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Abstract: Item quality is crucial to psychometric analyses for cognitive diagnosis. In cognitive
diagnosis models (CDMs), item quality is often quantified in terms of item parameters (e.g., guessing
and slipping parameters). Calibrating the item parameters with only item response data, as a common
practice, could result in challenges in identifying the cause of low-quality items (e.g., the correct
answer is easy to be guessed) or devising an effective plan to improve the item quality. To resolve these
challenges, we propose the item explanatory CDMs where the CDM item parameters are explained
with item features such that item features can serve as an additional source of information for item
parameters. The utility of the proposed models is demonstrated with the Trends in International
Mathematics and Science Study (TIMSS)-released items and response data: around 20 item linguistic
features were extracted from the item stem with natural language processing techniques, and the item
feature engineering process is elaborated in the paper. The proposed models are used to examine
the relationships between the guessing/slipping item parameters of the higher-order DINA model
and eight of the item features. The findings from a follow-up simulation study are presented, which
corroborate the validity of the inferences drawn from the empirical data analysis. Finally, future
research directions are discussed.

Keywords: cognitive diagnosis model; explanatory model; linear logistic test model; item features;
text mining

1. Introduction

It is a common practice that the item parameters of the cognitive diagnosis models
(CDMs) are calibrated only using the item response data. Such practice could result in
challenges in item development. For example, when the item parameter estimate(s) suggest
that an item is of low quality (e.g., the correct answer is easy to be guessed), it is hard to
identify the cause of such low quality or to devise an effective item revision plan to improve
the item quality.

Similar issues were encountered in the Item Response Theory (IRT) framework as
well where the item parameters were traditionally estimated solely by the response data.
Fortunately, the availability of the item features has provided viable solutions to both issues
in the IRT framework. In particular, the item linguistic features were found to be associated
with the item difficulty (e.g., Drum et al. 1981; Embretson and Wetzel 1987; Jerman and
Mirman 1973; Lepik 1990) and served as an additional piece of information to explain and
inform the IRT model parameters (e.g., Embretson and Wetzel 1987; Paap et al. 2015). In
the item explanatory IRT models proposed by De Boeck and Wilson (2004), the observed
item features were included in the traditional IRT models to explain the item parameters
that had traditionally been descriptive. A well-known instance of the item explanatory
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IRT model is the linear logistic test model (LLTM; Fischer 1973) where the item difficulty
parameter of the Rasch model is explained by some item features.

The additional information provided by item features could be even more valuable in
the CDM framework than in the IRT framework. The item parameters of the CDMs (e.g.,
guessing and slipping probabilities) could be less straightforward and harder to manipulate
in the item writing process than those in the IRT models (e.g., item difficulty), which calls
for more pressing needs of explaining these CDM item parameters with manifest item
features. However, to date, no studies have been performed to link the item features to
the item parameters of the CDMs, despite the fact that some emerging explanatory CDMs
have linked some person covariates to the CDM person or the structural parameters (Ayers
et al. 2013; Park et al. 2018; Park and Lee 2014, 2019). Historically, a possible obstacle
to incorporating the item features in the measurement models could be the fact that the
item feature extraction tasks used to be costly in time and human resources. For example,
the item features may need to be analyzed and be coded manually by multiple groups of
readers (e.g., Drum et al. 1981).

To fill the gap in the research on the CDMs with item features, we propose the item
explanatory CDMs that explain the CDM item parameters with item features. We also took
advantage of natural language processing (NLP), which makes it feasible to extract the
item features efficiently. The most direct implication of the proposed models is that they
reveal the relationships between the descriptive CDM item parameters (particularly the
guessing and slipping parameters in this study) and the manifest item linguistic features.
Understanding such explanatory relationships could further shed light on the item revision
to improve item quality. The rest of the paper is structured as follows: After establishing
the theoretical framework and detailing the specifications of the proposed models, we
demonstrate their application using the Trends in International Mathematics and Science
Study (TIMSS) data. We particularly focus on explaining item parameters with item
features. To assist future researchers, the process of item feature engineering is detailed.
The robustness of our empirical data analysis is supported by a simulation study, which
evaluates model parameter recovery under various feature configurations.

2. Theoretical Framework
2.1. Explanatory CDM

CDMs are a type of models that provide inferences on people’s strengths and weak-
nesses on a series of attributes. Rupp et al. (2010) have mentioned the feasibility of
including covariates into the structural portion of the CDMs. In recent decades, some
studies have been conducted to incorporate person covariates to explain the model param-
eters in the CDMs (Ayers et al. 2013; Park et al. 2018; Park and Lee 2014, 2019; Templin
2004). In particular, Ayers et al. (2013) and Park and Lee (2014) have linked the observed
person covariates to either single attribute or response probabilities in the deterministic
inputs, noisy-and-gate (DINA; Haertel 1989; Macready and Dayton 1977) model using a
logistic function. More recently, Park et al. (2018) proposed an explanatory CDM (ECDM)
framework that incorporated latent covariates, in addition to the observed ones, to explain
the attribute profiles or item responses in the re-parameterized DINA model. However,
while Park et al. (2018) extensively explored the incorporation of observed or latent person
predictors (e.g., confidence), they did not delve into the use of item predictors (e.g., item
characteristics) or the explanation of the item parameters.

2.2. Linking Item Features to Item Psychometric Properties

Manifest item features, especially linguistic features, have been found to be related
to the item p-value—a difficulty index in the Classical Test Theory (CTT)—for a variety of
educational problems, such as reading comprehension (Drum et al. 1981), arithmetic word
problems (Jerman and Mirman 1973) and algebraic word problems (Lepik 1990). Some
more recent studies based on the IRT framework have also identified some item linguistic
features to be significant predictors of item or assessment properties such as item difficulty
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(Embretson and Wetzel 1987) and testlet dependency (Paap et al. 2015). Thus, it is worth
exploring whether the manifest item features, especially linguistic features, are associated
with the item psychometric properties in the CDM framework.

3. The Proposed Model
3.1. Model Specification

The proposed models differ from existing explanatory CDMs (Ayers et al. 2013; Park
et al. 2018; Park and Lee 2014, 2019; Templin 2004) by focusing on explaining CDM
item parameters using item features. This distinction arises from two main perspectives:
utility and model formulation. Unlike the existing models, which primarily enhance the
estimation and explanation of person attribute profiles or item responses, the proposed
models utilize item predictors to explain and potentially enhance the estimation of item
parameters. This implies that the audience or users differ between the existing explanatory
CDMs and the proposed models. Existing models could be primarily oriented towards
educators and policymakers. They provide insights into person attributes, aiding in the
allocation of educational resources or tailoring instructional strategies to enhance student
skills. On the other hand, the proposed models are designed with test developers and
item writers in mind. These users benefit from understanding how specific item features
influence item parameters, thus aiding in the creation and refinement of assessment items
for improved quality and effectiveness. From the model formulation standpoint, while
existing models link covariates (mostly person-related) with person parameters or directly
to item responses, the proposed models distinctly and separately associate item covariates
with item parameters, introducing greater flexibility in the use of the item covariates

In line with De Boeck and Wilson (2004)’s terminology, we view the existing explana-
tory CDMs, including the ECDMs proposed by Park et al. (2018), as more aligned with
explanatory models on the person side. In contrast, the proposed models are conceptual-
ized as explanatory models on the item side. More specifically, we position the proposed
models as a CDM variation of the LLTM. Furthermore, we explored the integration of
a random effect in item parameters, analogous to the random effect extension in LLTM
(Janssen et al. 2004).

Since this is the first attempt to explain the item parameters of the CDMs with item
covariates, the DINA model (Junker and Sijtsma 2001; Macready and Dayton 1977) is chosen
as the foundation of the proposed models due to its popularity and simplicity, thereby
enabling this paper to focus on the innovative explanatory part of the model. However, it
would be straightforward to extend the proposed models to more generalized CDMs, such
as the LCDM (Henson et al. 2009) and the G-DINA model (de la Torre 2011), by linking the
item features to the interested item parameters in these models (e.g., item intercept and
attribute main effects). The DINA model specifies that the probability of a correct item
response as

P
(

Yij = 1
∣∣∣ηij, gi, si

)
= (1 − si)

ηij(gi)
1−ηij ,

where ηij = ∏K
k=1 α

qik
jk , indicating whether person j masters all attributes required to solve

item i; αjk indicates whether person j masters attribute k; and qik indicates whether item
i requires attribute k in the Q-matrix. gi and si are guessing and slipping parameters,
respectively, which are also treated as item parameters. Items with higher guessing and
slipping parameters are usually considered to be of lower quality (Ma et al. 2016) and, thus,
could reduce the classification accuracy (de la Torre et al. 2010; Kaplan 2016; Ma et al. 2016;
Sorrel et al. 2017). The joint likelihood of the DINA model is given as

L(s, g;η) =
J

∏
j=1

I

∏
i=1

[
s

1−yij
i (1 − si)

yij

]ηij[
g

yij
i (1 − gi)

1−yij
]ηij

,

where yij indicates whether person j responds to item i correctly.
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Analogous to the LLTM, the proposed item explanatory DINA models extend the
DINA model by decomposing its guessing or slipping parameters into a linear combination
of item features through a logit link function, i.e., logit(gi) = γ0 +∑M

m=1 γmZim or logit(si) =
φ0 +∑M

m=1 φmZim, where Zi is a vector that contains M item features of item i; γ0 and φ0 are
intercepts (i.e., the logit scale of the guessing or slipping probabilities when all the item
features take the value of 0); and γm and φm are coefficients of the mth item feature.
The above specifications of the explanatory component have assumed that the item fea-
tures can perfectly predict the item parameters, which could be an overly strong as-
sumption. Alternatively, a residual term can be included in the model to absorb the

unexplained variance in the item parameters, i.e., log it(gi) = γ0 +
M
∑

m=1
γmZim + ε(g)i,

or log it(si) = φ0 +
M
∑

m=1
φmZim + ε(s)i.

We choose to use the Bayesian Markov chain Monte Carlo (MCMC) method to estimate
the parameters of the proposed models, as it has proved to be useful and, in theory, superior
to the frequentist methods in estimating the LLTM+e model (i.e., the LLTM with a residual
term) which treated both the person and item parameters as random effects (De Boeck 2008;
Janssen et al. 2004). Accordingly, we assume a general unidimensional factor θj underlying

the attributes, i.e., P(αjk = 1|θj) =
exp(ξkθj + βk)

1 + exp(ξkθj + βk)
, as such higher-order structure could

improve the estimation efficiency of the Bayesian MCMC method in CDMs (de la Torre
and Douglas 2004).

To accurately describe the nature of the proposed models, the proposed models are
referred to as the item explanatory higher-order DINA (IE-HO-DINA) models in the
subsequent sections. In summary, four IE-HO-DINA models are proposed, and they vary
on (1) the item parameter (i.e., whether the guessing or the slipping parameter) that is linked
to the item features and (2) whether an item residual term is included. The four models
are labelled as IE-HO-DINA-g, IE-HO-DINA-s, IE-HO-DINA-g-R and IE-HO-DINA-s-R,
and their detailed specifications can be found in Table 1. Note that since the originally
item-specific guessing and slipping parameters are expressed in more canonical forms in
the IE-HO-DINA models, i.e., as combinations of item features, the IE-HO-DINA models
are expected to be more reduced and have fewer item parameters than the HO-DINA
models.

Table 1. Data fitting models and model fit results in empirical data analysis.

Model
The Item

Parameter Linked
to Item Features

Contain a
Residual Term or

Not

# of
Parameters PPP DIC

HO-DINA - - 80 0.455 44,515.42
IE-HO-

DINA-g Guessing No 52 0.478 46,540.49

IE-HO-
DINA-g-R Guessing Yes 53 0.454 44,499.50

IE-HO-
DINA-s Slipping No 52 0.215 45,717.00

IE-HO-
DINA-s-R Slipping Yes 53 0.441 44,394.05

Note. PPP = posterior predictive p-value; DIC = deviance information criterion.

3.2. Model Constraints and Identification

Two major constraints are needed to ensure the identification of the IE-HO-DINA
models. First, the mean and variance of the θj are set to be 0 and 1, respectively, for scale
identification. Second, the constraint gi < 1 − si is set to ensure that, even if guessing or
slipping occurs, students who lack one or more required attributes have a lower probability
of success than those who master all the required attributes (Junker and Sijtsma 2001).
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It should be noted that once an item parameter is decomposed as a linear combination

of the item features (e.g., log it(si) = φ0 +
M
∑

m=1
φmZim), it is hard to control the range

of this parameter (e.g., si) as it is jointly affected by multiple item features; thus, the
constraint gi < 1 − si has to be achieved by imposing a constraint on the other item

parameter that is not linked with item features (e.g., gi < 1 −
exp(φ0 +

M
∑

m=1
φmZim)

1 + exp(φ0 +
M
∑

m=1
φmZim)

). This

implies the technical challenge in imposing the constraint of gi < 1 − si while linking the
item features to the guessing and slipping parameters simultaneously.

For those interested in explaining both guessing and slipping parameters with item
features, a viable strategy would be using a two-step procedure: (1) estimate the item
guessing or slipping parameters from the HO-DINA model and (2) regress the guessing
and slipping estimates on the item features. However, one possible trade-off of such two-
step procedure is that the measurement error in the parameters from the HO-DINA model
in Step 1 may carry over to Step 2 to impact the regression coefficient estimation.

4. Empirical Data Analysis
4.1. Data

The proposed IE-HO-DINA models were applied to the released 2011 TIMSS data with
a focus on the sample of the United States fourth-grade in the math domain. To maximize
the number of items in the current analyses, we used a total of 37 items from two released
math booklets, Booklets 5 and 6. The two booklets had 14 items in common. A sample of
1802 participants who had complete responses to either of the booklets were used.

The items were designed to measure three content domains, including number, geo-
metric shapes and measures, and data display (Foy et al. 2013) and these content domains
were treated as attributes in the Q-matrix specification (See Table S1 in the Online Supple-
mentary Materials). All the item scores were dichotomized.

4.2. Feature Engineering

Item features used in this study include one item type feature and twenty-three item
linguistic features (See Tables S2 and S3 in Online Supplementary Materials), based on
findings from previous studies investigating linguistic features of assessment items (e.g.,
Drum et al. 1981; Paap et al. 2015). Most linguistic features were extracted with text mining
techniques using Python 2.7.10 (Python Software Foundation 2015). The linguistic feature
engineering was divided into two processes, text preprocessing and feature extraction,
which are explained below.

4.2.1. Text Preprocessing

Text in the item stems was organized into a plain text document with mathematical
symbols removed, which ensured that only text corpus to be mined. The corpus of each
item was disassembled into individual words (i.e., unigrams) or sentences, which served
as units of analysis in the feature extraction.

4.2.2. Feature Extraction

The linguistic features used in this study were roughly divided into three categories
according to their extraction strategies: the features based on raw tokens, the features based
on the part-of-speech tagging, and the features based on word lists. First, the features
based on raw tokens (e.g., the number of words and the number of sentences) refer to the
summary statistics (e.g., count, length) of the tokens. Second, the features based on the
part-of-speech tagging (e.g., the number of verbs, the number of adjectives) were created as
follows. The word tokens were labeled with their parts of speech (e.g., noun, verb, adjective,
adverb) corresponding to the context of each sentence with the Python nltk package (Bird
and Loper 2004). The characteristics of these labeled tokens were summarized by each
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item (e.g., number of verbs, number of nouns). To create features for the last category, we
imported three standard word lists into Python as references, including the Dale–Chall
word list (Dale and Chall 1955), the Brown News word list and the function word list. The
Dale–Chall word list uses a list of about 3000 words that groups of fourth-grade American
students could reliably understand, considering any word not on that list to be difficult.
This word list was developed in a readability test that provides a numeric gauge of the
comprehension difficulty that readers come upon when reading a text (Dale and Chall
1955). The Brown News word list, containing a total of 100,554 words, is a part of the
Brown Corpus. The Brown Corpus is a general text collection containing 500 samples of
English text compiled at the Brown University. The Brown Corpus was imported with
the nltk.corpus Python module (Bird and Loper 2004). The function word list contains
277 words that express grammatical relationships in sentences (e.g., “almost” and “even”)
retrieved from an open-access online resource (“Function word lists”, 2013), which is an
updated version of the function word list compiled by O’Shea et al. (2012). In this feature
category, the item features were extracted according to the presence of tokens in a word list.

Given that the IE-HO-DINA models contain a linear regression component, multi-
collinearity can yield unstable regression coefficient estimates (Farrar and Glauber 1967).
Thus, the correlations among the item features were examined before conducting the
analyses. It was found that some linguistic features (e.g., word token and the number of
sentences) were highly correlated (ρ > 0.9). To reduce the effect of multicollinearity, only
eight features that were weakly inter-correlated (ρ < 0.3) were retained in the analyses (see
Table S2).

The descriptive statistics of the eight features based on the 37 analyzed items are sum-
marized in Table S4 in the Online Supplementary Material. The variance inflation factors
of all eight features were lower than 5, which suggested no evidence of multicollinearity
(Craney and Surles 2002).

4.3. Model Estimation

The four proposed models were fit to the data. In addition, the HO-DINA model
was fitted to the data as a baseline for comparison. When the data-fitting model was
the HO-DINA model, the guessing and slipping estimates were then regressed on the
item features (i.e., the two-step procedure) and the resulting item feature estimates were
compared with those from the proposed IE-HO-DINA models.

The parameters of the HO-DINA and the proposed IE-HO-DINA models were esti-
mated with the Bayesian MCMC method. The parameter estimation was conducted using
JAGS 4.2.0 (Plummer 2015), which is called from R 3.4.3 (R Development Core Team 2013)
with the R2jags package v0.5-7 (Su and Yajima 2015).

Below, we elaborate the prior distributions, joint posterior distribution, and full con-
ditional distributions of the model parameters. The IE-HO-DINA model parameters had
similar prior settings to those in the HO-DINA model except the guessing and slipping
parameters. The prior distributions of the attribute mastery probability, guessing, slipping
and higher-order structural parameters in the HO-DINA model were specified as:

ajk | θj,βk, ξk ∼ Bernoulli

(
exp

(
ξkθj + βk

)
1 + exp

(
ξkθj + βk

)),

θi ∼ Normal(0, 1),

βk ∼ Normal(0, 2),

ξk ∼ Normal(0, 2)I(0,),

gi ∼ Beta(1, 1),

si ∼ Beta(1, 1)I(, 1 − gi).
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In the IE-HO-DINA-g model, the prior distributions of the item feature coefficients
were set as

γ0 ∼ Normal
(

0, 106
)

,γm ∼ Normal
(

0, 106
)

.

In the IE-HO-DINA-g-R model, the prior distribution of the guessing parameter was
set as

logit(gi) ∼ N

(
γ0 +

M

∑
n=1

γmZim,σ2
ε

)
,si ∼ Beta(1, 1)I(, 1 − gi).

where σ2
ε ∼ InvGamma(1, 1). The priors of the IE-HO-DINA-s and IE-HO-DINA-s-R

model parameters could be set in a similar manner to those in the IE-HO-DINA-g and
IE-HO-DINA-g-R models.

The joint posterior distribution of the IE-HO-DINA-s-R model parameters is

P
(

s, g, α, γ, θ, ξ, β, σ2
ε

∣∣∣Y, Z
)

∝ L(s, g; α)P
(

g
∣∣∣Z, γ, σ2

ε

)
P(γ)P

(
σ2

ε

)
P(s)P(α|θ, ξ, β )P(θ)P(ξ)P(β)

Note that the joint posterior and full conditional distributions for the IE-HO-DINA-g
model are largely similar to those of the IE-HO-DINA-g-R model, with the key difference
being the absence of the error variance term, σ2

ε , in the IE-HO-DINA-g model.
The full conditional distributions of the IE-HO-DINA-g-R parameters given the data

and the other parameters are

P
(

γ
∣∣∣Y, Z, s, g, α, θ, ξ, β, σ2

ε

)
∝ P

(
g
∣∣∣Z, γ, σ2

ε

)
P(γ)

P
(

σ2
ε

∣∣∣Y, Z, s, g, α, γ, θ, ξ, β, σ2
ε

)
∝ P

(
g
∣∣∣Z, γ, σ2

ε

)
P
(

σ2
ε

)
P
(

g
∣∣∣Y, Z, s, α, γ, θ, ξ, β, σ2

ε

)
∝ L(s, g; α)P

(
g
∣∣∣Z, γ, σ2

ε

)
P
(

s
∣∣∣Y, Z, g, α, γ, θ, ξ, β, σ2

ε

)
∝ L(s, g; α)P(s)

P
(

α
∣∣∣Y, Z, s, g, γ, θ, ξ, β, σ2

ε

)
∝ L(s, g; α)P(α|θ, ξ, β )

P
(

ξ
∣∣∣Y, Z, s, g, α, γ, θ, β, σ2

ε

)
∝ P(α|θ, ξ, β )P(ξ)

P
(

β
∣∣∣Y, Z, s, g, α, γ, θ, ξ, σ2

ε

)
∝ P(α|θ, ξ, β )P(β)

P
(

θ
∣∣∣Y, Z, s, g, α, γ, ξ, β, σ2

ε

)
∝ P(α|θ, ξ, β )P(θ)

Two chains with lengths of 20,000 were run and the first 10,000 iterations of each
chain were discarded as burn-in. The potential scale reduction factor (PSRF; Brooks and
Gelman 1998) and the trace plots were checked to assess convergence. The PSRF of the
parameters were all lower than 1.1 and the trace plots have showed good mix of the two
chains (example trace plots can be found in Figure S1 in Supplementary Online Material),
which indicated that convergence has been achieved (Brooks and Gelman 1998).

5. Results

Model fit. The posterior predictive model check (Guttman 1967; Rubin 1981, 1984)
was conducted to evaluate the data-model fit. The posterior predictive p-value (PPP) of the
sum of squares of standardized residuals, which is a discrepancy measure between the data
and the model, was calculated. Extremely small PPP value indicates a bad fit and this study
regards PPP < 0.05 as a sign as bad model–data fit. Additionally, deviance information
criterion (DIC; Spiegelhalter et al. 2002) was used to evaluate relative model fit. According
to the PPP values shown in Table 1, all the five data-fitting models show an acceptable
model–data fit. DIC results indicate that the IE-HO-DINA models (i.e., those without a
residual term) are worse in model–data fit than the HO-DINA model or the IE-HO-DINA-R
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models, which is possibly due to the imperfect prediction of the item parameters from the
item features. In contrast, the IE-HO-DINA-R models (i.e., those with a residual term) fit
the data better than the HO-DINA model. The possible reason could be that, while the
likelihood of the HO-DINA model and the IE-HO-DINA-R models were expected to be
comparable, the IE-HO-DINA-R models contain fewer parameters than the HO-DINA
model and, thus, could be less penalized for model complexity.

The relationship between item features and item parameters. γm and φm coefficients
(Tables 2 and 3) quantify the relationships between the item features and item parameters.
In this study, the item features explained around 26% and 30% of the variance in the
logit of the guessing and slipping parameters, respectively. The Wald test was performed
to examine the null hypothesis that the parameters, γm or φm, equals to 0. Only the
“proportion of words with 6 or more letters” feature is statistically significant based on all
the models. Specifically, this feature is negatively related to the guessing parameter but
positively related to the slipping parameter.

Table 2. Regression coefficient and standard error estimates of guessing features.

Coefficient

Data Fitting Model

HO-DINA with
Two-Step Procedure IE-HO-DINA-g IE-HO-DINA-g-R

Estimate SE Estimate SE Estimate SE

Word token −0.01 0.03 −0.01 <0.01 −0.01 0.02
Number of adjectives −0.11 0.18 0.01 0.02 −0.12 0.17
Number of adverbs −0.25 0.43 −0.18 * 0.06 −0.25 0.40

Story or not 0.09 0.45 0.18 * 0.05 0.09 0.42
Item type 0.49 0.45 0.72 * 0.06 0.48 0.38

Proportion of tokens with
six or more letters −4.76 * 2.34 −2.44 * 0.30 −4.64 * 2.12

Number of
non-Dale–Chall words 0.01 0.10 0.03 0.02 0.01 0.08

Brown News popularity <0.01 0.01 <0.01 <0.01 <0.01 0.01
Note. * p < .05.

Table 3. Regression coefficient and standard error estimates of slipping features.

Coefficient

Data Fitting Model

HO-DINA with
Two-Step Procedure IE-HO-DINA-s IE-HO-DINA-s-R

Estimate SE Estimate SE Estimate SE

Word token <0.01 0.03 <0.01 <0.01 <0.01 0.03
Number of adjectives 0.17 0.18 0.18 * 0.03 0.17 0.15
Number of adverbs 0.29 0.42 0.34 * 0.05 0.38 0.40

Story or not −0.46 0.43 −0.79 * 0.08 −0.55 0.39
Item type −0.46 0.45 −0.44 * 0.07 −0.50 0.37

Proportion of tokens with
6 or more letters 4.73 * 2.28 7.14 * 0.33 4.31 * 1.87

Number of
non-Dale–Chall words <0.01 0.10 0.09 * 0.02 0.02 0.09

Brown News popularity <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Note. * p < .05.

The IE-HO-DINA-g or IE-HO-DINA-s model yields more statistically significant
coefficients compared to the IE-HO-DINA-g-R model, the IE-HO-DINA-s-R model, or the
two-step procedure. This could result from the fact that the standard errors of coefficients
from the IE-HO-DINA-g or IE-HO-DINA-s model are only around 10% of those from the
IE-HO-DINA-g-R model, the IE-HO-DINA-s-R model, or the two-step procedure.
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Consistency of item parameter estimates and attribute profile classifications. The
estimated guessing or slipping parameters from the HO-DINA model are highly correlated
(correlation coefficient close to 1) with the predicted guessing or slipping parameters from
the IE-HO-DINA-R models, but only moderately correlated (correlation coefficient ranging
from 0.4 to 0.7) with those from the IE-HO-DINA models (i.e., those without residual
terms). Accordingly, the attribute profile classifications from the HO-DINA model are
highly consistent (consistency rate > 0.95) with those from the IE-HO-DINA-R models but
relatively inconsistent (consistency rate at around 0.6) with the IE-HO-DINA models (i.e.,
those without residual terms). The item parameter correlation and attribute classification
consistency among the models are listed in Tables S5 and S6 in the Online Supplementary
Materials.

A Simulation Study

In the empirical data analysis above, one of the major potential sources of misspecifica-
tion of the proposed models is the misspecification of the explanatory part, i.e., the number
of item features could be over-specified or under-specified. Therefore, this simulation study
aims to examine the validity of the empirical data analysis results by investigating the im-
pact of the misspecification of the explanatory component and, particularly, addressing two
specific research questions (RQs): (1) How are the recoveries of feature coefficients, item
parameters, and attribute profiles affected by the over-specification of the item features?
(2) How are the recoveries of feature coefficients, item parameters, and attribute profiles
affected by the under-specification of the item features?

The research questions were addressed under a scenario mimicking the empirical
study: Twenty-five response datasets with 37 items measuring three attributes were gen-
erated. The Q-matrix remained the same as the one in the empirical data analysis. The
response data were generated with an HO-DINA model. The true guessing and slipping
parameters were both linear combinations of four simulated features along with some resid-

ual terms, i.e., log it(gi) = ψ0 +
4
∑

m=1
ψmZim + ε(g)i and log it(si) = φ0 +

4
∑

m=1
φmZim + ε(s)i.

The simulated features can be either continuous or dichotomous, and be either strongly
(|ψm| or |φm| = 0.6) or weakly (|ψm| or |φm| = 0.3) associated with the item parameters. The
data-generating item features have explained approximately 60% of the variance in the true
item parameters. The feature labels, true data generation model, item feature coefficients
are listed in Table 4. The resulting true guessing and slipping parameters range from 0 to
0.5 and, thus, the simulated items consist of both high-quality (1-s-g ≥ 0.65) and low-quality
(1-s-g < 0.65) items.

Table 4. Specification of the simulated features.

Feature Label Properties True Data-Generating Model ψm
a φm

a

Feature 1 Continuous Normal (0, 1) 0.6 −0.6
Feature 2 Continuous Normal (0, 1) 0.3 −0.3
Feature 3 Continuous Normal (0, 1) 0.3 −0.3
Feature 4 Continuous Normal (0, 1) 0 0
Feature 5 Continuous Normal (0, 1) 0 0
Feature 6 Continuous Normal (0, 1) 0 0
Feature 7 Dichotomous Bernoulli (p = 0.5) 0.6 −0.6
Feature 8 Dichotomous Bernoulli (p = 0.5) 0 0

a ψm means coefficient regressing on the guessing parameter; φm means coefficient regressing on the slipping
parameter.

Different sets of models were fit to the simulated datasets to address different research
questions, as articulated in Table 5. The impact of the over-specification of the explanatory
component (RQ1) was examined by comparing the parameter recoveries from the correctly
specified model against five over-specified models (each of the four proposed models and
the two-step procedure had an over-specified version). Since item features were linked
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to both the slipping and guessing parameters in the data-generating model, the item
feature coefficients in the correctly specified model had to be estimated with a two-step
procedure since the IE-HO-DINA models cannot have item features linked to both guessing
and slipping parameters simultaneously. In the over-specified models, four superfluous
features in addition to the four data-generating features (i.e., a total of eight features) were
linked to either guessing or slipping parameters. Details of the four superfluous item
features are also listed in Table 4.

Table 5. Research questions and corresponding data fitting models.

Research Question Correctly Specified Model Misspecified Model

RQ1 (Over-specified) Two-step-4 (or HO-DINA) Two-step-8
IE-HO-DINA-g-8
IE-HO-DINA-s-8

IE-HO-DINA-g-R-8
IE-HO-DINA-s-R-8

RQ2 (Under-specified) Two-step-4 (or HO-DINA) IE-HO-DINA-2-g-strong
IE-HO-DINA-2-s-strong
IE-HO-DINA-2-g-weak
IE-HO-DINA-2-s-weak

The impact of the under-specification of the explanatory component (RQ2) was exam-
ined by comparing the parameter recoveries from the correctly specified model against
four under-specified models. As the residual terms in the IE-HO-DINA-R models have ab-
sorbed the unexplained variance in the item parameters, the under-specification of the item
feature was expected to have little impact on the recoveries on the IE-HO-DINA-R mod-
els. Therefore, the impact of under-specification was only examined for the IE-HO-DINA
models that have no residual term. Two types of under-specified models were consid-
ered: the IE-HO-DINA-2-strong models only retained the “strong” features (i.e., features
with |ψm| or |φm| = v0.6) and ignored “weak” features (i.e., features with |ψm| or |φm| = 0.3)
in the data-generating model; the IE-HO-DINA-2-weak models only retained the “weak”
features and ignored “strong” features in the data-generating model. Features in the IE-
HO-DINA-2-strong and IE-HO-DINA-2-weak models have explained approximately 40%
and 15% of the variance in the item parameters, respectively.

The recovery of the continuous model parameters (i.e., item feature coefficients and
item parameters) was evaluated in terms of bias and root mean squared error (RMSE).

Specifically, Bias(y) = 1
R

R
∑

r=1
ŷ − ytrue and RMSE(y) =

√
1
R

R
∑

r=1
(ŷ − ytrue)

2, where y is the

parameters to be evaluated and R is the number of replications. The recovery of the binary
attribute parameters was evaluated in terms of the profile correct classification rate (PCCR)
and the attribute correct classification rate (ACCR).

6. Results

Table 6 demonstrates that misspecified models (both over-specified and under-specified)
do not consistently show poorer recovery (in terms of bias or RMSE) of item feature coeffi-
cients compared to the correctly specified model. Additionally, Figures 1 and 2 indicate
that estimates of guessing/slipping feature coefficients are similar across the correctly
specified and misspecified models. As shown in Figure 1, in the over-specified models
(IE-HO-DINA-g-8 and IE-HO-DINA-g-R-8), coefficients of superfluous features (features
4, 5, 6, and 8) are observed to be near zero. Conversely, in the under-specified models
(IE-HO-DINA-g-2-strong and IE-HO-DINA-g-2-weak), despite the omission of certain data-
generating features (i.e., omitting features 2 and 3 for IE-HO-DINA-g-2-strong and omitting
features 1 and 7 for IE-HO-DINA-g-2-weak), the remaining feature coefficients closely
approximate the true values. Nevertheless, the intercept estimates from the under-specified



J. Intell. 2024, 12, 32 11 of 17

models show greater deviation from the true value than the other models. A similar pattern
is observed for the slipping feature coefficients in Figure 2.

Table 6. Bias and RMSE of the item feature coefficient estimates.

Explanatory
Component

Specification Type
Model a

Guessing Feature
Coefficients b

Slipping Feature
Coefficients b

Bias RMSE Bias RMSE

Correctly specified Two-step-4 - 0.03 0.03 0.03

Over-specified Two-step-8 - 0.03 - 0.04
IE-HO-DINA-8 −0.02 0.04 - 0.05

IE-HO-DINA-R-8 - 0.04 −0.01 0.04

Under-specified IE-HO-DINA-2-strong −0.04 0.04 0.02 0.04
IE-HO-DINA-2-weak 0.05 0.03 −0.02 0.04

Note. a Two-step-4 = two-step procedure with the 4 data-generating features; Two-step-8 = two-step procedure
with all 8 simulated features; IE-HO-DINA/IE-HO-DINA-R-8 = IE-HO-DINA/IE-HO-DINA-R model with all
8 simulated features; IE-HO-DINA-2-strong = IE-HO-DINA with only the 2 strong data-generating features;
IE-HO-DINA-2-weak = IE-HO-DINA with only the 2 weak data-generating features. b The recovery of the
guessing feature coefficients is only applicable to the IE-HO-DINA-g/IE-HO-DINA-g-R models; the recovery of
the slipping feature coefficients is only applicable to the IE-HO-DINA-s/IE-HO-DINA-s-R models. Bias values
that approaches 0 (i.e., −0.01 < Bias < 0.01) are represented with “-”.
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Figure 1. True and estimated item feature coefficients with guessing parameter as outcome. Two-step-
4 = two-step procedure with the 4 data-generating features; Two-step-8 = two-step procedure with all
8 simulated features; IE-HO-DINA/IE-HO-DINA-R-8 = IE-HO-DINA/IE-HO-DINA-R model with
all 8 simulated features; IE-HO-DINA-2-strong = IE-HO-DINA with only the 2 strong data-generating
features; IE-HO-DINA-2-weak = IE-HO-DINA with only the 2 weak data-generating features.
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The item parameter recoveries are summarized in Table 7. Among the models with-
out a residual term, the over-specified model (IE-HO-DINA-8) outperformed the under-
specified models (IE-HO-DINA-2-strong and IE-HO-DINA-2-weak) in item parameter
recovery. Although the magnitude of bias is comparable across these models, the RMSE
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is higher in the under-specified models. This suggests that an increase in unexplained
variance in the item parameters may lead to greater random error in the item parameter
estimates. However, compared to the model with a residual term (IE-HO-DINA-8-R) and
the HO-DINA model, the model without a residual term (IE-HO-DINA-8) exhibits a larger
RMSE. This increase in RMSE might be attributed to a significant portion of variance in item
parameters remaining unexplained, even with the inclusion of 8 features. Incorporating a
residual term could help absorb the unexplained variance in the item parameters, thereby
potentially reducing the random error in item parameter estimates.

Table 7. Bias and RMSE of the predicted guessing/slipping parameters.

Explanatory
Component

Specification Type
Model

Guessing b Slipping b

Bias RMSE Bias RMSE

- HO-DINA a 0.002 <0.001 0.002 <0.001

Over-specified IE-HO-DINA-8 0.001 0.014 0.001 0.008
IE-HO-DINA-R-8 0.002 <0.001 <0.001 <0.001

Under-specified IE-HO-DINA-2-strong 0.004 0.022 0.003 0.013
IE-HO-DINA-2-weak -0.002 0.029 0.006 0.023

Note. a The guessing/slipping parameters from the HO-DINA model were estimated instead of predicted, and
the recovery these parameter estimates were used as the baseline. b The recovery of the predicted guessing
probabilities is only applicable to the IE-HO-DINA-g/IE-HO-DINA-g-R models; the recovery of the predicted
slipping probabilities is only applicable to the IE-HO-DINA-s/IE-HO-DINA-s-R models.

In addition, Figures 3 and 4 have demonstrated the item-wise guessing/slipping
parameter recoveries where the items are ascendingly ordered by their true item quality
(quantified by 1-s-g) on the x-axis. On average, the guessing/slipping parameters of the
low-quality items (items with true 1-s-g < 0.65) have higher absolute bias and RMSE than
the high-quality items (items with true 1-s-g ≥ 0.65).
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As for the attribute classification accuracy shown in Table 8, the HO-DINA model, the
over-specified models, and the IE-HO-DINA-2-strong models have achieved high attribute
classification accuracy (PCCR and ACCRs > 0.9). Only the IE-HO-DINA-2-weak models
have displayed lower attribute classification accuracy (PCCR and ACCRs ≤ 0.9) than
the other models. These results have suggested that the imperfect prediction of the item
parameters from the item features may not significantly diminish the attribute classification
accuracy until a sufficiently large proportion of variance in the item parameters is left
unexplained.

Table 8. Attribute and profile classification accuracy.

Explanatory Component
Specification Type Model PCCR

ACCR

A1 A2 A3

- HO-DINA 0.932 0.933 0.999 1.000

Over-specified IE-HO-DINA-g-8 0.915 0.916 0.998 1.000
IE-HO-DINA-s-8 0.922 0.923 0.998 1.000

IE-HO-DINA-g-R-8 0.931 0.932 0.999 1.000
IE-HO-DINA-s-R-8 0.931 0.932 0.999 1.000

Under-specified IE-HO-DINA-2-g-strong 0.913 0.915 0.999 1.000
IE-HO-DINA-2-s-strong 0.914 0.916 0.998 1.000
IE-HO-DINA-2-g-weak 0.870 0.871 0.998 1.000
IE-HO-DINA-2-s-weak 0.908 0.910 0.998 1.000

7. Summary and Discussion

Understanding the explanatory relationship between the item parameters and item
features could help item developers discover the cause of the low-quality items (e.g., items
with high guessing or slipping probabilities) and devise plans to revise them. The rapid
advance of NLP and machine learning techniques has rendered it possible to extract more
complex item features automatically and efficiently, thereby increasing the feasibility and
usefulness of the proposed item explanatory CDMs.

The utility of the proposed models was demonstrated with the TIMSS released items
and response data: around 20 item linguistic features were extracted with the NLP tech-
niques; the proposed models were used to examine the relationships between the guess-
ing/slipping parameters of the HO-DINA model and eight of the item features.
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However, while the proposed models in this study aim to shed light on the relationship
between item parameters and features, their inferences should not dictate item develop-
ment practices deterministically. Instead, inferences from the models are intended to guide
item developers by highlighting potential issues and areas for improvement. For instance,
statistically significant features identified by the model can inform prioritization in item
revision plans. In the case of reducing an item’s slipping probability, if the model indicates
that “the proportion of words with 6 or more letters” significantly affects slipping, develop-
ers might first focus on modifying complex word proportions in the item stem. However,
this focus on statistically significant features should not preclude consideration of other
aspects such as item length. Additionally, from a score validity perspective, the proposed
models can aid in uncovering sources of construct-irrelevant variance, such as the potential
impact of complex wording on slipping effects. Ultimately, the model’s insights should
complement, not replace, expert judgment in item development and revision processes.

The validity of the empirical data analysis results was further corroborated by a
follow-up simulation study that mimicked the setting of the empirical data. The results
from the simulation study have supported that, even with some slight misspecifications
in the explanatory part of the proposed model, satisfactory recoveries in the item feature
coefficients could be achieved. However, when a significant portion of variance in item
parameters remains unexplained by the item features in item explanatory CDMs without a
residual term, the recovery of the item parameters and attribute profiles may be compro-
mised. Therefore, we recommend including a residual term in the item explanatory CDMs
to enhance the accuracy of the model parameter estimates.

This study could be further extended in several directions. First, while this study has
circumvented the multicollinearity issue by only including the weakly correlated features
in the models, future studies could consider some modeling techniques which are robust
to multicollinearity, such as the mean centering the variables (Iacobucci et al. 2016) and
ridge regression (Hoerl and Kennard 1970), so that some potentially important features
will not have to be eliminated. Moreover, key and distractor feature other than the item
stem features could be included in the model as well.

Second, although this study has used the item features to explain only the guessing and
slipping parameters of the HO-DINA model, it is straightforward to extend the proposed
models to more generalized CDMs including the G-DINA model (de la Torre 2011), the
LCDM (Henson et al. 2009) and the GDM (von Davier 2005). In particular, once the
appropriate item features are extracted, they can be incorporated in the CDMs to explain
the item parameter(s) of interest through a regression-like component. Further, the item
features could be useful to explain the differential item functioning (DIF). For instance, if
an item is detected to function differently across different subpopulations, the cross-group
item parameter difference could be linked to the item features to investigate whether the
DIF is associated with any item features, thereby facilitating the understanding of the cause
of DIF.

Third, enhancing the computational efficiency of the model estimation is crucial
for broader research and application of the proposed models. Currently, running the
IE-HO-DINA and IE-HO-DINA-R models, with two MCMC chains of 10,000 iterations
each, requires approximately 6 h and 30 h, respectively.1 This computational demand
could limit more extensive explorations. Given that the ECDMs developed by Park et al.
(2018), which include covariates on the person side, can be estimated using the expectation-
maximization (EM) algorithm, future research could investigate the feasibility of adapting
the EM algorithm for estimating parameters in the proposed models which have covariates
on the item side.

Fourth, future research could consider varying sample sizes, test lengths, and Q-
matrix specifications to enhance the generalizability of the simulation study. Additionally,
investigating the impact of multicollinearity in item features on the inferences from item
explanatory CDMs would be valuable. The scope of the current simulation study was
limited by the substantial time required to run the models, constraining the feasibility to
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conduct broader simulations. Future studies, when feasible, could aim to determine the
optimal number of items and persons necessary for accurate model parameter estimation.

Last but not least, the proposed models have the potential to be applied to address
“cold start” problem in the future. Specifically, the newly developed assessments could
suffer from the lack of empirical response data for item calibration, which was described as
the “cold start” issue by Settles et al. (2020). Settles et al. (2020) have predicted the item
difficulty parameters in the Rasch model with the item linguistic features, thus helping
mitigate the “cold start” issue in a high-stakes language assessment. Analogously, the
proposed models along with extracted item features may be used to predict the item
parameters of the CDMs. Unfortunately, the limitations of the example empirical dataset
restricted our ability to fully demonstrate the proposed model’s effectiveness in addressing
the cold-start problem. The dataset’s small size, comprising only 37 items, limits its capacity
for robustly training a model to learn the relationship between item features and parameters.
Additionally, the item features extracted accounted for only about 30% of the variance
in item parameters, reducing their predictive power for new items. Future research with
larger item banks and more sophisticated NLP features, such as Bidirectional Encoder
Representations from Transformers (BERT; Devlin et al. 2019) features, could be more
useful to evaluate the proposed models’ effectiveness in tackling the cold-start problem.
For instance, training the explanatory models with a subset of items from a larger bank and
then predicting parameters for the remaining items could be a viable approach. However,
it is important to note that there is a potential trade-off between a model’s explanative
power and its predictive accuracy. Advanced NLP features such as BERT embeddings may
enhance prediction capabilities at the cost of reduced explainability, as these features are
often complex and not easily interpretable. Therefore, we advise researchers to carefully
balance the need for explanatory insight against predictive precision when selecting features
for their models.
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model. Table S1: Q-matrix Used in the Analyses; Table S2: Descriptions of the Eight Item Features
Used in the Analyses; Table S3: Item Features that were Created but not Included in the Analyses;
Table S4: Descriptive Statistics of Item Features; Table S5: Correlation among the Predicted or
Estimated Guessing/Slipping Parameters from the Data Fitting Models; Table S6: Attribute Profile
Classification Consistency Among the Data Fitting Models.
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Notes
1 The computing time is based on the analyses run on a desktop with Intel Core i7 CPU and 3.2 GHz processor. Multiple MCMC

chains were run in parallel with multiple cores. The sample size and number of items setup is similar to that in the empirical data
analysis section.
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