

)
aRk

ind.∼ IG
(

1/2, 1/A2
)

, k = 1, . . . , p

where IG indicates that the variable follows an inverse gamma distribution;
diag

(
1/ai1, . . . , 1/aip

)
is a diagonal matrix with diagonal 1/ai1, . . . , 1/aip; A is a sufficiently

large integer (we used 105); and the standard deviation of the SNP effect follows a half-t
distribution. Additionally, because the scale matrix in IW prior is a diagonal matrix, the

marginal distribution of the correlation coefficient was deduced to be p(ρ) ∝ (1 − ρ2)
d f
2 −1 ;

when d f = 2, the marginal distribution of the correlation coefficient is uniform [39], and
the degree of freedom was set to d f = p = 2 when specifying a HIW-IG prior for this study.
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Second, an inverse gamma prior was assigned to the scale matrix in the IW prior
(HIW-IG) [40]:

Gi ∼ IW(d f , Ψi) and Ψi ∼ WI(δ, Pi)
R0 ∼ IW(d f , Ψ0) and Ψ0 ∼ WI(δ, P0)

where WI means that the variable follows the Wishart distribution and δ and Pi are the
known hyperparameters assumed in the model. Mulder and Pericchi (2018) [40] demon-
strated that Gi or R0 follows the matrix-F distribution F(δ, ν, Pi), and the marginal distribu-
tion obtained under this prior setting has an ideal pole at zero, which is a key characteristic
of the horseshoe shape. Appendix A presents the posterior derivation process for the two
HIW priors.

Karaman et al. [41] also fitted the heterogeneous genetic (co)variance in a multi-
trait Bayesian model and found differences in prediction accuracy when dividing blocks
based on different numbers of SNPs. To study the impact of the number of SNPs on the
prediction accuracy of mbBayesAB when defining blocks, different SNP number gradients
were set: a group of 1, 25, 50, 100, or 200 adjacent SNPs or the whole genome. For the
prior assumption of the (co)variance matrix of the random effects in this model, the best
parameters determined in our study were used.

All Bayesian models used custom-developed software (https://github.com/CAU-
TeamLiuJF/mbBayesAB/bin/mbBayesAB, accessed on 16 April 2024) to obtain the GEBVs.
Analyses of the posterior samples indicated that increasing the number of iterations beyond
30,000 led to highly consistent outcomes for different Bayesian models. Therefore, the
Gibbs sampler was run for 30,000 cycles, of which the first 20,000 were treated as burned-in,
with a thinning interval of 10 cycles.

2.3. Other Models for Comparison with mbBayesAB

Three genomic best linear unbiased prediction (GBLUP) models were fitted to deter-
mine whether mbBayesAB is superior to the WBGP and the widely used MBGP models. A
single-trait GBLUP model w-GBLUP, whose reference comprises one purebred population.
To understand the genetic architecture of the analyzed traits, the w-GBLUP model was
also employed to estimate the heritability of the analyzed traits across different breeds. In
contrast with w-GBLUP, b-GBLUP uses two purebred populations in the reference and
includes an extra breed fixed effect. A multi-trait GBLUP model u-GBLUP views traits
belonging to the same breed as distinct but potentially connected. For a comprehensive
discussion of the models, see Appendix A.

2.4. Cross-Validation (CV) and Predictive Accuracy

This study used a five-fold CV method to obtain the prediction accuracy of the model.
The complete dataset comprised individuals with genotypes and phenotypes, who were
then randomly divided into five subgroups of equal sizes. One subset was designated
as the validation set and the phenotypic value of the individual was set as missing. The
other four subgroups constituted the training set for predicting the GEBVs of the validation
individuals. This process was repeated 10 times to reduce random errors. Based on the
complete dataset, a corrected phenotypic value (yc) was calculated using the GBLUP model.
Predictive accuracy was evaluated by calculating the correlation coefficient between GEBVs
and yc of individuals in the validation. In the WBGP model, the individuals in the reference
and validation populations belonged to the same breeds. The validation subset used was
consistent with the WBGP model for all models, indicating that subgroup division was
performed only once.

2.5. Genomic Structure Analysis

The difference in genetic background among breeds is a key factor affecting joint
prediction. Therefore, the genetic structure of the population in the analysis dataset was
studied based on genotype information. The PLINK software (v1.9) [42] was used to
obtain the principal component and linkage disequilibrium (LD) measure r2 based on the

https://github.com/CAU-TeamLiuJF/mbBayesAB/bin/mbBayesAB
https://github.com/CAU-TeamLiuJF/mbBayesAB/bin/mbBayesAB
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genotype data, followed by generation of the corresponding plots. Additionally, the LD
consistency between breeds was calculated [43].

3. Results
3.1. Population Genomic Structure and Heritability of Traits

According to the individual dispersion of the first and second principal components
(Figure A1), the genetic differences between breeds in the two datasets were significant.
In the LD r2 and LD consistency plots (Figure A2), certain differences in the LD patterns
were observed between the two datasets. The LD of the two beef cattle breeds decreased
faster than that of the pigs at the same distance, and the consistency of the LD among
the cattle breeds was lower than that of the pigs. These results indicated that the genetic
relationship between LIM and AAN was more distant than that between the two pig breeds.
These results showed that the dataset used in this study represents various situations
that may exist in MBGP and is suitable for testing the performance of different joint
prediction models.

The residual variance estimates for YY and LL were close, and the difference in heri-
tability estimates mainly arose from additive genetic variance (Table 1). Notably, although
LL showed higher heritability estimates than YY, the standard error for its heritability was
noticeably larger than that of YY. The heritability estimates for the cattle population for
YWT and WWT were greater than 0.5. The heritability estimates for the YWT trait differed
substantially between LIM and AAN, whereas the estimates for the WWT were similar
between the two breeds. Additionally, the standard error of the heritability for both traits
was small for LIM and AAN. However, the estimates of additive genetic and residual
variance for the WWT trait in LIM and AAN differed by an order of magnitude.

Table 1. Estimates of heritability for analyzed traits across different breeds.

Species Traits 1 Breed 2 Records Va 3 Ve 4 h2 (SE) 5

Pig PFAI YY 641 0.31 1.30 0.19(0.07)
LL 228 0.67 1.35 0.33(0.16)

MS YY 641 0.05 0.18 0.22(0.07)
LL 228 0.09 0.20 0.31(0.16)

Beef cattle YWT LIM 1528 1601.40 1497.88 0.52(0.05)
AAN 796 1116.65 340.43 0.77(0.04)

WWT LIM 1897 3133.74 994.59 0.76(0.03)
AAN 797 347.75 94.44 0.79(0.04)

1 WWT, weening weight; YWT, yearling weight; MS, marbling score; PFAI, fat area ratio in image; 2 LIM, Limousin;
AAN, Angus; YY, Large White; LL, Landrace; 3 additive genetic variances; 4 residual variances; 5 heritability and
estimated standard error.

3.2. Degrees of Freedom and Scale Matrix Hyperparameters in IW Prior

The impact of different scale matrix B settings on the prediction accuracy of mb-
BayesAB was analyzed. The results showed that the estimated value of the scale matrix
from the phenotypic information of the analyzed traits achieved the highest prediction
accuracy (Figure 1). When an identity matrix and its scaled form, which are generally
considered to carry no additional information such as guess values for B, the prediction
accuracy was considerably affected. Notably, the prediction accuracy showed an upward
trend in most cases when a lower marker effect variance prior was provided. However,
even when scaled down to the same order of magnitude as B estimated from the phenotypic
data, its prediction accuracy was not as good as that of the latter. The number of pig breeds
was smaller than that of beef cattle, which may be one of the reasons because of which
the posterior inference of the former was more sensitive than the latter to the choice of the
scale matrix.
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information from the real data. The results of analysis of the real data confirmed that ex-
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Figure 1. Prediction accuracy of the model using different scale matrices in the IW prior to random
effects in mbBayesAB. The dataset comprised beef cattle data (A) from two breeds, Limousin (LIM)
and Angus (AAN), and pig data (B) from two breeds, Large White (YY) and Landrace (LL). The
analyzed traits included marbling score (MS), fat area ratio in image (PFAI), yearling weight (YWT),
and weening weight (WWT). Prediction accuracy was derived from five-fold CV of 10 replicates. The
degree of freedom parameter df in the IW prior was set to p + 1, where p is the number of breeds.
The legend labels df *I, I, and 0.01*I represent scaling of the identity matrix I, where P represents the
estimate of the scaling matrix parameters using phenotypic variance information.

As the degrees of freedom in the IW prior distribution increase, the amount of in-
formation provided by the prior increases [28]. However, when the freedom is too large,
posterior inference may be dominated by empirical information and unable to obtain effec-
tive information from the real data. The results of analysis of the real data confirmed that
extreme degree-of-freedom parameters (too large or too small) adversely affected prediction
accuracy (Figure 2). In the joint prediction of the two beef cattle breeds, using df = p + 1
achieved a higher prediction accuracy than that using other settings, and this strategy has
been observed in other studies [29–31]. However, the analysis of the pig dataset showed
that df = p + 3 performed optimally, consistent with the findings of Rossi et al. [44].
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Limousin (LIM) and Angus (AAN), and pig data (B) from two breeds, Large White (YY) and Landrace
(LL). The analyzed traits included marbling score (MS), fat area ratio in the image (PFAI), yearling
weight (YWT), and weening weight (WWT). Prediction accuracy was derived from a five-fold CV of
10 replicates. The scale parameter in IW prior was estimated from the phenotype variance (details in
the Section 2). The “p” in the legend represents the number of breeds.

3.3. Hierarchical Inverse Wishart Prior

To study whether alternative priors can avoid the adverse effects of IW prior char-
acteristics on posterior inference in multi-breed joint assessment models, we specified
hierarchical IW priors for the (co)variance matrix of the labeling effect. The results showed
that specifying a Wishart distribution or an inverse gamma distribution for the IW prior-
scale matrix does not improve prediction accuracy (Table 2). For the joint prediction results
for beef cattle, assigning an HIW prior to the marker effect (co)variance matrix resulted in
lower average genetic correlation estimates than that obtained after assigning an IW prior.
However, the average genetic correlation estimates between breeds were almost zero for
the analysis outputs of different models and datasets.

Table 2. Prediction accuracy when specifying different priors for the (co)variance matrix of random
effects in the mbBayesAB model.

Species Breed 1 Traits 2 Prior 3 Genetic Correlation 4 Accuracy 5

Beef cattle AAN WWT IW 0.065 ± 0.005 0.704 ± 0.005
HIW-WI 0.053 ± 0.006 0.699 ± 0.005
HIW-IG 0.050 ± 0.005 0.698 ± 0.005

YWT IW 0.050 ± 0.005 0.700 ± 0.005
HIW-WI 0.039 ± 0.006 0.698 ± 0.005
HIW-IG 0.051 ± 0.005 0.690 ± 0.005
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Table 2. Cont.

Species Breed 1 Traits 2 Prior 3 Genetic Correlation 4 Accuracy 5

LIM WWT IW 0.065 ± 0.005 0.626 ± 0.005
HIW-WI 0.053 ± 0.006 0.624 ± 0.005
HIW-IG 0.050 ± 0.005 0.623 ± 0.004

YWT IW 0.050 ± 0.005 0.454 ± 0.006
HIW-WI 0.039 ± 0.006 0.452 ± 0.006
HIW-IG 0.051 ± 0.005 0.438 ± 0.006

Pig LL MS IW −0.071 ± 0.007 0.175 ± 0.017
HIW-WI −0.035 ± 0.008 0.186 ± 0.018
HIW-IG −0.038 ± 0.007 0.179 ± 0.019

PFAI IW −0.081 ± 0.007 0.172 ± 0.018
HIW-WI −0.057 ± 0.007 0.160 ± 0.019
HIW-IG −0.069 ± 0.006 0.163 ± 0.018

YY MS IW −0.071 ± 0.007 0.171 ± 0.012
HIW-WI −0.035 ± 0.008 0.172 ± 0.012
HIW-IG −0.038 ± 0.007 0.169 ± 0.012

PFAI IW −0.081 ± 0.007 0.156 ± 0.011
HIW-WI −0.057 ± 0.007 0.155 ± 0.011
HIW-IG −0.069 ± 0.006 0.152 ± 0.011

1 LIM, Limousin; AAN, Angus; YY, Large White; LL, Landrace; 2 WWT, weening weight; YWT, yearling weight;
MS, marbling score; PFAI, fat area ratio in image; 3 priors for the (co)variance matrix of random effect. IW
represents the (co)variance matrix assigned to an IW prior assuming that the scale matrix is known, IW-WI
represents an IW prior for which the scale matrix follows the Wishart distribution, IW-IG represents an IW
prior for which the scale matrix follows the inverse gamma distribution (details in the Section 2); 4 an estimate
of the genetic correlation (standard errors) between breeds across the entire genomic region, calculated from
the correlation of marker effects between two breeds in the pig or beef cattle population; 5 prediction accuracy
(standard errors) was derived from five-fold CV of 10 replicates.

3.4. Number of SNPs in Genome Block Partitioning

Block size can affect prediction accuracy of single-trait or multi-trait Bayesian models
fitting heterogeneous genetic (co)variances [41,45]. In the present study, the prediction ac-
curacy of mbBayesAB for different block sizes (one SNP; a group of 25, 50, 100, 200 adjacent
SNPs or the whole genome) was compared. The degree of freedom df was set to p + 3, and
the scale parameter in the IW prior was estimated from the phenotype variance. Although
none of the block sizes maintained an advantage under all scenarios, block splitting for 50
or 100 adjacent SNPs seemed a good choice (Figure 3). Gianola et al. [46] suggested estab-
lishing marker clusters to alleviate the impact of marker effect variance prior to Bayesian
inference. However, for analysis of the LL breed, higher prediction accuracy was obtained
without marker clustering (i.e., only one SNP in each block) compared to that obtained
by grouping adjacent markers into sets of 25, 200, or including all markers in the analysis
(paired t-test, p < 0.05). Not performing marker grouping resulted in higher prediction
accuracy than grouping adjacent SNPs into sets of 50 and 100; however, the difference was
not statistically significant (p > 0.05).
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Figure 3. Prediction accuracy of mbBayesAB model when partitioning the genome using different
numbers of adjacent SNPs. The dataset comprised beef cattle data (A) from two breeds, Limousin
(LIM) and Angus (AAN), and pig data (B) from two breeds, Large White (YY) and Landrace (LL). The
analyzed traits included marbling score (MS), fat area ratio in image (PFAI), yearling weight (YWT),
and weening weight (WWT). Prediction accuracy was derived from five-fold CV of 10 replicates.
The degree of freedom was set to p + 3 and the scale parameter in IW prior was estimated based on
phenotype variance (details in the Section 2).

3.5. Prediction Accuracy of mbBayesAB and Commonly Used Joint Prediction Models

In this study, the optimal parameter settings for the mbBayesAB model were deter-
mined. Subsequently, the prediction accuracy of mbBayesAB with that of the WBGP model
and the two commonly used MBGP models was compared. The random effects (co)variance
matrix in mbBayesAB was set a prior to the IW distribution, and the scale matrix was
calculated from the phenotypic variance. In the data analysis of beef cattle and pigs, the
df hyperparameters were set to p + 1 and p + 3, respectively. The results showed that
the aforementioned parameters achieved high prediction accuracy in the corresponding
dataset analysis. In most cases, the mbBayesAB model achieved higher prediction accuracy
for both within-breed and multi-breed predictions (Figure 4). Moreover, simply blending
data from the two breeds for prediction in a single-trait model yielded a lower prediction
accuracy than within-breed prediction. The multi-trait GBLUP model u-GBLUP achieved
higher prediction accuracy than its corresponding single-trait form as the model b-GBLUP,
indicating the advantages of multi-trait models in joint prediction. When heterogeneous
genetic (co)variances were fitted in the MBGP, the model’s prediction accuracy improved,
achieving the highest prediction accuracy in most cases.
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Figure 4. Prediction accuracies of different models in real data analysis. The dataset comprised beef
cattle data (A) from two breeds, Limousin (LIM) and Angus (AAN), and pig data (B) from two breeds,
Large White (YY) and Landrace (LL). The analyzed traits included marbling score (MS), fat area ratio
in the image (PFAI), yearling weight (YWT), and weening weight (WWT). The reference population
in the w-GBLUP only contains individuals of the same breed as the validation, and the references
for the other three models contain individuals of two breeds. For u-GBLUP and mbBayesAB, the
same traits of different breeds were regarded as genetically related different traits, and in b-GBLUP,
two breeds were blended, and then single-trait GBLUP was used for prediction. Predictive accuracy
was derived from five-fold CV of 10 replicates. The degree of freedom was set to p + 3 and the scale
parameter in IW prior was estimated based on phenotype variance (details in the Section 2).

4. Discussion

Determining of the IW prior hyperparameter is crucial for the posterior inference of
the parameters [47]. Zhang [28] demonstrated that the posterior mean is the weighted
average of the sample covariance matrix and the prior mean. In the present study, when an
identity matrix I for the scale matrix of the IW prior was specified, the posterior inference
was adversely affected, and this effect was more evident in pigs with smaller population
sizes (Figure 1). The results demonstrate that obtaining a data-dominated parameter value
in the absence of sufficient data is difficult if a prior value that is far from the real value
for the model parameters is provided. The assignment of degrees of freedom to the IW
prior also significantly affected the predictive accuracy of the MBGP model (Figure 2). The
larger the degree of freedom parameter df, the higher the certainty of the information in
the scale matrix B [28]. However, the results showed that using the value of the degree-
of-freedom parameter (df = 2) with the minimum amount of information did not provide
any advantage in most cases. The p + 1 degree of freedom used in this study performed
optimally for beef cattle data analysis, whereas using p + 3 led to a relatively high predictive
accuracy in pigs with smaller population sizes compared to beef cattle. Therefore, when
fewer data are available, a reasonable choice is to use df = p + 3. Zhang [28] suggested that
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the degrees of freedom of the IW prior can be determined from the expression when the
variance estimation of the (co)variance matrix is available. However, when the dataset is
used twice in the analysis, the certainty of the estimated parameters may be exaggerated.
Kass and Steffey [48] showed that specifying an empirical inference value for the prior
parameters resulted in a very small posterior variance of the random effects, suggesting
that it cannot approach the correct posterior variance through Bayesian learning.

Although the IW prior is widely used in multivariate Bayesian models, it depends
on the estimated standard deviation and correlation coefficient. For example, a standard
deviation close to zero often appears when the genetic correlation is close to zero [32,49]. In
quantitative genetics, quantitative traits are usually controlled by many genes with small
effects; therefore, the genetic variance explained by a single genetic marker is small. Accord-
ing to the results of the real data, there was no significant difference in prediction accuracy
between specifying the HIW-WI and HIW-IG priors for the marker effect (co)variance
matrix and the commonly used IW priors (p < 0.05). However, a serious issue of the IW
prior is that precision of all elements in the (co)variance matrix is controlled by a single
degree freedom parameter, whereas the HIW prior can help address this defect [50,51].
In our study, the same prior hyperparameters were provided for different breeds, which
may be one reason why the HIW prior did not show any advantages in posterior inference.
Next, we studied the effect of specifying different hyperparameters for each breed’s marker
effect variance on the model’s performance. Additionally, the study predicted that the
influence of certain unfavorable characteristics of the IW prior on posterior inference would
become more obvious with an increase in the number of elements in the marker effect
(co)variance matrix. Therefore, when the number of breeds was increased, the effect of
specifying different priors for the (co)variance matrix on the prediction accuracy required
further study.

Gianola et al. [46] indicated that forming marker clusters such that their effects have
the same variance can reduce the impact of prior on Bayesian inference. Due to their
ease of use, it is common practice in multi-trait Bayesian models to group a fixed number
of adjacent SNPs together to form marker clusters [41,52]. In this study, the effect of
different block sizes (one SNP, a group of 25, 50, 100, or 200 adjacent SNPs, or the whole
genome) on the prediction accuracy of the mbBayesAB model was investigated. None of
the block sizes exhibited the highest prediction accuracy in all cases. However, a relatively
moderate size (50 or 100 SNPs) may be a robust choice, which is consistent with to the
block size (100 SNPs) recommended by Gebreyesus et al. [52]. The optimal block size
differed among different datasets, which may be a parameter based on a specific genetic
background. Genetic information is usually transmitted form parent to offspring in the
form of a haplotype; therefore, chromosomes can also be divided into blocks according to
their LD information [53].

If the data of multiple breeds were to be directly mixed, and the genomic prediction of
the target breed simply based on the fixed effect of the breed, the predictive accuracy may
be lower than when using the information of a single breed. This result is consistent with
the conclusions of similar studies [54,55], and may be due to the large differences in genetic
background among the breeds; however, this simple blending strategy also resulted in noise
in the GEBV estimation of both breeds. The multi-trait model provides a new approach
for the joint prediction of multiple populations [56–58] because it can flexibly manage
different genetic relationships. The joint prediction model used in this study allows for
different genetic correlation sizes among breeds in different genome blocks, with the result
that information sharing among breeds is more accurate than assuming uniform genetic
correlations across the whole genome. Additionally, a multi-trait model can effectively
process gene–environment interaction effects [59,60], which increases in importance when
combining multiple populations for GP. Because these populations are often fed under
different environmental conditions, accurately dissecting random environmental effects is
conducive to improving prediction accuracy. The estimated value of genetic correlation
showed that the global genetic correlation of the genome among breeds was approximately
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zero; however, there were many blocks in the genome exhibited genetic correlations far
from zero. Notably, the data might not be sufficient to accurately estimate the true genetic
correlation between breeds owing to zero being the prior value for the correlation between
marker effects in all blocks.

The size of the reference population is an important factor influencing prediction
accuracy in joint prediction. The population sizes of two beef cattle breeds, LIM (1907)
and AAN (800), used in this study were larger than those of the pig breeds, YY (641) and
LL (228). Although a higher prediction accuracy was achieved in MBGP of beef cattle
populations compared to WBGP, the improvement was relatively small. However, for MS
traits, MBGP of the YY and LL breeds resulted in a 6.27% increase in prediction accuracy
for individuals in the YY validation. Kjetså et al. [61] demonstrated that adding data of
individuals from other breeds to the reference for MBGP could improve prediction accuracy
when the population size is small. Therefore, further studies included simulation research
and real data analysis should be conducted to improve prediction accuracy. Furthermore,
the model will be employed as a multi-trait Bayesian model for joint prediction.

5. Conclusions

Joint genome prediction is crucial for selecting local breeds, developing new traits,
and across-county joint evaluation. In this study, a multi-trait Bayesian model was used
for multi-breed joint genome prediction and extended to fulfill the needs of heteroge-
neous genetic (co)variance in different genome blocks. The results demonstrated that
mbBayesAB can improve the prediction accuracy of the target breed and obtain a higher
prediction accuracy than commonly used joint prediction models. Notably, the choice of
priors and assignment of hyperparameters in the model significantly impact the prediction
accuracy. Overall, the study proved the effectiveness of a multi-trait Bayesian model in
multi-breed joint prediction. However, further research is necessary to accurately estimate
local genetic correlations.
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Appendix A

The model proposed in this study can be expressed in the following matrix form:

yl = Xlb + ∑s
i=1 ∑mi

j=1 mijlaijl + el

where yl is the phenotypes (or corrected phenotypes) vector of breed l, b is the vector of
fixed effect with a uniform prior; s is the number of blocks across all chromosomes, mi is

https://github.com/CAU-TeamLiuJF/mbBayesAB
https://github.com/CAU-TeamLiuJF/mbBayesAB
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the number of SNPs in the ith block; aijl is the allelic substitution effect of breed l at the
marker j within the ith block, and it follows a multivariate normal distribution, with the
prior of markers’ effect in the ith block being N(0, Gi); Gi is the (co)variance matrix of all
marker effects within the block, with a prior of IW distribution IW(d f , Bi); e is residual
effect vector that follows N

(
0, Ip ⊗ R0

)
and R0 ∼ IW

(
d f , Rp

)
.

In this study, we assumed that the scale matrix of the random effect prior was unknown
and assigned an inverse gamma prior to it. Here, we use the additive effect (co)variance
matrix as an example to demonstrate the posterior derivation:

Gi ∼ IW(d f + p − 1, 2d f Di), Di = diag
(
1/ai1, . . . , 1/aip

)
aik

ind.∼ IG
(

1/2, 1/A2
)

, k = 1, . . . , p; i = 1, . . . , s

The posterior distribution of the random effects (co)variance matrix and its scale
matrix can be derived as

p(Gi|.)∝
mi

∏
j=1

[
p
(
aij
∣∣Gi
)]

p(Gi|v + p − 1, 2vDi)

∝
mi

∏
j=1

[
|Gi|−

1
2 exp
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−1

2
tr
(
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)}]
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{
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2
tr
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∑
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We assumed that the scale matrix of the random effect prior was unknown and

assigned it the Wishart prior. Here, we use the additive effect (co)variance matrix as an
example to demonstrate the posterior derivation:

Gi ∼ IW(d f , Ψi) and Ψi ∼ WI(δ, Pi)
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The posterior distribution of the random effects (co)variance matrix and its scale
matrix can be derived as

p(Gi|.)∝
mi

∏
j=1

[
p
(
αij
∣∣Gi
)]

p(Gi|d f , Ψi)

∝
mi

∏
j=1

[
|Gi|−

1
2 exp−1

2
tr
(
αijαij′G−1

i

)]
|Gi|−(d f+p+1)/2 exp−1

2
tr
(

ΨiG−1
i

)
∝ |Gi|−
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2 exp−1
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∑
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i

)
|Gi|−(d f+p+1)/2 exp−1

2
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∑
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[
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The GBLUP models used in our study were defined as:

y = Xb + Za + e

where y is the response variable vector, b is the fixed effect vector, and a is the breeding value
vector, which follows the normal distribution N

(
0, Gσ2

a
)
. G is the genome relationship

matrix constructed using the first method of VanRaden et al. [62], where σ2
a is the variance

of additive genetic effects. X and Z are the incidence matrices of effects b and a, respectively,
and e is the residual effect, which follows the normal distribution N

(
0, Ipσ2

e
)
, where Ip is

the identity matrix and σ2
e is the residual effect variance.

In WBGP, a single-trait GBLUP model was used to predict GEBVs (w-GBLUP). In the
real pig data (see Dataset Section 2.5 for details), in addition to the population mean, an
additional sex fixed effect was included. In the MBGP, we first used the same single-trait
GBLUP model to predict GEBVs, and then we added an additional breed fixed effect to
the model (b-GBLUP). The genotype data used to construct G were obtained from the
combined genotype dataset containing multiple breeds, and the construction method was
the same as that in w-GBLUP. Additionally, we used a multi-trait GBLUP model in MBGP
(u-GBLUP). In this model, the distribution of additive effect a changed to N(0, G

⊗
G0),

where G0 is the (co)variance matrix of additive genetic effects. Similarly, e is the random
residual effect vector that follows distribution N(0, I

⊗
R0), where R0 is the (co)variance

matrix of the residual effect.
The GBLUP model uses the dmuai program in DMU software (v6.0) to obtain the

GEBVs. Notably, to run the u-GBLUP model in DMU, the (co)variance of the residual
effects must be constrained; that is, the off-diagonal elements of R0 remain zero.
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