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Abstract: Auxins are chemical compounds of wide interest, mostly due to their role in plant
metabolism and development. Synthetic auxins have been used as herbicides for more than 75 years
and low toxicity in humans is one of their most advantageous features. Extensive studies of natural
and synthetic auxins have been made in an effort to understand their role in plant growth. However,
molecular details of the binding and recognition process are still an open question. Herein, we present
a comprehensive in silico pipeline for the assessment of TIR1 ligands using several structure-based
methods. Our results suggest that subtle dynamics within the binding pocket arise from water–ligand
interactions. We also show that this trait distinguishes effective binders. Finally, we construct a
database of putative ligands and decoy compounds, which can aid further studies focusing on
synthetic auxin design. To the best of our knowledge, this study is the first of its kind focusing
on TIR1.

Keywords: herbicides; auxins; molecular dynamics; machine learning

1. Introduction

Agricultural production is fundamental from an economic point of view and to feed
the world’s population. It has been estimated that from 1961 to 2020, food production
from agricultural sources has increased significantly, with current per capita values nearing
almost 3200 kcal/day at the end of the supply chain [1]. Yet, the annual State of Food
Security and Nutrition in the World (SOFI) report published by the Food and Agriculture
Organization (FAO) showed that more than 700 million people faced hunger in 2022 [2].
Thus, there is a pressing need to improve food security, which translates to the assurance of
higher crop yields.

Some of the main problems that pose a significant challenge to safe, productive, and
sustainable agricultural practices are herbicide resistance and toxicity. There are doc-
umented cases of resistance of weeds to several chemical groups worldwide, reported
since the discovery of herbicide resistance in common groundsel (Senecio vulgaris) to tri-
azine herbicides in 1968 [3,4]. Nowadays, herbicide resistance is spread globally, affecting
96 crops across 72 countries. This phenomenon has been documented in 513 distinct in-
stances, involving 267 weed species that have developed resilience against herbicides [5].
Moreover, despite the generally low mammalian toxicity of many newly developed her-
bicides, growing experimental evidence indicates that exposure to these chemicals can
have detrimental effects on the development and/or reproduction of various mammalian
species. Notably, 2,4-D (2,4-Dichlorophenoxyacetic acid) and its combination with 2,4,5-T
(2,4,5-Trichlorophenoxyacetic acid) have been associated with reproductive issues and
malformations in humans [6].
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Auxins can be regarded as phytohormones, metabolically derived from L-Tryptophan,
responsible for plant growth and development [7]. Indole-3-acetic acid (IAA) is the most
well-known example of such a compound, often deemed as the “master hormone” in
plants [8]. Since the 1940s, synthetic derivatives from IAA have been developed and
tested, with notable examples being naphthalene acids (1-naphthalene acetic acid); phe-
noxycarboxylic acids (MCPA, 2,4-D); benzoic acids (dicamba); pyridinecarboxylic acids
(e.g., picloram), and quinolinecarboxylic acids (quinmerac, quinclorac), all of which showed
strong responses in plants, inducing damage at high concentrations while eliciting higher
stability when compared to IAA [9]. In the last two decades, synthetic auxins reached
commercial success as herbicides, accounting for roughly 1.3 billion USD, which represents
approximately 9% of total sales just in 2000 [10].

The intricated auxin signaling pathway is orchestrated by at least three protein families:
transport inhibitor response/auxin signaling F-box (TIR1/AFB) proteins, auxin/indole-
3-acetic acid (Aux/IAA) transcriptional repressors, and auxin response factor (ARF) tran-
scription factors [11]. At the core of this signaling cascade lies TIR1, belonging to a small
family of F-box proteins, comprising five additional AFB proteins (AFB1-AFB5). These
six proteins collectively function as auxin receptors [12]. Auxin transport occurs within
and between cells via PIN, ABCB, and AUX/LAX transporters. This then interacts with
the SCFTIR1/AFB complex, which, upon creation of the SCF-auxin-Aux/IAA complex,
triggers the ubiquitination of Aux/IAA transcriptional repressors, leading to the activation
of auxin response genes [13]. Therefore, auxin exerts its regulatory influence by directly
binding to TIR1, promoting the interaction between SCFTIR1/AFB and Aux/IAAs. This
interaction does not induce any conformational changes; instead, auxin acts as a molecular
glue, facilitating the formation of a binding pocket for the Aux/IAA protein within the
TIR1 structure [14].

Herein, we present an in silico profiling of TIR1 binding coupled with a pipeline for de
novo design based on machine learning. We hope this study will aid synthetic auxin design
as these molecules can provide additional tools, not just as herbicides but as molecular
guidelines for the engineering of plant growth and development [15].

2. Materials and Methods
2.1. De Novo Design of Putative Auxins and Molecular Decoys

The crystal structure of the TIR1/SCP complex of Arabidopsis thaliana was obtained
from the Protein Data Bank. The structure with PDBID 2P1P was selected as its values for
resolution, R-free, and R-work are very good, also it is cocrystallized with IAA. The protein
was then preprocessed with PDBFixer to add hydrogen atoms, IAA, and the cofactors were
removed prior to modelling.

OpenGrowth [16] was used for the de novo generation of molecules within the binding
site for IAA. As OpenGrowth uses Openbabel as the backend for compound minimization
and atom typing, version 2.4.1 was manually compiled. The parameters for OpenGrowth
were implemented as described in Table S1 in the Supplementary Information. Minimiza-
tion was carried out using the MMFF94 force field and the SMoG2016 scoring function
was used for ligand ranking. As a result, more than 1200 ligands were generated with
these settings. A heuristic threshold of −8.0 kcal/mol was applied to select candidates for
virtual screening.

To establish a set of nonbinders, molecular decoys were obtained with DeepCoy [17];
these were generated to match DUD-E descriptors in a 150:1 decoy-to-reference ratio,
following the selection of top decoys using the provided scripts within DeepCoy.

As proof of concept, two sets of molecular descriptors were calculated. The first one
explored Lipinski’s space, composed of molecular weight (MW), topological polar surface
area (TPSA), cLogP, rotable bonds, number of H-bond acceptors, and donors. The second
set was selected from the molecular descriptors available in Mordred [18]. As an initial
filter, features with zero variance or with less than three different values (semiconstant
variables) were discarded. Highly correlated descriptors were also excluded, i.e., those with
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a Kendall correlation coefficient higher than 0.9; the final set contained 395 of the original
1613 variables. Then, a subset of features was selected using the Boruta algorithm [19];
these are listed in Table S2 in the Supplementary Information. Finally, these two sets
of descriptors were visualized via principal component analysis (PCA) and t-SNE using
DataWarrior [20].

2.2. Machine Learning

To evaluate the overall pertinence of the generated compounds, we trained different
classification models as proof of concept. These included logistic regression (LR), support-
ing vector machines (SVC), random forest (RF), and extreme gradient boosting classifiers
(XGBoost classifier; XGBC). The comparison was performed with Scikit-learn (v.1.2.2) [21]
and XGBoost [22] Python modules. Each model was trained and validated by ten-fold
cross-validation, while grid search optimization was used to fine-tune their respective
hyperparameters [23]. Each compound was represented as a concatenated vector of molec-
ular descriptors selected with Boruta, which was then used for training. In addition, a
second iteration was made to train classifiers with topological information; i.e., extended
connectivity fingerprints (ECFP4), WHIM, and GETAWAY descriptors, calculated with
RDKit (v.2022.9.5) [24]. Given the numerical feature differences, each representation was
standardized, subtracting the mean and scaling to unit variance using Scikit-learn.

Classification performance was evaluated with several measures, including validation
curves, learning curves, ROC curves, Matthews correlation coefficient, and detection error
trade-off curves.

2.3. Molecular Modelling of Auxins

To better understand molecular recognition by TIR1, we propose a pipeline using
mixed-solvent molecular dynamics, conventional molecular dynamics, and enhanced
sampling with coarse metadynamics. Detailed information is provided in the follow-
ing subsections.

2.3.1. Mixed Solvent Molecular Dynamics

To explore the plasticity and overall presence of hotspots within TIR1, molecular
dynamics with mixed solvents was used. The MXMD script [25] was modified to include
the probes included in Scheme 1.
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Scheme 1. Chemical structures of the selected probes for hotspot identification.

A modified version of the Ghanakota et al. protocol was used [26]; briefly, the protocol
involves the creation of replica systems with a volume/volume concentration of 95/5%
(water/probe). MXMD uses pre-equilibrated boxes of the selected cosolvent probe, which
is then incorporated in a cubic box of water buffering the whole system by 15 Å. These
systems were then submitted to default relaxation protocol and 15 ns of equilibration time.
Production times were set to 20 ns, as it provides a good compromise between sampling
and computing time [27]. Each MXMD run consisted of 15 simulations; three for each
probe, accounting for an overall sampling of 300 ns. MXMD simulations were carried out
with PDBIDs 2P1M, 2P1P, and 2P1N, which correspond to TIR1 with IHP cofactor; TIR1
bound to IAA and IHP; and TIR1 bound to 2,4-D and IHP, respectively.

Hotspots were then evaluated using the following score:
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Score =
probes

∑
p

spots

∑
s

grids

∑
g

Zxyz(p, s, g) (1)

where Zxyz is the occupancy of functional groups of the probes, converted to Z-scores
using the following equation:

Zxyz =
Xxyz− < X >

σ
(2)

2.3.2. Assessment of Pocket Solvation and Its Role in Auxin Recognition

Molecular recognition is often grounded on the “desolvation paradigm”, which con-
siders that water molecules need to be displaced by ligands during binding events [28].
Only recently, this notion has been challenged with the discovery of protein families, which
possess a tightly bound water network, such as bromodomains. It has been shown that
these complex arrangements serve as enthalpy control for ligand binding [29]. Additionally,
it has been suggested that a robust description of binding modes is more consistent when
ligands are properly solvated [30,31].

Thus, we conducted a series of simulations under different starting conditions using
3D structures with the following PDBIs 2P1N, 2P1O, 2P1P, and 2P1Q. Structures were
prepared with pdbfixer to add missing atoms and/or residues followed by hydrogen
bond optimization using PropKa and Maestro’s protein preparation wizard. From here,
two independent systems were built: with and without preserving water molecules in the
vicinity of cocrystal ligands. Both systems had the protein buffered in orthorhombic boxes
of TIP3P water and NaCl at 0.15 M.

TIR1-ligand complexes were then submitted to molecular dynamics simulations using
Desmond (v.6.1) [32]. Systems were parametrized with the OPLS_2005 force field simulation
and integration was carried out with the RESPA algorithm using 4 and 8 fs values for
timesteps. A hydrogen mass repartition scheme was implemented to allow the timesteps to
increase [33]. The prepared systems were then relaxed using Desmond’s default protocol.
This includes Brownian dynamics and an equilibration period to attain NVT and NPT
conditions. The target values were 300 K for temperature and 1 atm for pressure. Following
system relaxation, the complex was equilibrated for 50 ns under the NPT ensemble using
MTTK barostat and Nosé–Hoover chain thermostat. Production runs of 500 ns for both
systems of each PDBID were obtained and analyzed for RMSD and RMSF with MDTraj
(v.1.98) [34]. In addition, interaction fractions were obtained with Maestro. TIR1-auxin
contacts were also used to define microstates to construct transition networks to assess
binding mode metastability.

Finally, we tested pocket solvation using grand-canonical Monte Carlo (GCMC) as it is
a well-documented method with notable results [35–38]. As proof of concept, we selected
the IAA/Tryptophan pair. As positive and negative controls, respectively, IAA was used
as is from PDBID 2P1P and tryptophan was docked to the structure using PLANTS (more
details in the following section). Each complex was prepared as described above, without
preserving the water molecules of the binding site. Pocket solvation was achieved using
the GCMC plugin in Desmond. This required defining the MC region in a buffer of 6 Å
around ligands; solvent parameters were default values for TIP3P water, similar to those
described elsewhere [39].

Simulations were carried out in five stages, beginning with GCMC/MD with restraints
on heavy atoms, consisting of 10,000 MC moves per cycle and a total of 500 ps of MD.
This stage was followed by GCMC/MD with 100,000 moves per cycle, 1 ns of MD, and
no restraints. Systems were then relaxed with short runs of Brownian dynamics and
Langevin dynamics for equilibration of volume and pressure. For these simulations,
hydrogen mass repartitioning was not used; thus, timestep values were kept at default.
An additional equilibration of 10 ns using the MTTK barostat and the Nosé–Hoover
thermostat was carried out. Hydrogen mass repartition was implemented during this stage.
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Finally, production runs of 500 ns were made for each ligand, keeping conditions from the
previous step.

2.3.3. Molecular Dynamics

We compared a series of pairs, consisting of known ligands and chemically related “de-
coys”. Decoys were intended to be low affinity/nonbinders for TIR1 based on experimental
data [40,41] while also having structural similarity to known ligands. Selected pairs were
IAA/Tryptophan; α-naphthylacetic acid/β-naphthylacetic acid; Diclophenac/Rinskor and
Fluroxypyr/Quinclorac.

As a first step, compounds were docked to PDBID 2P1P using PLANTS software (v.1.2)
as it is a well-established method with high accuracy and consistency [42–45]. Ligands
were prepared using SPORES [46] to obtain proper input for PLANTS. The binding site was
defined in a sphere with a radius of 15 Å centered with IAA’s crystallographic coordinates.
Additional parameters were kept at default values.

The top-ranked pose was selected for GCMC/MD as detailed previously and produc-
tion times were kept at 500 ns for each ligand. In addition to the previously mentioned
analyses, concurrence maps were calculated using ContactMap explorer (v.0.7.0) [47].

2.3.4. Coarse Metadynamics

To evaluate the metastability and get a rough estimate of the affinity differences
between binders and decoys, well-tempered metadynamics was used. This enhanced sam-
pling method has been successfully applied to study binding events [48–52]. Metadynamics
uses specific degrees of freedom, which are related to the desired reaction coordinate (collec-
tive variables; CVs). In this case, we applied two CVs; the first was defined using distances
between centers of mass (protein and ligand). For the protein, residues 435–437 were
selected and the ligand’s heavy atoms delimited the second center of mass. The remaining
CV was defined from WHIM’s second principal moment using the ligand’s heavy atoms.
The bias factor was set to 5.0 while the Gaussian height was set to 0.08 kcal/mol with a
width of 0.25 Å. The Gaussians were deposited every 250 steps; additional parameters were
similar to those detailed in Section 2.3.2.

Additionally, we examined the role of the so-called engagement niche, a region com-
posed of residues K410, S440, G441, A464, and P465 [53]. For this case, the compounds
were docked at a centroid of these residues in PDBID 2P1M. The same definition of CVs
was used. Both metadynamics simulations had production times of 50 ns.

3. Results and Discussion
3.1. De Novo Design of Putative Auxins and Decoys

Figure 1 shows the chemical space delimited by the selected descriptors with Boruta.
Loading values can be found in Table S3 in the Supplementary Information. A good
superposition between generated binders and decoys was observed in both principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). This
suggests that classes may not be linearly separable; a similar behavior was found using
the Rule of Five descriptors (Figure S1). Such a trait is positive, as it shows that decoys are
indeed robust due to sharing similar physicochemical spaces, which in turn may lead to
effective discrimination of its latent space with a good value as screening tools. In addition,
this lack of clear separation underscores the challenge of effective classification using only
physicochemical descriptors. Overreliance on molecular properties leading to negative
effects, such as molecular inflation, has been reported [54,55]. Having established a good
baseline, we trained different classifiers using machine learning algorithms.
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3.2. Machine Learning

Classification and prediction of biological activity based on latent spaces have been
attempted since early quantitative structure activity relationship (QSAR) studies. Still, after
several decades and unexpected results, it became clear that the QSAR is hardly linear in
nature [56], with the added complexity of highly similar compounds with highly variable
biological activity, an issue now defined as activity cliffs [57]. Such a concept has evolved
to activity ridges due to the consistent presence of such behavior in certain scaffolds and
not just compounds [58].

The emergence of empirical rules, such as Lipinski’s Rule of Five [59], suggested
the existence of latent spaces for drug discovery. The notion of a drug-likeness has been
challenged and perhaps clearly debunked [60]. Herein, we did not intend to find a set of
empirical rules to characterize putative auxins but rather a starting point for chemical space
exploration and expansion. We aim to aid the rational design of auxins and related agents.
To this end, we used the generated compounds to train commonly reported classifying
algorithms in order to verify chemical space coverage and the overall significance of
structural information within our data set. For classification tasks, several methods are
used in conjunction to evaluate the accuracy and consistency of predictions. Hereunder,
we selected a combination of four measurements that convey a general picture of both the
data and the model’s performance:

1. Validations curves: To visualize the trend of variance and suggest the presence of bias;
either underfitting or overfitting.

2. Learning curves: Convey information on the learning rate as a function of n in data;
i.e., if the provided examples are enough for effective classification or if the addition
of data may benefit scoring.
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3. ROC curves and Matthews correlation coefficient (MCC): These provide a general
description of the predictive power due to their relation with the confusion matrix.
The inclusion of both is complementary. As MCC can take values between −1 and
1, it is possible to assess if a model is indeed providing a significant difference when
applied or if its success relies more on chance, even when the area under the curve of
the ROC plot would suggest otherwise.

4. Detection error trade-off: Similar to the ROC curve, this metric gives information on
the success of classification tasks. During classification, there is always a trade-off
between the rate of falsely classified values. Therefore, this plot conveys the trend of
said trade-off; an ideal classifier would keep a low rate of both false positives and
false negatives, resulting in a curve downward and to the left, an inverse of sorts to an
expected ROC curve. All these plots can be found in the Supplementary Information
(Figures S2–S9). ROC curves and error trade-off for the models’ best models are
shown in Figure 2.
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As expected, models trained solely with physicochemical data showed low perfor-
mance. Based on the area under the ROC curves, algorithms based on linear methods
performed worst. Moreover, it is quite significant that the classifiers were barely superior to
random chance. When analyzing the detection error trade-off, it also gives an almost linear
trend, suggesting that any improvement in the discrimination of either false positives or
negatives inherently results in an increase in misclassification of the other. This underscores
that proper discrimination between auxins and nonbinders is no easy task. Even random
forest and supporting vector classifiers, which are often regarded as very robust [61–65],
showed poor performance. In addition, a strong tendency to overfitting was found for
these models (see Figures S4 and S6 in the Supplementary Information).

Such results verify the convenience of generating molecular decoys. A common use
of molecular decoys is for structure-based design. Thus, decoys ought to be molecules
that share chemical space with actives, with little to no pharmacophoric similarity. The
quest for such compounds resulted in the construction of datasets such as DEKOIS [66] or,
most notably, DUDE-Z [67]. Only recently have use cases been extended to ligand-based
methods and scoring function construction [68,69]. Hence, we have confirmed that decoys
do share the chemical space using two sets of very different descriptors.

To confirm the second half of the provided definition, topological and structural
features shall be more conclusive in this classification test. Indeed, consideration of these
features proved very significant, as the area under the ROC curves increased roughly by
0.2 in all cases. A random forest classifier showed the lowest AUC value, consistent with its
MCC and error trade-off. Following this logic, it would seem that logistic regression was
the top performer. Yet, such is not the case, as its MCC was 0.53. For this test, nonlinear
methods were more consistent and showed significantly better performance. At first glance,
SVC would seem the superior choice; then again, comparing MCC values suggests that
XGBC shall be preferred.

Our goal was achieved, as the generated compounds do serve as a reasonable sample
for further analysis while also conveying enough information on true binders; still, there
is no denying that the rate of false negatives remains quite high. To some extent, this
result was to be expected, as no computational method is completely accurate and reliable
on its own. Thus, we used structure-based methods to gain further information on what
characterizes a true binder of TIR1.

3.3. Molecular Modelling of Auxins
3.3.1. Mixed Solvents Molecular Dynamics

Protein plasticity is paramount for their function, still this results in an outstanding
challenge to tackle, computationally speaking. A quick comparison between crystallo-
graphic structures of TIR1 (Table 1) shows little conformational variations. Nonetheless, in
a dynamic context, substantial differences may arise, with critical implications for binding
events [70,71]. Hence, to better understand the overall flexibility and features of the auxin
binding pocket, we conducted molecular dynamics with mixed solvents.

During drug discovery campaigns, molecular design often follows a fragment-based
approach where protein structures are crystallized iteratively in the presence of probe
scaffolds or leads, thus creating an empirical mapping for binding phenomena [72]. A
computational equivalent of this can be found in molecular dynamics with mixed solvents,
where a rather discrete amount of polar solvent molecules is introduced to the simulation
cell. Following an equilibration period, the probe molecules will interact with the protein.
Therefore, the occupancy of these can be evaluated and further compared. A notable
advantage of such protocol is that the calculation of occupancy can be made from different
probes as a means of attaining consensus, which, in turn, increases descriptive power and
may be used to delimit allosteric or even cryptic pockets within proteins [73].

For this work, 45 independent simulations of TIR1 structures were produced, account-
ing for 900 ns. Figure 3 shows the computed surfaces from this sampling. Notably, the
auxin binding pocket had the highest scoring.
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Table 1. Root mean squared deviation values from the structural alignment of TIR1 structures.
Binding site residues with above-average deviations are shown.

PDBID 2P1M 2P1P 2P1Q 2P1O 2P1N

2P1M

(RMSD 0.16 Å)
H78 − 0.32
F79 − 0.18
D81 − 0.31
F82 − 0.19

C405 − 0.27
S438 − 0.19
L439 − 0.22
S440 − 0.19
S462 − 0.18

(RMSD 0.22 Å)
H78 − 0.3
F79 − 0.3

D81 − 0.58
F82 − 0.45

C405 − 0.27
R435 − 0.23
S438 − 0.23
L439 − 0.3

R489 − 0.22

(RMSD 0.27 Å)
H78 − 0.36
D81 − 0.59
F82 − 0.52

C405 − 0.29
L439 − 0.87

(RMSD 0.33 Å)
H78 − 0.41
F79 − 0.38
D81 − 0.55
F82 − 0.35

C405 − 0.54
L439 − 0.85
V463 − 0.49
A464 − 0.58
R489 − 0.33

2P1P

(RMSD 0.16 Å)
F79 − 0.18
D81 − 0.28
F82 − 0.52
L439 − 0.2
A464 − 0.2
R484 − 0.22

(RMSD 0.22 Å)
D81 − 0.29
F82 − 0.6

A464 − 0.22

(RMSD 0.26 Å)
F79 − 0.26
D81 − 0.29
F82 − 0.45

C405 − 0.37
R435 − 0.27
L439 − 0.66
V463 − 0.37
A464 − 0.54

2P1Q

(RMSD 0.14 Å)
F49 − 0.15

L439 − 0.62
S440 − 0.16

(RMSD 0.22 Å)
H78 − 0.28
C405 − 0.29
R435 − 0.35
L439 − 0.62
V463 − 0.42
A464 − 0.4

2P1O

(RMSD 0.19 Å)
H78 − 0.3
F82 − 0.22

C405 − 0.31
R435 − 0.28
V463 − 0.43
A464 − 0.42
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In general, the conformational variations in TIR1 did result in noticeable changes in
the shape of the druggable regions. Overall, the observed ring shape is suggestive of the
known mechanism of auxins, as these stabilize the protein–protein interface. Considering
that said shape is more prominent in 2P1N, a link between ligand polarity and pocket
dynamics is suggested.

As for individual probes, in 2P1M major occupancy was found for N-methylacetamide
and acetohydroxamic acid. In contrast, 2P1P and 2P1N showed a major occupancy of
drug-like probes, particularly imidazole.

Additionally, significant changes in the neighboring region to the engagement niche
were found. This region comprises a phenylalanine triad (F79, 82, and 380), of which
F82 has been reported as significant for the molecular perception of auxins [74]. Based
on the alignments of Table 1, F79 and 82 are consistently flexible between structures. A
higher deviation can be found precisely between 2P1P and 2P1Q, suggesting a transition
between hydrophobic and stacking interactions. This, together with the observed changes in
molecular dynamics with mixed solvents, reinforces the importance of stacking interactions
within the binding pocket.

3.3.2. Assessment of Pocket Solvation and Its Role in Auxin Recognition

As stated in the Methods Section, only recently has the role of pocket solvation been
critically assessed within the context of small molecule binding. Based on crystallographic
structures, it does seem that TIR1 has several water molecules that ought to participate
in auxin binding [75]. To determine if such contribution is relevant for auxin perception,
we compared protein–ligand interactions under different starting conditions of solvation
(Figure 4).

Major differences between the interaction profiles include the contact with R436.
This interaction seems to be mostly driven by water bridges, suggesting a change in
ligand orientation and directionality. From the previous section, residues showing changes
between TIR1 conformations are H78, L439, and A464, with the latter being more displaced
when 2,4-D is bound to TIR1. This trait is noteworthy, as A464 belongs to the engagement
niche. Perhaps the observed variation for L439 can also be linked to the presence of water
bridges. Unfortunately, this was only observed for IAA, so a clear reason remains elusive.
Nevertheless, this may be due to the presence of a nitrogen atom in the indole scaffold, a
feature absent in other binders under study. Still, previous studies have suggested that the
presence of this heteroatom is paramount for the potency and overall affinity of IAA [76].
Hence, it does seem that water interactions are significant within the engagement niche.

H78 also showed subtle but significant differences; unfortunately, it is difficult to assess
if these are the result of solvation or merely the nature of numerical simulation. Another
subtle effect is the change in hydrophobic contacts to stacking interactions. It can be argued
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that, due to the lipophilicity of auxins, these are prone to the latter. However, considering
the cases of NAA and 2,4-D (2P1O and 2P1N, respectively), interaction distribution and
persistence did change due to the solvation environment. Figures S11 and S12 show some
examples of this (vide infra).

Computation 2024, 12, x FOR PEER REVIEW 11 of 26 
 

 

Figure 3. Probe occupancy surfaces recovered by molecular dynamics with mixed solvents using 

PBDIDs 2P1M (a), 2P1P (b), and 2P1N (c). Pockets with top-three scores are shown in green, blue, 

and yellow, respectively. 

In general, the conformational variations in TIR1 did result in noticeable changes in 

the shape of the druggable regions. Overall, the observed ring shape is suggestive of the 

known mechanism of auxins, as these stabilize the protein–protein interface. Considering 

that said shape is more prominent in 2P1N, a link between ligand polarity and pocket 

dynamics is suggested. 

As for individual probes, in 2P1M major occupancy was found for N-methylacetam-

ide and acetohydroxamic acid. In contrast, 2P1P and 2P1N showed a major occupancy of 

drug-like probes, particularly imidazole. 

Additionally, significant changes in the neighboring region to the engagement niche 

were found. This region comprises a phenylalanine triad (F79, 82, and 380), of which F82 

has been reported as significant for the molecular perception of auxins [74]. Based on the 

alignments of Table 1, F79 and 82 are consistently flexible between structures. A higher 

deviation can be found precisely between 2P1P and 2P1Q, suggesting a transition between 

hydrophobic and stacking interactions. This, together with the observed changes in mo-

lecular dynamics with mixed solvents, reinforces the importance of stacking interactions 

within the binding pocket. 

3.3.2. Assessment of Pocket Solvation and Its Role in Auxin Recognition 

As stated in the Methods Section, only recently has the role of pocket solvation been 

critically assessed within the context of small molecule binding. Based on crystallographic 

structures, it does seem that TIR1 has several water molecules that ought to participate in 

auxin binding [75]. To determine if such contribution is relevant for auxin perception, we 

compared protein–ligand interactions under different starting conditions of solvation 

(Figure 4). 

 

Figure 4. Comparison of protein–ligand interactions for the auxin/TIR1 complexes (PDBIDs 2P1Q,
2P1O, and 2P1N). Whenever the interaction fraction goes beyond 1, it is indicative of more than
one contact with said residue. Top row shows results from simulations preserving crystal water
molecules, bottom row shows results discarding said waters.

For further proof, we constructed transition networks based on protein–ligand in-
teractions. Briefly, these networks encode microstate information. Hence, neighboring
microstates share similar information. If these clusters are densely populated, this can
be related to metastability, delimiting a local minimum [77]. Plus, given enough data,
these can even confer kinetic information [78]. Thus, it is very important to delimit which
information is used to describe said microstates. Due to this, an additional criterion for
comparison was introduced. Transition networks were then constructed with and without
the inclusion of water bridges in their definition. These involve a hydrogen bond with
the following criteria: a distance of 2.8 Å between the donor and acceptor atoms; an an-
gle ≥ 110◦ between donor-hydrogen-acceptor atoms; an acceptor angle ≥ 90◦ between
hydrogen-acceptor-bonded atoms. Figure 5 shows the obtained transition networks.

As suggested previously, water–ligand interactions do have a significant impact on
auxin binding. Metastability of binding modes was present in all three simulations with
crystal waters; plus, this trait is further accentuated with the introduction of water bridges to
microstate definition. Such behavior is more noticeable for the synthetic auxins, reinforcing
the established link between ligand polarity and pocket dynamics.
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In stark contrast, transition networks from conventional protocols were highly vari-
able. For IAA’s case (2P1Q), an inverse pattern is observed as it shows some degree of
metastability based on the three clusters and a densely populated network. NAA, on the
other hand, showed highly transient interactions. While some states are indeed revisited,
no apparent clustering arises under these conditions. The omission of water bridges does
result in a more complex network; then again, the transient nature of contacts persists.
Finally, for 2,4-D, metastability is clearly shown by three well-defined clusters, suggesting
a local minima or basin.

The inclusion of water-mediated interactions did improve the representation and
gave a more robust description of basins and metastability. It can be argued that such
observations are to be expected due to the complex nature of binding and the balance
of enthalpic and entropic contributions. Nonetheless, our aim is not to strictly evaluate
the role of water interactions but their general contribution to discern between binders
and nonbinders. To this end, we conducted GCMC/MD simulations with IAA and TRP.
For these simulations, PDBID 2P1P was used. The comparison was between a common
MD protocol and GCMC/MD using similar analyses described above. Figure 6 shows
protein–ligand interactions retrieved from IAA and TRP. For the most part, the GCMC/MD
protocol was successful in establishing a water network within the pocket. The prominent
water bridge between the ligand and R436 was also recovered. This is a positive result, as it
highlights the robustness of the method and its placement of solvent molecules.

On the other hand, the interaction profile remains consistent and similar to those in
previous simulations, providing further proof of the significance of water bridges in mi-
crostate definition. For IAA, perhaps a notable change is the dominant stacking interaction
with F79 instead of a hydrophobic contact.

In contrast, one of the most consistent residues was R436, which, in turn, suggests that
this water bridge can be regarded as “canonical” and not anecdotal behavior. Moreover,
the complete absence of said bridge in conventional protocols is very interesting. A similar
case was found in 2P1O; this interaction was not able to form under standard conditions.
Of note, simulations of both 2P1Q and 2P1N were able to form this interaction. The fact
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these subtle variations within the binding site of TIR1 introduce such divergent results is
remarkable. This stands as a cautionary tale for the well-known limitations of structure base
methods, while also highlighting that structure selection is no trivial matter [79,80]. Herein,
it was found that 2P1P is prone to the loss of ligand–solvent interactions, whereas 2P1Q and
2P1N may yield more reliable and consistent results. For further assessment, we analyzed
the root mean square fluctuation of auxins in these sets of simulations (Figures S10–S13).
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compared between IAA (a,b) and TRP (c,d). Simulation protocols under conventional MD (left) and
GCMC/MD (right) are also compared.

Considering IAA and TRP in 2P1P, RMSF plots indicate higher fluctuation when water
molecules are correctly placed in the pocket. Under a standard protocol, the fluctuations
are significantly suppressed, more so for IAA’s case. For both ligands, higher fluctuation
was observed on the nitrogen side of the scaffold. This is worth mentioning, as this part of
the molecule faces in the vicinity of F79.

When comparing NAA and 2,4-D, interesting patterns were found. For the former, the
fluctuation profile was very persistent with respect to its fit within the binding site, with the
main difference being found in the carboxylic acid moiety, which may be explained by the
loss of the water bridge with R436. For 2,4-D, the fluctuation profile changed but in contrast
to IAA, TRP, and NAA, higher values were observed under standard conditions. Taking
into account that atoms showing this behavior were both chlorines and the carbon atoms of
this side of the phenyl ring, this is yet another case where the solvation environment ought
to be the main driving force.

As for the ligand’s fit, the fluctuation was very consistent and almost unaffected. In
all cases, the highest value was found in the charged oxygen. For TRP, this was more
prominent and even expected due to the amino group. Beyond that, only 2,4-D showed
differences in fluctuation for this atom between protocols.
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3.3.3. Molecular Dynamics

In view of prior results, we used an integrative approach for the analyses of known
binders and nonbinders. In an attempt to facilitate the correct assessment of binding,
we propose the use of protein–ligand interaction fractions, concurrence maps, transition
networks, and ligand–protein interactions simultaneously. We present two cases as proof
of concept: diclofenac (DCF) and quinclorac (QCL). Both are arylic carboxilic acids, with
quinclorac being an auxin herbicide. However, the molecular target of quinclorac is not
TIR1 but rather F-box protein ABP5 [40].

DCF is a nonsteroidal anti-inflammatory agent (NSAID) and, thus, not an auxin per
se but it has been shown that exposure to this drug can cause effects similar to those of
IAA [41]. Figure 7 presents the consensus analyses of the molecular dynamics simulation of
DCF after docking in TIR1. Indeed, it can be observed that its interaction profile is similar
to that of synthetic auxins. Nonetheless, there are no ionic or stacking interactions with
H78. This may be attributed to the ring’s orientation due to the hindrance of the chlorine
atoms. Another significant observation is the diminished presence of the water bridge with
R436. Both traits are consistent with our previous results and hypothesis on the role of
auxin polarity, water bridges, and pocket dynamics.
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When analyzing contact concurrence and interaction network, these suggest that DCF
remains in the general vicinity of the main pocket. This, in addition to the observed basins
and metastability, can be taken as an indication of true binding. These observations provide
a strong case in favor of the proposed protocol; still, a criterion related to binding affinity is
needed to assess the relative potency of a given ligand.

On the other hand, QCL has no experimental affinity for TIR1. Figure 8 shows the
results of the consensus analyses from MD. Based on the interaction profile, all contacts are
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significantly weaker for quinclorac. Additionally, the water bridge with R436 is nonexistent;
perhaps it is due to this that the interaction network shows a highly transient behavior.
No basins were observed and this is consistent with the concurrence plot as it suggests
that quinclorac remains near hydrophobic residues; i.e., F82 and 380. Due to its planarity,
the presence of stacking interactions with these hydrophobic residues may be enough to
stabilize QCL within the pocket. Beyond that, any significant contact is barely present;
the main anchor was R489, as confirmed by ligand–protein interactions. Yet, even this
interaction is lost in favor of hydrogen bonding with H78.
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Results for the other pairs under study can be found in the Supplementary Information,
Figures S14–S19. Akin to results from Section 3.3.2, IAA showed a highly stable binding.
Stacking interactions with F82 and 380 were observed. The transition network showed only
one highly populated basin with significant metastability. Also, the persistence of the water
bridge with R436 is noteworthy.

Interestingly, as discussed in the previous section, a densely populated basin was
found for TRP. Such a trait by itself would suggest that TRP is a putative ligand of TIR1.
Nevertheless, inspection of the interaction profile is divergent when compared to that of
known binders, just as QCL contact with H78 is diminished and mostly ionic in nature.
Moreover, it must be stated that, based on concurrences and ligand protein interactions,
the recovered binding mode for TRP is notably stable. Even after 500 ns, this nonbinder
was able to remain within the pocket. This may be attributed to the indole scaffold due to
the stacking interactions with both F82 and 380, the strong presence of the water bridge
with R436, and additional water bridges with the engagement niche. May this be a notable
warning that even within “long” simulations, nonbinders can be falsely identified as hits
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due to pharmacophore similarity. As seen with DCF, this is yet another case where affinity
would provide a decisive criterion for true binding assessment and pruning.

As for NAA, both isomers had similar concurrence maps and ligand–protein inter-
actions. Despite this, the interaction profile of the α-napthyl acetic acid showed stacking
interactions with H78, F79, and 82; traits absent for the β isomer. The main difference,
however, was found in transition networks. With one of the NAA showed a clear basin
with significant metastability, whereas 2-NAA showed a network more in line with the one
observed for QCL. Experimental evidence confirms that, indeed, NAA has a higher potency.

Finally, we discuss the results for fluroxypyr (FXY) and rinskor (RSK); both auxin her-
bicides belonging to the picolinate subclass [81]. Similarly to QCL, these have a preference
for ABF proteins. Still, fluroxypyr can bind significantly to TIR1. Based on the interaction
profile, FXY seems to be a binder whose main anchors are H78 and R489. Interestingly, this
arginine exhibits an analogous behavior to that of R436.

This added to its general positioning, makes us hypothesize that auxin orientation
initiates with K410 just outside the engagement niche, with R489 serving as the pulling
mechanism toward the auxin site, a premise supported by the transition network, where
some minor basins seemed to be found with shared microstates. Based on the interaction
profile and the presence of additional water bridges, this could be the origin of said
transitions. The concurrence plot also seems to favor this, since FXY stays in the general
vicinity of H78 during the simulation, making close contact with D487 only during the last
segment of the run.

In turn, for RSK, the interaction profile was dominated by hydrophobic and stacking
interactions. Notably, water bridges were also present, again with R489. A crucial detail,
however, is that RSK presented an inverse binding; i.e., a general orientation toward the
engagement niche and R489 and the phenylalanine triad. Uzunova et al., found similar
arrangements for TRP using tomographic docking [53]. Perhaps this can be attributed to
the absence of the carboxylic acid moiety, esterified in RSK.

Of note, both RSK and related picolinate Arylex are readily metabolized to carboxy-
lates; it has been suggested that their high potency is due to this activation step [82]. In our
case, the preservation of the ester was deliberate, precisely to test the interaction profile and
prior observations. The transition network shows a putative basin with transient behavior;
still, as the simulation continues, microstates are highly transient and the basin is no longer
explored. In this regard, the concurrence map suggests that overall RSK remains very stable
during most of the run. Therefore, this is yet another case where water bridges may be the
reason behind this pattern.

3.3.4. Coarse Metadynamics

In order to have an additional criterion, for cases where consensus analyses could
prove ambiguous, we conducted coarse metadynamics. Briefly, metadynamics belongs
to enhanced sampling methods, intended to favor rare events. For this case, a bias is
introduced as specific degrees of freedom (CVs), which are subject to Gaussian potentials.
These potentials help to fill the minima defined by CVs; in the context of small molecule
binding, a coarse approach has been proposed and validated elsewhere [49]. While it is
true that metadynamics has been successfully applied to determine binding mode stability,
a major challenge is CV selection.

Herein, we used the distance between centers of mass as it has proven to be a very
robust choice in previous studies. Now, for the ligand’s degrees of freedom, we settled on
the WHIM descriptor due to its conceptualization and the overall positive results found
during machine learning. Commonly, metadynamics simulations are made from docking
poses. Therefore, in order to probe the engagement niche, we carried out docking in the
vicinity of this region and used metadynamics to “force” ligands toward the binding pocket.
Figure 9 shows free energy surfaces (FES) for DCF.
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This compound only exhibited one basin in each metadynamics run. Interestingly, the
distance and affinity values for these were close. Nonetheless, when binding poses from
the basins were inspected, an interesting picture emerged (Figure 10). When DCF starts
within the pocket and is pulled outward, it gets stuck in the vicinity of F351 and R489. In
contrast, when DCF starts from the engagement niche, it is able to enter the auxin pocket
and adopts a canonical orientation toward H78, F82, and 380, indicative of true binding.
It can be argued that in both arrangements, DCF is enclosed by several water molecules.
Yet, this could be due, to the noisy behavior of short metadynamics. Now, taking all prior
results and the computed affinity value (~−19 kcal/mol) confirms the role of DCF as a true
binder. Nevertheless, the significance of this value remains relative to that of other auxins
calculated with the same protocol, discussed below.
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Recovered FES for QCL are shown in Figure 11. For this compound, a clear unbinding
event took place. Akin to DCF, a single basin was found, when a visual inspection of the
binding mode was carried out (Figure 12), QCL was outside the neighboring region of the
engagement niche. Contrary to DCF, the synthetic auxin was not able to effectively bind to
any region during its exit. When QCL starts from the engagement niche, based on COM,
distance values suggest that binding did occur. Following visual inspection of the binding
mode, it would seem that a true binding was indeed achieved, as QCL is interacting with
H78. Then again, this is only via hydrogen bonding, there is no interaction with F79, 82,
or 380 nor any contact or presence of any arginine residue. Even if the suggested affinity
is rather high (−32 kcal/mol), this binding mode is not characteristic of any auxin under
study. Also, this value can be the result of low sampling of the observed basin. As stated,
even affinity estimates from metadynamics are qualitative in nature, more so when short
runs are produced. Given enough time, this value is likely to diminish toward a more
representative one.

Now, for the additional auxins and nonbinders, their FES diagrams and representative
binding poses from basins can be found in the supplementary information (Figures S20–S31).
Herein, we just provide some details and highlights but we think that the results
are self-explanatory.

IAA serves to establish a baseline for affinity values. Akin to experimental reports, it
showed the highest value of all true binders (−24 kcal/mol) when initiating from within
the binding pocket, followed closely by NAA isomers (−22 kcal/mol), also consistent
with experimental affinity, which is usually one order of magnitude below IAA [15,40,83].
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For these cases, metadynamics could not distinguish between isomers just with affinity
estimates. Nonetheless, only NAA showed true binding modes in both metadynamics runs.
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complexes with ligand positioned within the binding site (top) and positioned within the engagement
niche (bottom).

TRP was correctly classified as a nonbinder, even when a quasicanonical arrangement
was found, the affinity estimate was very low (−16 kcal/mol). RSK showed even lower
values (−14 kcal/mol); notably, this was consistent between runs and its tendency to
remain inversely placed within the pocket.

The case for FXY is a rather interesting one as an unbinding event occurred and it
remained tightly bound to the engagement niche surface. Given the previous results, we
cannot provide an explanation for this discrepancy. Indeed, this case presses for further
study while also highlighting the need for additional experimental information.
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4. Conclusions

Herbicide development is an endeavor of high interest from both an economic and
chemical standpoint. Currently, there are worldwide efforts to replace commonly used
agents such as glyphosate or 2,4-D. Herein, we presented a computational characterization
of TIR1, one of the molecular targets associated with auxin pathways. With the aid of
structure-based methods, we analyzed a series of compounds in silico; we found that
water plays an important role in binding and were able to characterize significant protein–
ligand interactions.

Using de novo design, we proposed a library of putative binders and molecular decoys.
Chemical space showed a good superposition between them, a trait further supported by
machine learning results. Herein, nonlinear methods were more consistent and performed
reasonably while conveying enough information on true binders. Our results also showed
that current data make correct classification of false negatives difficult. This behavior was
recurrent in this and other studies.

Hence, we conducted a structure-based characterization of the TIR1 pocket to deter-
mine major traits that could provide a robust protocol for true binder assessment. We found
that the inclusion of water-mediated interactions gave a more robust description of local
minima and metastability. Also, we found a persistent water bridge between ligands and
R436, which, to the best of our knowledge, has not been described as significant.

In addition, our results suggest that the TIR1 structures best suited for molecular
modeling are 2P1Q and 2P1N as these are able to retain subtle solvent effects, even under
conventional protocols.

We also probed the engagement niche, confirming its role in molecular recognition
and the overall plasticity of the auxin-binding pocket. Changes in ligand polarity make
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a significant impact on pocket dynamics and the orientation of hydrophobic residues
involved in stacking interactions.

Using coarse metadynamics, we were able to further assess the affinity of known
auxins and TIR1. Overall, the collective variables used in this study provide a robust
description of ligand degrees of freedom and provide yet another criterion for virtual
screening campaigns.

The database and the analyses presented in this work will be a valuable starting point
for the development of molecular generators or virtual screening campaigns.

Supplementary Materials: The following Supplementary Information can be downloaded at:
https://www.mdpi.com/article/10.3390/computation12050094/s1, Figure S1. Chemical space of
the generated compounds; using descriptors from the Rule of Five. Projection comes from principal
component analysis (left) and t-SNE (right); Table S1. Parameters used for OpenGrowth in the
present study; Figure S2. Performance assessment of logistic regression classifier trained with physic-
ochemical descriptors; Table S2. Molecular descriptors selected by the Boruta algorithm; Figure S3.
Performance assessment of logistic regression classifier trained with physicochemical and structural
descriptors; Table S3. Loading values from principal component analyses for the Boruta defined
space and RO5 space; Figure S4. Performance assessment of supporting vectors classifier trained
with physicochemical descriptors; Table S4. Hyperparameter values determined by grid search for
the trained classifiers only with physicochemical descriptors; Figure S5. Performance assessment
of supporting vectors classifier trained with physicochemical and structural descriptors; Table S5.
Hyperparameter values determined by grid search for the trained classifiers with physicochemical
and structural descriptors; Figure S6. Performance assessment of random forest classifier trained
with physicochemical descriptors; Figure S7. Performance assessment of random forest classifier
trained with physicochemical and structural descriptors; Figure S8. Performance assessment of
extreme gradient boost classifier trained with physicochemical descriptors; Figure S9. Performance
assessment of extreme gradient boost classifier trained with physicochemical and structural descrip-
tors; Figure S10. Comparison of IAA root mean square fluctuations (RMSF) from different solvation
conditions; Figure S11. Comparison of NAA root mean square fluctuations (RMSF) from different
solvation conditions; Figure S12. Comparison of 2,4-D root mean square fluctuations (RMSF) from
different solvation conditions; Figure S13. Comparison of TRP root mean square fluctuations (RMSF)
from different solvation conditions; Figure S14. Consensus analysis of MD simulation of indol acetic
acid (IAA); Figure S15. Consensus analysis of MD simulation of tryptophan (TRP); Figure S16.
Consensus analysis of MD simulation of α-naphtyl acetic acid (NAA); Figure S17. Consensus anal-
ysis of MD simulation of β-napthyl acetic acid (2-NAA); Figure S18. Consensus analysis of MD
simulation of fluroxypy (FXY); Figure S19. Consensus analysis of MD simulation of rinskor (RSK);
Figure S20. Free energy surfaces computed from well-tempered metadynamics for the NAA/TIR1
complexes; Figure S21. Representative NAA conformations found at basins from metadynamics runs;
Figure S22. Free energy surfaces computed from well-tempered metadynamics for the 2-NAA/TIR1
complexes; Figure S23. Representative 2-NAA conformations found at basins from metadynam-
ics runs; Figure S24. Free energy surfaces computed from well-tempered metadynamics for the
FXY/TIR1 complexes; Figure S25. Representative FXY conformations found at basins from meta-
dynamics runs; Figure S26. Free energy surfaces computed from well-tempered metadynamics
for the IAA/TIR1 complexes; Figure S27. Representative IAA conformations found at basins from
metadynamics runs; Figure S28. Free energy surfaces computed from well-tempered metadynamics
for the RSK/TIR1 complexes; Figure S29. Representative RSK conformations found at basins from
metadynamics runs; Figure S30. Free energy surfaces computed from well-tempered metadynamics
for the TRP/TIR1 complexes; Figure S31. Representative TRP conformations found at basins from
metadynamics runs.
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