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Abstract: In recent years, the global tuna fishing and aquaculture industry has encountered signif-
icant challenges in balancing operational efficiency with sustainable resource management. This
study introduces an innovative approach utilizing an advanced computer vision model, PA-YOLOv8,
specifically adapted for drones, to enhance the monitoring and management of tuna populations.
PA-YOLOv8 leverages the capabilities of YOLOv8, a state-of-the-art object detection system known
for its precision and speed, tailored to address the unique demands of aerial surveillance in marine
environments. Through comprehensive modifications including downsampling techniques, feature
fusion enhancements, and the integration of the Global Attention Module (GAM), the model signifi-
cantly improves the detection accuracy of small and juvenile tuna within complex aquatic landscapes.
Experimental results using the Tuna dataset from Roboflow demonstrate marked improvements in
detection metrics such as precision, recall, and mean average precision (mAP), affirming the model’s
effectiveness. This study underscores the potential of integrating cutting-edge technologies like
UAVs and computer vision in promoting sustainable practices in the aquaculture sector, setting
a new standard for technological applications in environmental and resource management. The
advancements presented here provide a scalable and efficient solution for real-time monitoring,
contributing to the long-term sustainability of marine ecosystems.
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1. Introduction

In the recent years, the global industry engaged in the capture and cultivation of tuna
has witnessed a series of transformative shifts that have not only marked significant strides
in the modus operandi of its operations but also ushered in an era where it grapples with
unprecedented challenges in the realm of sustainable resource stewardship. This period of
change is characterized by a burgeoning global demand for seafood products, a surge fueled
by both population growth and an increasing awareness of seafood’s nutritional benefits.
This demand, in concert with the critical necessity to conserve the biodiversity of our oceans,
has catalyzed the industry to embark on a quest for innovative methodologies aimed at
bolstering operational efficiency and ensuring environmental sustainability. Within the
context of these evolving dynamics, the strategic incorporation of avant-garde technological
solutions, most notably computer vision technologies and Unmanned Aerial Vehicles
(UAVs), has emerged as a cornerstone initiative poised to revolutionize the practices of
monitoring and conservation within this sector. The research proposition titled, our study
epitomizes an enthusiastic endeavor to harness the most cutting-edge advancements in
computer vision technology. This is with the aim of refining the techniques employed for
aerial surveillance, specifically honing in on the optimization of processes related to the
monitoring of tuna populations.

The impetus behind the integration of computer vision models, especially those that
are endowed with the capabilities inherent in YOLOv8, into the frameworks governing
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aquaculture operations is deeply rooted in their documented success in achieving high-
precision object detection across a myriad of settings. YOLOv8 stands as a near-latest
iteration preceding YOLOv9 but distinguishes itself as the more stable version that has
seen wide applications in both academic research and real-world scenarios. While YOLOv9
continues to undergo modifications within the “You Only Look Once” series [1–4], YOLOv8
is a highly effective real-time object detection technology, known for its precise and fast
performance. Nevertheless, the application of such sophisticated models to the fisheries
and aquaculture industry presents a unique set of challenges. This is particularly true in the
context of detecting small-scale entities like tuna within the expansive and complex marine
environments that are captured by drone-mounted cameras. It necessitates a process of
adaptation and optimization of these models, exemplified by the development of the PA-
YOLOv8 model, to navigate the specific hurdles posed by drone-based surveillance of the
marine ecosystem.

To surmount these challenges and significantly augment the efficiency of the model
within the unique context of the aquaculture industry, a holistic suite of technical en-
hancements has been carefully curated and implemented. These advancements span the
introduction of an innovative downsampling technique designed [5–8] to preserve pivotal
image features, a thorough optimization of the model’s structural backbone and neck to fa-
cilitate superior feature processing capabilities, and the recalibration of loss functions [9–11]
to more accurately reflect the distinctive attributes of images captured by drones. Fur-
thermore, the establishment of branches capable of high-resolution detection enables the
precise identification of minuscule objects. Concurrently, the elimination of superfluous
prediction layers streamlines the model, tailoring it more effectively to the identification of
smaller marine species. The integration of state-of-the-art techniques such as the Global
Attention Module (GAM) [12–14] and Speed-up Convolution (SPD-Conv) [15–18] further
fortifies the model’s capacity for learning and stabilization, guaranteeing an exceptional
performance standard in the detection and analysis of information pertaining to small or
distant marine entities.

The deliberate selection of these technological innovations for the PA-YOLOv8 model
underscores not only their potency in enhancing the accuracy and speed of object detection
but also their versatility in aligning with the overarching objectives of sustainable marine
resource management. Through the introduction of these pioneering improvements, the
research in question endeavors to forge new frontiers in the application of cutting-edge com-
puter vision technology and drone capabilities to tackle the urgent challenges confronting
the tuna fishing and aquaculture sector. This initiative seeks to contribute fundamentally to
the conservation of marine ecosystems and the promotion of sustainable practices within
the aquaculture industry. It aims to meld technological innovation with environmental
stewardship and sustainability in industrial operations, thereby setting a novel precedent
for the integration of technology into strategies for environmental and resource manage-
ment. This study signifies a contribution toward actualizing the full potential of computer
vision technology and UAVs [19–21] in enhancing the practices of monitoring, managing,
and conserving resources in the swiftly evolving domain of aquaculture, thereby establish-
ing a new benchmark for the confluence of technology and strategic environmental and
resource management.

2. Research Materials and Methodological Approach
2.1. Justification for Selecting YOLOv8 as the Foundation for the Research on Deploying a
Computer Vision Model Suitable for Drones in the Tuna Fishing and Aquaculture Industry

In the domain of real-time object detection, the YOLO (You Only Look Once) algorithm
stands as a paradigm of innovation and efficiency, having garnered widespread acclaim
and acceptance for its pioneering capabilities. The algorithm’s popularity is rooted in
its lightweight network architecture, efficacious feature fusion methodologies, and no-
tably more accurate detection outcomes. Among its iterations, YOLOv5 and YOLOv7
have become standout versions, utilizing deep learning to enable efficient and real-time
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object detection. Notably, YOLOv5 marked a significant advancement over earlier ver-
sions. YOLOv5, in particular, represented a leap forward from its predecessor, YOLOv4, by
adopting the Cross Stage Partial (CSP) network structure, which enhanced computational
efficiency by minimizing redundant calculations. Despite its advancements, YOLOv5 en-
countered limitations in detecting small and densely clustered objects and faced challenges
in complex scenarios such as occlusions and pose changes.

YOLOv7 introduced a novel training strategy, the Trainable Bag of Freebies (TBoF),
which encompassed a series of trainable enhancements like data augmentation and MixUp,
significantly boosting the accuracy and generalization capability of object detectors. How-
ever, it was constrained by its dependency on training data, model structure, and hyper-
parameters, leading to performance inconsistencies in certain conditions. Moreover, its
demand for increased computational resources and extended training periods to attain
optimal performance was a notable drawback.

Enter YOLOv8, unveiled in 2023, which aspired to amalgamate the strengths of
numerous real-time object detectors. It preserved the CSP concept from YOLOv5 and
integrated feature fusion techniques (PAN FPN) and the SPPF module, culminating in
a suite of enhancements. These included the introduction of state-of-the-art models for
various resolutions of object detection and instance segmentation, models scalable based
on a coefficient similar to that in YOLOv5, and a novel C2f module inspired by the ELAN
structure found in YOLOv7. Furthermore, YOLOv8 innovated on the detection head
by segregating classification and detection functions, employed Binary Cross-Entropy
(BCE) for classification loss, and introduced a sophisticated form of regression loss (CIOU
loss + DFL and VFL) to enhance detection accuracy.

YOLOv8 builds on the achievements of its predecessors, incorporating new attributes
and enhancements to boost both performance and adaptability, delivering leading-edge
results and impressive speeds. This version introduces five different model sizes: nano,
small, medium, large, and very large. The nano model, which has just 3.2 million pa-
rameters, is ideally suited for mobile device deployment using only CPU resources. For
the purpose of UAV detection, this study utilizes the YOLOv8s model, which enhances
and expands the nano model’s architecture. YOLOv8 is structured into three primary
components: the backbone, neck, and head, which are responsible for feature extraction,
the fusion of multiple features, and generating the prediction output, respectively. The
architecture of the YOLOv8 network is depicted in Figure 1.

A pivotal feature of YOLOv8 is its extensibility and compatibility with prior YOLO
versions, facilitating comparative performance analyses. This attribute, coupled with its
advancements in accuracy and the introduction of anchor-free dynamics and the dynamic
Task-Aligned Assigner for precision in anchor matching, positions YOLOv8 as the most
accurate detector to date. The algorithm’s adaptability and the enhancements in computa-
tional and detection efficiency render it an ideal foundation for the research project aimed
at deploying a computer vision model based on YOLOv8 suitable for drone utilization in
the tuna fishing and aquaculture industry.

The feature extraction network in YOLOv8 is designed to pull individual-scale features
from images processed by the SPPF and C2f modules. The C2f module, a streamlined
version of the original C3 module, incorporates a convolutional layer to lighten the model
while integrating the ELAN structure’s advantages from YOLOv7. This enhancement
broadens the gradient flow information by using bottleneck modules in the gradient
branch. The SPPF module reduces the number of layers from the standard SPP (spatial
pyramid pooling), cutting down on unnecessary operations and speeding up feature fusion.

The network’s multi-scale fusion module blends elements from both the FPN (feature
pyramid network) and PAN (path aggregation network) to merge two-dimensional features
from both low and high levels. This fusion bolsters smaller receptive field features at lower
levels and boosts target detection across various sizes. In the detection phase, the network
pinpoints target locations, categories, confidence scores, and other relevant data. YOLOv8’s
head shifts from an anchor-based system to an anchor-free framework, eliminating IOU
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matching and one-sided scaling, employing a task aligner to differentiate between positive
and negative samples. It executes multi-scale predictions using downsampled features
from scales of 8, 16, and 32 to finely tune predictions across small, medium, and large
targets. Figure 2 illustrates these detailed modules within the YOLOv8 network.
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Target detection from UAV perspectives presents multifaceted challenges, underscored
by the need for high accuracy and computational efficiency in small object detection. Inno-
vations such as UFPMP-Net and HRDNet, among others, have made strides in UAV image
detection by optimizing feature engineering and employing feature fusion techniques.
However, these advanced target detection methods often necessitate substantial memory
and computing resources, making them less feasible for deployment on low-power image
processors typical of edge devices. YOLOv8, through its iterations and enhancements in
network architecture, including the backbone, neck, and head components, has signifi-
cantly reduced these limitations, offering a promising avenue for research and practical
application in UAV-based monitoring systems for the aquaculture sector. This study aims to
leverage YOLOv8’s robust framework and its proven efficacy in object detection to develop
a model that is not only highly accurate and fast but also scalable and efficient for deploy-
ment in the challenging environment of tuna fishing and aquaculture, thereby providing a
new paradigm in the application of UAV technology for sustainable fishery management.

2.2. Developing a YOLOv8 Network Structure Suitable for Drones Used in Oceanic Tuna Fishing
and Farming
2.2.1. Enhancing Small Object Detection in YOLOv8 Using Advanced Downsampling and
Feature Fusion Techniques

While YOLOv8 has achieved significant accomplishments, the model still faces some
limitations in identifying small objects in complex scenes. Analysis indicates two main
reasons for the inaccurate detection of small objects. During the feature extraction process,
the neural network is often distracted by larger objects, resulting in insufficient data
collection on smaller objects, which leads to their neglect throughout the learning process,
affecting detection effectiveness. Smaller objects are easily obscured by other objects,
making it difficult to distinguish and locate them in images.

To tackle these challenges, the research introduces a novel detection algorithm de-
signed to enhance the detection of small objects while maintaining the performance for
detecting objects of standard size. Initially, the study recommends the MDC module for the
downsampling function. This module employs depthwise separable convolution, Maxpool,
and a 3 × 3 convolution with a stride of 2 for concatenation, effectively compensating for
information losses during downsampling and better preserving contextual details during
feature extraction. Additionally, the feature fusion technique has been refined to more
effectively merge shallow and deep data layers, ensuring a more thorough retention of
information through the feature extraction phase. This enhancement helps overcome issues
related to non-detection due to poor target positioning and the confusion that can arise
with larger targets. Lastly, the DC module, consisting of depthwise separable convolution
followed by a 3 × 3 convolution, is repetitively stacked and integrated to form a new
network architecture. This module replaces the C2f module prior to the detection head,
deepening the overall network structure and achieving greater resolution without a signifi-
cant increase in computational demands. This strategy not only secures more contextual
information but also significantly mitigates the problems of low detection accuracy due to
overlapping objects. The specific structures are shown in Figures 3 and 4.
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2.2.2. Optimizing YOLOv8 for Enhanced Detection of Micro-Sized UAV Targets

The original YOLOv8 model utilizes a deep residual network for extracting target
features and employs a Pyramidal Attention Network (PAN) for multi-scale prediction.
This architecture is designed to handle a broad range of object sizes effectively. However,
the model still performs three downsampling iterations during the feature extraction phase
to generate the maximum feature map. While this technique aims to consolidate and
enhance the detectable features across various scales, it inadvertently results in a significant
loss of detailed feature information. This loss is particularly problematic when attempting
to detect very small targets such as micro-sized Unmanned Aerial Vehicles (UAVs), where
preserving high-resolution details is crucial for successful detection.

To address these challenges, this study proposes several targeted improvements to the
YOLOv8 model, aiming to optimize it for the detection of micro-sized UAV targets, which
are often critical in surveillance and monitoring applications. These enhancements are
designed to refine the model’s ability to process and analyze small-scale features without
overwhelming computational demands. The specific enhancements made in this revised
model are detailed below.

Introduction of a High-Resolution Detection Branch: A significant modification in
our approach involves the integration of a high-resolution detection branch within the
detection head of the model. This new branch specifically focuses on processing smaller
feature maps (160 × 160 pixels), which undergo fewer downsampling operations compared
to the standard model. By reducing the number of downsampling steps, this branch retains
a greater level of detail, which is essential for identifying small objects. This adaptation is
particularly beneficial for detecting tuna, which may be represented by only a small number
of pixels in larger images. Displayed in Figure 5, this scheme involves the introduction
of a high-resolution detection branch that focuses on smaller feature maps to enhance the
detection of tiny UAV targets. This branch reduces the number of downsampling steps to
preserve more detailed information, crucial for detecting micro-sized objects.

Optimization of Multi-Scale Feature Extraction Module: Recognizing the limitations of
traditional convolution operations in handling features of small objects, we have replaced
the standard convolution layers in the feature extraction module with Space-to-Depth
Convolution (SPD-Conv) layers. SPD-Conv layers use a combination of space-to-depth
layer operations and non-stride convolutions to better capture the intricacies of various
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object sizes and complexities. This method is especially advantageous for tasks involving
low-resolution images or small detection objects, where every pixel contains crucial infor-
mation. The SPD-Conv effectively increases the model’s sensitivity to finer details, thus
improving its performance in detecting tiny UAV targets. Illustrated in Figure 6, the SPD-
Conv structure utilizes a combination of space-to-depth layers and non-stride convolutions.
This novel architectural feature aims to improve the feature extraction process, particularly
beneficial for handling low-resolution images or small objects effectively by preserving
more relevant feature details.
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Integration of GAM Attention Mechanism: To further refine the model’s capability to
focus on and retain important features across varying scales, the GAM attention mechanism
has been introduced into the feature fusion module. The GAM mechanism utilizes princi-
ples from the Convolutional Block Attention Module (CBAM) and focuses sequentially on
channel and spatial features within the network. By doing so, it significantly enhances the
network’s ability to concentrate on areas of the feature map that are most likely to contain
relevant information, thus optimizing the detection process. This attention mechanism is
particularly effective in scenarios where targets have few distinguishing features and are
easily lost amidst background noise. Shown in Figure 7, the GAM attention mechanism is
integrated into the feature fusion module to enhance the model’s capacity for maintaining
and emphasizing critical feature information across various scales. This module uses atten-
tion mechanisms to focus on significant features within the data, which helps in improving
the overall detection capabilities of the network, especially in complex detection scenarios
involving small or subtle targets.
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Given the mapping of input attribute F1, intermediate state F2 and output F3 are
defined as follows:

F2 = Mc(F1)× F1 (1)

F3 = Ms(F2)× F2 (2)

In the recent revision of YOLOv8, the loss function has undergone significant modifi-
cations due to the adoption of the anchor-free design, differing notably from the YOLOv5
series. The optimization of the loss function in YOLOv8 is now split into two primary
components: classification and regression. The classification loss continues to employ the
Binary Cross Entropy Loss (BCEL), while the regression part incorporates the Distribution
Focal Loss (DFL) and the Bounding Box Regression Loss (BBRL). The comprehensive loss
function is formulated as follows:

floss = λ1 fBCEL + λ2 fDFL + λ3 fBBRL (3)

The classification loss, essentially a cross entropy loss, is given by the following:

fBCEL = weight[class]

(
x[class] + log

(
∑

j
exp(x[j])

))
(4)

Here, “class” represents the number of categories, “weight[class]” denotes the weights
assigned to each class, and x is the probability value after sigmoid activation.

The Distribution Focal Loss (DFL) optimizes the focal loss function by transitioning the
discrete classification results into continuous outcomes through integration. It is expressed
as the following:

fDFL(Si, Si+1) = ((yi+1 − y)log(Si) + (y − yi)log(Si+1)) (5)

In this equation, yi and yi+1 denote values flanking the consecutive labels y, satis-
fying yi < y < yi+1, and y is calculated as y = ∑n

i=0 P(yi)yi with P implemented via a
softmax layer.

The regression loss diverges from the commonly used CIoU loss in YOLOv8 to em-
ploy the Wise-IoU loss function, which incorporates a dynamic non-monotonic focusing
mechanism. This adaptation is particularly useful when dealing with low-quality labels
in training data, as it utilizes the “outlier” factor to modulate the impact of geometric
discrepancies (like distance and aspect ratio) on the model, thus preventing excessive
penalties. When the predicted bounding box aligns closely with the actual target box, the
loss function promotes improved model generalization with less need for extensive training
by reducing the focus on geometric differences. The formula for Bounding Box Regression
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Loss (BBRL) utilizing Wise-IoU v3, which incorporates a dual-layer attention mechanism
and a dynamic non-monotonic Feature Matching (FM) mechanism, is specified as follows:

fBBRL =

(
1 − Wi Hi

Su

)
exp

(
−
(
xp − xgt

)2
+
(
yp − ygt

)2

W2
g + H2

g

)
(6)

In this expression, the extent of deviation in the predicted box is indicated, where
a lower degree suggests better quality of the anchor box. This factor helps to adjust the
focal number non-monotonically, allocating smaller gradient enhancements to prediction
boxes with substantial outliers, effectively reducing the adverse gradients from low-quality
training samples. Figure 8 shows schematic diagram of the Wise-IoU solution.
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The proposed improvements to the YOLOv8 model are aimed at significantly en-
hancing its performance for micro-target detection tasks. By reducing feature loss during
processing, enhancing the resolution at which small objects can be detected, and improving
feature attention and retention, the model becomes more adept at identifying and classi-
fying small-scale UAVs. This optimized model configuration, depicted in the improved
network architecture shown in Figure 9, ensures a balance between maintaining high
detection accuracy and managing computational efficiency, making it highly suitable for
real-world applications where speed and accuracy are paramount.
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3. Preparation of Experiments and Outcome Analysis

In this study, the authors employ the publicly available Tuna dataset from Roboflow to
assess the effectiveness of the model. The discussion includes details about the dataset, the
network configuration and training procedures, evaluation metrics, an ablation study, com-
parative analyses, and tests using a proprietary dataset. The dataset comprises 3200 images.
Prior to training, these images and their corresponding labels are segmented into training,
validation, and test sets using an 8:1:1 ratio. Considering the available hardware and
multiple experimental trials, the authors have chosen to set the batch size at 4 (to achieve
learning efficiency, we have reduced the batch size to a smaller one to avoid memory jumps
that cause errors in learning) and the number of epochs at 200.

3.1. Test Platform Setup

The experimental setup described in this paper utilizes a Windows 10 operating
system, supported by hardware that includes 64 GB of RAM, an NVIDIA GTX3050 GPU,
and an Intel i7-13700KF CPU running at 3.40 GHz. The software environment is based
on torch version 1.12.1 with cu118, and the development is conducted using Pycharm
Community 2024.1.1.

The dataset used for this study is a compilation of datasets named Thunnus_albacares,
Thunnus_albacares 2, Thunnus_albacares 3, Thunnus_albacares 4, and Thunnus_albacares
5 from the open source Roboflow. This dataset includes images of yellowfin tuna from
various angles, locations, sizes, and environments. This diversity in the data enriches
the learning model proposed, and combining multiple datasets helps avoid errors and
omissions in the learning process. Figure 10 shows some representative images from the
dataset used in this study.
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3.2. Assessment Metrics

The evaluation metrics employed include mean average precision (mAP), average
precision (AP), precision (P), and recall (R). The formulas for precision (P) and recall (R)
are illustrated in Equations (7) and (8), respectively:

P =
TP

(TP + FP)
(7)

R =
TP

(TP + FN)
(8)

where TP stands for the number of correctly predicted bounding boxes, FP indicates the
number of incorrect positive detections, and FN represents the number of targets that were
missed. Average precision (AP) measures the average accuracy of the model, while mean
average precision (mAP) calculates the mean of these AP values across different categories,
with “k” representing the total number of categories. The formulas for calculating AP and
mAP are provided in Equations (9) and (10), respectively.

AP =
∫ 1

0
p(r)dr (9)

mAP =
1
k ∑k

i=1 APi (10)

3.3. Results Analysis

To assess the detection efficacy of the enhanced technique for small targets at vari-
ous stages, the authors performed stage-specific ablation studies using the Tuna dataset
from Roboflow, comparing the results with those from YOLOv8s. This dataset encom-
passes a diverse range of conditions, having been compiled under varying landscape,
weather, and lighting situations, which includes numerous small-size targets in challenging
environments. Additionally, the dataset furnishes details such as scene visibility, object
classification, and occlusion levels. Due to its comprehensive and authoritative nature, the
Tuna dataset is perfectly suited for the controlled experiments conducted in this study.

To evaluate the performance enhancements of each component, several models were
defined: Baseline Model 1 (YOLOv8s), Improved Model 2 (with enhanced downsampling),
Improved Model 3 (enhanced downsampling plus a tiny head and removed large head),
Improved Model 4 (including downsampling, a tiny head, removed large head, and
enhanced SPD-Conv), Improved Model 5 (featuring downsampling, a tiny head, removed
large head, enhanced SPD-Conv, and added GAM), and Improved Model 6 (incorporating
downsampling, a tiny head, removed large head, enhanced SPD-Conv, added GAM, and a
revised loss function). The authors quantitatively analyzed changes in evaluation metrics
across these six models, highlighting the optimal results for each metric. To ensure the
validity of the experiment, mAP0.5 and mAP0.5:0.9 were used as the evaluation indices.
The experimental results are detailed in Table 1.

Table 1. Variations in outcomes from ablation studies. Bold represents the indicators with the best
results in the experiment.

Components Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

P 89.6% 90.1% 90.1% 90.26% 90.41% 90.5%
R 86.1% 91.6% 94.8% 95.6% 95.4% 96%

mAP0.5 79.4% 90.5% 90.71% 91.2% 91.8% 92%
mAP0.5:0.95 49.12% 57.2% 57.2% 57.5% 58.1% 61.2%

Parameters/million 13.367 11.612 4.527 5.290 4.885 5.674
FPS/f.s-1 285 227 255 236 241 221
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Referring to Table 1, the following can be observed.
The refinement of the downsampling technique along with the integration of a tiny

detection head resulted in improvements of 0.5%, 5.5%, 11.1%, and 7.08% in precision
(P), recall (R), mean average precision (mAP0.5), and mAP0.5:0.95, respectively. These
enhancements indicate that optimizing the high-resolution detection head substantially
enhances the detection capabilities for smaller targets. Additionally, the reduction in the
large target detection layer significantly lowered the parameter count by 74.81%.

The results for Improved Models 3, 4, 5, and 6 illustrate that upgrading the SPD-Conv
module notably enhances the recall (R) of the model. This suggests that refining the convo-
lution module to SPD-Conv within the backbone network better preserves features of small
targets and decreases the chances of their non-detection. Furthermore, the incorporation of
the GAM has positively influenced the precision (P) of the model, suggesting that adding
the GAM in the neck enhances feature fusion within the network and lowers the incidence
of false positives. The addition of both SPD-Conv and GAM led to enhancements in P, R,
and mAP, though it slightly increased the number of parameters and the model size.

When comparing the results of the enhanced model 6 (our proposed model) with
model 1 (the baseline model), it is evident that fully implementing the suggested enhance-
ments resulted in an increase in inference time. The improved model reached a frame rate
of 221 frames per second, which, although lower than the 285 frames per second of the
baseline model, still meets the real-time requirements for practical deployment. Moreover,
the proposed model significantly bettered the metrics of precision (P), recall (R), mean
average precision (mAP), and reduced the number of parameters.

Figure 11 shows size and distribution of the self-built Tuna dataset for drones.
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It can be easily observed that the dataset is evenly distributed with various sizes,
enabling the drone to track objects at varying distances. This brings efficiency to its
practical applications.

After adjusting the dataset into an 8:2 split and conducting a comparison between the
proposed controller and the baseline yolov8s, the results show that the proposed model
is more suitable for drones used in the tuna fishing and harvesting industry due to its
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higher efficiency, accuracy, and more stable parameters when applied in this case. The
study lays the groundwork for developing practical models to be applied in smart tuna
farms and efficient tuna fishing, contributing to enhanced performance and reducing the
effort required by fishermen. The results are presented in Figures 12 and 13.
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Based on Figures 12 and 13, and a comparison of the effectiveness between the
YOLOv8s model and the proposed model in the context of object detection from im-
ages captured by UAVs, the main evaluation metrics include box loss, classification loss,
precision, recall, and mean average precision (mAP).

Analysis of results from the training and validation sets shows that the proposed
model has several distinct advantages over the YOLOv8s model. Specifically, in terms
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of box loss and classification loss on the validation set, the proposed model shows lower
metrics, indicating a more accurate ability to detect and classify objects in images. Although
the YOLOv8s model also records impressive loss reductions, the metrics on the validation
set remain higher compared to those of the proposed model.

In terms of precision and recall, the proposed model significantly outperforms with a
stable precision above 0.9 and a recall above 0.8, whereas YOLOv8s achieves a precision
below 0.85 and a recall around 0.75. This demonstrates that the proposed model is better at
distinguishing true positives and minimizing false positives than YOLOv8s.

Finally, a comparison of the mAP shows that while both models perform well, the
proposed model has a mAP50 above 0.9 compared to YOLOv8s’s below 0.8; additionally,
the proposed model has a mAP95 that is 0.1 higher than YOLOv8s, specifically above 0.6
compared to below 0.5, respectively. This indicates a better ability to detect smaller or
more challenging objects. These results solidify the position of the proposed model as a
truly effective solution for handling complex and diverse real-world application scenarios.
Continued research and improvements to the proposed model will be necessary to enhance
its competitive ability and effectiveness in practical applications.

Figure 14 shows results of detecting yellowfin tuna from a drone’s perspective. Despite
variations in the environment, the detection is clear and accurate.
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The integration of the PA-YOLOv8 model, designed specifically for UAVs in the tuna
fishing and aquaculture industry, represents a significant stride towards addressing the
dual challenges of operational efficiency and sustainability in marine resource management.
Our findings underscore the pivotal role of advanced computer vision technologies, such as
the YOLOv8, which has demonstrated exceptional capability in the high-precision detection
of marine life, particularly tuna, from aerial perspectives. The specific adaptations and
enhancements made to the YOLOv8 model—namely, the introduction of downsampling
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methods, feature fusion techniques, and the novel Global Attention Module (GAM)—have
collectively enabled a marked improvement in the model’s ability to discern small-scale
marine species within complex oceanic environments.

4. Discussion

One of the critical findings from this research is the model’s enhanced capability to
detect small objects, which is crucial for monitoring juvenile tuna and ensuring the sustain-
ability of tuna populations. The optimizations in downsampling and feature fusion have
been particularly effective in mitigating the loss of detail that typically occurs with standard
detection models, thereby significantly improving detection accuracy and reliability.

Furthermore, the experimental results obtained using the Tuna dataset from Roboflow
have provided compelling evidence of the model’s robustness and efficacy. The improved
detection rates, as demonstrated by higher precision (P), recall (R), and mean average
precision (mAP) across several model iterations, highlight the potential of this technology
to revolutionize the way authors monitor and manage marine resources. The systematic
ablation studies conducted underscore the incremental benefits of each technological
enhancement, validating our methodology and approach.

5. Conclusions

The research paper presented aims to address specific gaps within the realm of object
detection applied to the fishing industry, particularly using UAVs for monitoring tuna
populations. The study introduces the PA-YOLOv8, an advanced computer vision model
tailored for drones, which significantly enhances object detection capabilities in aquatic
environments. This model incorporates strategic modifications such as downsampling
techniques, feature fusion enhancements, and the integration of the Global Attention Mod-
ule (GAM). These innovations result in marked improvements in the detection accuracy of
small and juvenile tuna, which is crucial for sustainable fishing practices.

The novelty and contribution of PA-YOLOv8 lie in its ability to accurately detect
small-scale marine life within complex oceanic scenes, an essential feature for ecological
monitoring and resource management. By implementing these enhancements, the model
addresses critical challenges in current detection methods, which often struggle with small
object recognition in expansive marine environments captured by drone-mounted cameras.
The research thus fills a significant gap by improving both the technological aspect of
object detection and contributing to the sustainable management of marine resources.
This aligns with the broader goal of integrating cutting-edge technologies to support
sustainable practices in the aquaculture sector, thereby advancing the state of the art in
environmental conservation efforts. By integrating advanced computer vision technologies
tailored specifically for drone use, the PA-YOLOv8 model represents a significant step
forward in enhancing the monitoring and management of tuna populations. This model
has demonstrated a marked improvement in detecting small and juvenile tuna, which is
crucial for assessing stock levels and implementing sustainable fishing practices.

With its precise detection capabilities, the proposed solution addresses several critical
challenges in the tuna fishing industry. Firstly, it enables more accurate population assess-
ments, which are essential for setting quotas and preventing overfishing. Secondly, the
ability to monitor tuna in real-time offers fisheries the opportunity to adjust their strategies
promptly, thereby improving catch efficiency while reducing the bycatch of non-target
species. This dual benefit of enhancing both sustainability and profitability highlights the
transformative potential of PA-YOLOv8 in commercial fishing operations.

Furthermore, by reducing the labor and time typically required for manual monitoring
and by providing more reliable data, the PA-YOLOv8 model could lead to better resource
management and a healthier marine ecosystem. As this technology continues to evolve, it
may become a cornerstone tool in the global effort to ensure the long-term sustainability of
tuna stocks and, by extension, the marine environments they inhabit.
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The research undertaken has set a new benchmark in the application of UAV and
computer vision technology for sustainable fishery management. The PA-YOLOv8 model
not only meets the high demands of real-time processing and accuracy but also aligns with
the broader goals of environmental stewardship. By significantly enhancing the detection
capabilities for small and juvenile tuna, the model contributes to the conservation efforts
essential for maintaining healthy tuna populations, which are critical to the ecological
balance of marine ecosystems.

Moreover, the scalability and efficiency of the PA-YOLOv8 model make it a viable
solution for widespread adoption within the industry. Its performance in test results sug-
gests that it can be effectively deployed across different regions and conditions, providing
a reliable tool for enhancing the sustainability practices of tuna fishing and aquaculture
operations globally.

In conclusion, this study demonstrates the profound impact of integrating cutting-edge
technologies in addressing the complex challenges of modern aquaculture and fisheries.
The advancements in computer vision and UAV technology exemplified by the PA-YOLOv8
model offer promising pathways for enhancing resource management, ensuring sustainable
fishing practices, and ultimately supporting the global initiative towards more sustainable
oceans. Future research should continue to refine these models, explore their applications
in other contexts, and evaluate their long-term impacts on marine conservation efforts.
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