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Abstract: This study aims to analyse, using a finite element analysis, the effects of Ti-base abutment
height on the distribution and magnitude of transferred load and the resulting bone microstrain in
the bone-implant system. A three-dimensional bone model of the mandibular premolar section was
created with an implant placed in a juxta-osseous position. Three prosthetic models were designed:
a 1 mm-high titanium-base (Ti-base) abutment with an 8 mm-high cemented monolithic zirconia
crown was designed for model A, a 2 mm-high Ti-base abutment with a 7 mm-high crown for model
B, and a 3 mm-high abutment with a 6 mm-high crown for model C. A static load of 150 N was
applied to the central fossa at a six-degree angle with respect to the axial axis of the implant to
evaluate the magnitude and distribution of load transfer and microstrain. The results showed a trend
towards a direct linear association between the increase in the height of the Ti-base abutments and
the increase in the transferred stress and the resulting microstrain to both the prosthetic elements and
the bone/implant system. An increase in transferred stress and deformation of all elements of the
system, within physiological ranges, was observed as the size of the Ti-base abutment increased.

Keywords: finite element modelling; dental implant biomechanics; fatigue analysis

1. Introduction

The digitisation of the dental profession and the development of different materials
applicable to computer-aided design and manufacturing (CAD/CAM) workflows in oral
rehabilitation represent a major advance in the last decade. The optimisation of the proper-
ties of monolithic materials has resulted in the need to develop interfaces for the connection
between implants and prostheses. As a consequence, titanium-base (Ti-base) abutments
have been developed for the retention of crowns and bridges in monolithic materials, such
as zirconium (Zr), either by cement-retained or cement- and screw-retained restorations [1].

Several studies have reported results on the influence of Ti-base abutments on the
mechanical–technical complications associated with prostheses. In this regard, the height
of abutments could be a factor directly related to the cementation retention capacity of the
crowns they support [2].

It should also be noted that the use of intermediate abutments could often be the origin
of several biological complications. Several clinical studies assessing the influence of the
transgingival height of the abutment on some dependent variables, such as peri-implant
marginal bone loss, are of particular interest [3]. The different heights of the Ti-bases result
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from the need to offer suitable prosthetic solutions that respect the biological spaces typical
of implant-borne restorative systems [4].

These mechanical factors with biological influence are described in the literature [5,6].
In 1986, Albrektsson et al. [7] suggested that the success of implant therapy depended on
multiple factors, including the importance of the applied load, highlighting the magnifica-
tion factors of these forces, such as the direction, magnitude and direction of the forces.

It should be considered that the stress transferred to the bone will influence its de-
formation, and this, in turn, will influence the physiology of the bone and its adaptive
response. In 1987, Frost reported that a minimal degree of bone deformation can imply
a tendency to resorption due to the absence of load or, on the contrary, deformation can
exceed a threshold that tends to produce microfractures due to excess deformation [8].

The increasing use of Ti-base abutments has been evolving, so that the industry
provides us with interfaces of different heights, to be able to customise patient treatments as
much as possible. The different interface heights are useful for selecting the most suitable
one according to factors such as the apical position of the implant or the thickness of the
gingival biotype. However, the influence of interface height on the expected biomechanical
behaviour is currently unknown.

Technological advances in recent years have provided some tools designed to repro-
duce biological and mechanical conditions, one of which is finite element analysis (FEA).
FEA is a numerical simulation technique widely used in engineering which, through the
construction of a theoretical bone-implant-crown model based on a triangulation system,
allows the generation of different types of contexts and the analysis of the results. This
would enable us, for example, to analyse the biomechanical behaviour of the elements
when subjected to a given load, as well as the direction and distribution of this load [9,10].

The model design should simulate the real conditions as accurately as possible. It has
to be considered that the union between the implant and the supporting bone is rigid. Since
there is no periodontal ligament, it lacks mobility when loads are applied. Therefore, all
the stress transferred by the implant will result in the deformation of all the components
of the assembly, including the crown, the abutments, and the supporting bone. The FEA
has the advantage of being able to modify any element of the system: abutment length,
implant size, cortex thickness, etc. Furthermore, it allows the simulation of different load
situations and directions of forces, obtaining results for different combinations. It is vital to
understand the current status of the use of FEA in dentistry to ensure the validity of the
results obtained in our studies [11,12].

Therefore, considering the lack of evidence on the influence of the biomechanical
behaviour of Ti-base abutments in relation to their height, a study using FEA is presented
to design models with different abutment heights while maintaining the same prosthetic
height, with the aim of determining in a theoretical way the ideal abutment height that
would allow an optimal bone-implant load transfer in terms of bone stability. The hy-
pothesis is that the prosthetic height of the Ti-base abutments does not influence the
amount and distribution of the load transfer to the prosthesis-bone-implant system and the
resulting microstrain.

This study aims to analyse the influence of the prosthetic abutment height, in this case
Ti-base abutments, on the load transfer to the prosthesis-bone-implant system, and the
resulting microstrain of the elements themselves. In turn, the study seeks to transfer these
in vitro results to the possible biological consequences in terms of peri-implant marginal
bone loss, as well as the mechanical and technical consequences of prosthetic components.

2. Materials and Methods

All the elements of the models examined in this study were meshed using regular
tetrahedra, which ensures a high convergence of the results. For each model, more than
100,000 tetrahedral elements were generated, with a mesh size an order of magnitude
smaller than a millimetre in the critical contact areas.
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2.1. Finite Element Model Design

A three-dimensional (3D) finite element model was designed to assess the magnitude
and distribution of stresses applied to the prosthetic components, implant, and bone, and
the resulting microstrain corresponding to the Ti-base abutment of different heights. The
bone model produced was an edentulous posterior mandibular section of the premolar
area [12–14]. A juxta-osseous threaded bone-level implant was modelled and rehabili-
tated using a 1, 2, or 3 mm Ti-base abutment with a cemented zirconium dioxide (ZrO2)
crown [10]. Three implant-crown models were therefore developed.

2.1.1. Bone

According to the Leckholm and Zarb classification [15], a type A-2 mandibular section
was created, which consisted of a layer of compact cortical bone surrounding a core of
dense trabecular bone. This type of bone is the most common for this mandibular region as
reported in the literature [13,16–18]. The dimensions of the bone section were 23 mm high
and 12 mm wide. The cortical bone was 2 mm thick, and it surrounded the rest of the bone
section, which had trabecular bone characteristics (Figure 1).
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Figure 1. (a) Cortical bone 2 mm thick. (b) Medullary bone 21 mm high and 10 mm thick.

2.1.2. Implant

To conduct the macroscopic design, a solid threaded bone-level implant with an
internal connection and a Ti6Al4V alloy (Vega®, Klockner Implant System®, Madrid,
Spain) [19], whose dimensions were 4 mm in diameter and 10 mm in length, was created.
The implant had a conical apex, straight body, a double pitch thread (2.2 mm), and a
threaded core that was conical at the apex, straight in the centre of the body, and conical
at the most coronal part. The implant neck was convex, cone-shaped and had three
microthreads (0.3 mm) with a 0.4 mm gap between them, which allowed the distribution of
loads to the adjacent bone tissue, helping to maintain the cortical bone and reducing stress
in the crestal region. In the most apical part of its connection, the implant had a hexagonal
polygon that facilitated its handling and the correct positioning of the abutment, as well
as optimising the precision of the adjustment and minimising rotational movements. The
coronal part of the connection consisted of a reverse cone with an angulation of 10◦ and
a length of 1.1 mm that allowed a correct fit between the implant cone and the prosthetic
attachment cone, which facilitated the professional insertion and guidance of the different
attachments and provided a hermetic seal, less than one micron, that prevented bacterial
colonisation inside the implant (Figure 2).

2.1.3. Ti-Base Abutment

Three titanium Ti-base abutments with Ti6Al4V alloy (Klockner Implant System®,
Madrid, Spain) identical in morphology and connection, but with different transgingival
heights of 1, 2 and 3 mm, were modelled.
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Figure 2. Vega implant system, 4 mm in diameter and 10 mm in length.

The height of the selected abutments corresponds to the most clinically used Ti-bases
that meet restorative needs [4].

The design of this abutment allowed it to be screwed into the implant connection
once the implant had osseointegrated. In this study, this connection was considered to be
complete and effective, regardless of screw preload and other static stresses typical of a
screwed system (Figure 3).
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2.1.4. Prosthetic Crown

A zirconium dioxide (ZrO2) crown was modelled to cement each of the titanium bases.
The crown material was selected considering that it is a material commonly used for the
fabrication of definitive crowns and bridges.

The crowns had heights of 8 mm, 7 mm and 6 mm, and were cemented on Ti-bases of
1, 2 and 3 mm in height, respectively, so that the 9 mm height of the prosthetic assembly
was maintained in all models. However, the models did not differ in width (11.5 mm) or
thickness (4 mm) (Figure 4a–c).

The junction between the Ti-base and the ZrO2 crown was considered tight, firm and
effective, regardless of the cementitious medium.

The crowns are attached to the implant using a titanium prosthetic screw (Klockner Im-
plant System®, Madrid, Spain) with a length of 7.97 mm and a diameter of 2.2 mm (Figure 4d).
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Figure 4. Three-dimensional models of the crowns with 8 mm (a), 7 mm (b) and 6 mm (c) height,
respectively, with a thickness of 4 mm, and 3D model of the 7.97 mm long, 2.2 mm diameter
prosthetic screw (d).

Three models were therefore obtained, model A with a 1 mm abutment, model B with
a 2 mm abutment, and model C with a 3 mm abutment (Figure 5).
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2.2. Material Properties, Interface Conditions, Load and Boundary Conditions

All the components used in this study were computer-modelled through digital design
software using the information corresponding to each component, under the assumption
that all the materials were homogeneous, isotropic, and had linear elasticity [10].

Furthermore, the attachment of the prosthetic system to the implant was considered
complete and effective, regardless of screw preload and other static stresses characteristic of
a screw-retained system. Based on assumptions from previous studies, the bond between
the bone and the implant as a whole was assumed to be complete, with 100% contact
between the implant surface and the bone [20–24]. It is important to note that all the
contacts between the parts were securely bonded.

The elastic characteristics given to each of the modelled components were obtained
from the literature and expressed in Young’s modulus and Poisson’s ratio and are shown
in Table 1 [25–28].

Table 1. Elastic characteristics of the modelled components.

MATERIAL Component Young’s Modulus (GPa) Possion’s Ratio

Cortical Bone 1.5 × 1010 0.30

Trabecular Bone 1 × 109 0.25

Grade 4 Titanium

Implant 1.07 × 1011 0.35

Abutment 1.07 × 1011 0.35

Screw 1.07 × 1011 0.35

ZrO2 Crown Structure 2.1 × 1011 0.32

A computer with eight 16 GB DDR4 modules and a 2 Xeon processor E2690 v3 was
used to digitise all the data. The design of the models was performed using Ansys 11.0
(Ansys, Swanson Analysis System, Canonsburg, PA, USA).

The nodes and elements used to create the different models are shown in the follow-
ing Table 2.

Table 2. Components nodes and elements.

Components Abutment A Abutment B Abutment C

Screw
Nodes 1098 1098 1098

Elements 514 514 514

Abutment
Nodes 20,627 21,713 15,478

Elements 12,169 12,918 9250

Implant
Nodes 101,939 101,923 101,931

Elements 65,606 65,606 65,614

Trabecular Bone
Nodes 82,354 82,354 82,063

Elements 51,310 51,310 51,099

Cortical Bone
Nodes 8675 8675 8656

Elements 4634 4634 4609

Crown
Nodes 6693 6711 6711

Elements 3939 3980 3980

Based on the literature, static loads were used in this study and, since the occlusal
force system is non-coplanar and non-concurrent, it can only be reduced to an equivalent
force-couple system at any given point [29].



J. Funct. Biomater. 2024, 15, 101 7 of 14

Additionally, the results of the observational study by Watanabe et al. [29] were used
for the selection of the direction and magnitude of the applied load (150 N were applied
to the central fossa of the crown at a six-degree angle with respect to the axial axis of the
implant and in the direction of the lingual vestibule), simulating the load applied on a
second premolar or a first molar [30–32]. Both stress (according to von Mises criteria) and
deformation were determined numerically (Figure 6).
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The models were totally constrained along their boundaries, allowing no degrees of
freedom of movement.

3. Results

The findings showed the highest and lowest von Mises stress values, as well as the stress
distribution in the bone surrounding the implant, in the implant itself, and in the prosthetic
elements, as well as the deformation of all components in the three models (A, B and C).

The results obtained for minimum and maximum stress and deformation for each of
the components mentioned in each of the models are presented in Table 3.

Table 3. Results obtained in terms of stress and deformation in the three models.

ABUTMENT A ABUTMENT B ABUTMENT C

Element Von Misses
Stress (MPa) Microstrains Von Misses

Stress (MPa) Microstrains Von Misses
Stress (MPa) Microstrains

System 0.0065961–258.51 0–0.017129 0.0047–262.33 0–0.019033 0.010451–267.09 0–0.020255
Crown 0.42295–175.16 0.0049136–0.017129 0.43485–194.19 0.0056471–0.019033 0.43871–194.52 0.0067211–0.020255
Abutment 0.48626–258.51 0.0052729–0.015029 0.61873–262.33 0.0056696–0.01661 0.9399–267.09 0.0053955–0.017565
Screw 0.010451–35.017 0.0059213–0.0080568 0.006596–36.467 0.0059142–0.008087 0.0047–40.64 0.0059164–0.008274
Implant 0.068522–98.854 0.0053687–0.007732 0.10273–99.97 0.0053543–0.007735 0.10294–109.44 0.0053586–0.008014
Cortical Bone 0.0066727–32.344 0–0.007468 0.0077927–33.851 0–0.007677 0.011497–45.608 0–0.0081
Trabecular Bone 0.0066727–25.158 0–0.0072328 0.0077927–30.3165 0–0.007266 0.011457–35.475 0–0.0081
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The images have been grouped by simultaneously analysing the complete assembly or
the same part in the different models and studying both the stress and deformation values
obtained (Figure 7).

J. Funct. Biomater. 2024, 15, x FOR PEER REVIEW 8 of 15 
 

 

The findings showed the highest and lowest von Mises stress values, as well as the 
stress distribution in the bone surrounding the implant, in the implant itself, and in the 
prosthetic elements, as well as the deformation of all components in the three models (A, 
B and C). 

The results obtained for minimum and maximum stress and deformation for each of 
the components mentioned in each of the models are presented in Table 3. 

Table 3. Results obtained in terms of stress and deformation in the three models. 

 ABUTMENT A ABUTMENT B ABUTMENT C 

Element 
Von Misses 
Stress (MPa) Microstrains  

Von Misses 
Stress (MPa) Microstrains  

Von Misses 
Stress (MPa) Microstrains  

System 
0.0065961–
258.51 

0–0.017129 0.0047–262.33 0–0.019033 0.010451–267.09 0–0.020255 

Crown 0.42295–175.16 0.0049136–0.017129 0.43485–194.19 0.0056471–0.019033 0.43871–194.52 0.0067211–0.020255 
Abutment 0.48626–258.51 0.0052729–0.015029 0.61873–262.33 0.0056696–0.01661 0.9399–267.09 0.0053955–0.017565 
Screw 0.010451–35.017 0.0059213–0.0080568 0.006596–36.467 0.0059142–0.008087 0.0047–40.64 0.0059164–0.008274 
Implant 0.068522–98.854 0.0053687–0.007732 0.10273–99.97 0.0053543–0.007735 0.10294–109.44 0.0053586–0.008014 

Cortical Bone 
0.0066727–
32.344 

0–0.007468 
0.0077927–
33.851 

0–0.007677 0.011497–45.608 0–0.0081 

Trabecular 
Bone 

0.0066727–
25.158 

0–0.0072328 
0.0077927–
30.3165 

0–0.007266 0.011457–35.475 0–0.0081 

The images have been grouped by simultaneously analysing the complete assembly 
or the same part in the different models and studying both the stress and deformation 
values obtained (Figure 7). 

 
Figure 7. Three-dimensional study models, (Model A) with 1mm height abutment and 8mm 
height crown, (Model B) with 2mm height abutment and 7mm height crown and (Model C) with 
3mm height abutment and 6mm height crown, with their corresponding von Mises stress location 
point expressed in MPa scaled to 150 MPa 

The results showed that the longer the abutment length, the greater the stress trans-
mitted to the bone-implant-prosthesis assembly, particularly at the bone level. 

This phenomenon, which is evident in a one-dimensional lever arm system, becomes 
more complex when analysed in a three-dimensional assembly of parts with complex ge-
ometries, each of which also has different material properties. Therefore, considering the 
stress maps in Figure 4, it can be stated that the maximum stress was produced in the 
abutment of model C with 267.09 MPa, due to its longer lever arm, followed by the abut-
ment of model B with 262.33 MPa and the abutment of model A with 258.51 MPa. Moreo-
ver, Figure 4 shows that the area where the highest peak stress distribution occurred for 

Figure 7. Three-dimensional study models, (Model A) with 1mm height abutment and 8mm height
crown, (Model B) with 2 mm height abutment and 7 mm height crown and (Model C) with 3mm
height abutment and 6mm height crown, with their corresponding von Mises stress location point
expressed in MPa scaled to 150 MPa.

The results showed that the longer the abutment length, the greater the stress trans-
mitted to the bone-implant-prosthesis assembly, particularly at the bone level.

This phenomenon, which is evident in a one-dimensional lever arm system, becomes
more complex when analysed in a three-dimensional assembly of parts with complex
geometries, each of which also has different material properties. Therefore, considering
the stress maps in Figure 4, it can be stated that the maximum stress was produced in
the abutment of model C with 267.09 MPa, due to its longer lever arm, followed by the
abutment of model B with 262.33 MPa and the abutment of model A with 258.51 MPa.
Moreover, Figure 4 shows that the area where the highest peak stress distribution occurred
for the three models was at the transition between the crown and the abutment, this being
the most critical point.

Regarding the deformation of the assemblies, given the magnitude of the force, all
the deformations would be practically inappreciable in images in which the deformation
is at a 1:1 scale, therefore, following the usual methodology in FEA, these deformations
have been magnified. The largest displacement values were found in the crown in all cases
and increased with increasing abutment height. Considering that this area has a certain
freedom of movement that is not impeded by any other part, it is consistent with the fact
that the displacements in this area are the highest.

The gradual colour change observed in Figure 8 is evidence of the existence of good
osseointegration in the model, which leads to a solid displacement of the assembly.

It should also be noted that in all models the deformation in the bone area was similar,
being 0.0074371 for model A, 0.0074682 for model B, and 0.00749 for model C. This indicates
that deformation occurred mainly in the prosthetic elements and, above all, it evidences that
there was no displacement boundary between the bone tissue and the implant. In addition,
it has been demonstrated that the contacts applied to the model were correct and that a
behaviour known in finite element terminology as bond was ensured at all times, i.e., all the
elements were perfectly joined together, resembling a situation of perfect osseointegration.

However, all models presented a significant increase in stresses in the most coronal
region of the bone in contact with the implant. This distribution can be explained by
the principle of composite beam analysis, which states that the stress transferred to the
peri-implant bone is distributed mainly towards the side corresponding to the direction of
the vector of the applied load. In this case, this vector had a buccolingual direction, so the
stress was distributed mainly in the lingual sector of the bone surrounding the implant.
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Furthermore, a certain distribution of the transferred stress in the bone adjacent to the apex
of the implant corresponded to the axial component of the load applied to the model.
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When analysing the results focusing exclusively on the abutments, it can be observed
that the deformation of the abutments was higher as their size increased, with the greatest
deformation corresponding to the abutment for model C (0.017565), followed by that of
model B (0.01661) and finally that of model A (0.015029). These results are consistent
with the stress results observed and support the influence of the lever arm on the pros-
thetic system. These results can be related to the peri-implant bone loss produced by the
compression of bone tissue when the prosthetic system is subjected to functional loads
and there is a transmission of this force throughout the entire system, affecting each of its
component elements.

The results of transferred stress and strain have to be interpreted in a way that could
clinically influence implant-supported rehabilitation. In this sense, high stress transferred to
the prosthetic components could lead to high deformation of the components, which could
exceed the elastic limit of the components or even the fracture limit and cause mechanical
and technical complications, with the most common being the chipping of the prosthetic
ceramic or the fracture of the screw. If this situation of high deformations and transferred
stresses are transmitted to the peri-implant bone, it is known that the bone undergoes
adaptive modifications depending on the load and it undergoes deformation. This is why
excessive loading and deformation would cause the bone to enter a window of overload
and could lead to microfractures and bone resorption around the implant [33].

4. Discussion

In order to carry out this study, a FEA with the replication of abutments and implants in
3D models was used to compare the magnitude and distribution of stress and deformation
of all the elements of the system, in particular the prosthetic abutment and the bone. To this
end, abutments of three different heights were created, with an identical size to the entire
prosthetic system. The use of FEA for biomechanical studies in oral implantology is widely
accepted in the scientific literature, as shown by numerous meta-analyses and systematic
reviews [34,35], and allows us to perform studies that would be more complex in vivo.

Our study has required assuming various simplifications, which have been necessary
to allow the design and obtainment of results. Among them, having considered the
bone as isotropic and with linear elasticity and homogeneous, having assumed complete
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osseointegration of the implants or a lack of total mobility between the retentive elements.
However, we believe it is convenient to note that these simplifications are those commonly
applied in studies of the same methodology, although with different objectives [36].

The results of this study suggest that the maximum transferred stresses in all models
occur in the area with a large difference in the finite element node size between the abutment
and the implant, which generates singularities when the finite element model proceeds
to the application of the equations of the inter-part contacts. Based on previous evidence
on finite element modelling, the maximum values determined by the model for this area
may be unrealistic. Despite the typical characteristics of finite element models, the overall
quality of the model and the reliability of its results are ensured by the stress distribution,
represented graphically in the form of colours, observed in the bone and implant zones
and at their interfaces. Therefore, in the areas where the transition of colour from bone
to implant is gradual, the homogeneity of the stress distribution and its continuity are
confirmed, which guarantees the reliability of the results obtained.

It should also be noted that the scale of the images generated from the stress has
been limited to 150 MPa to facilitate their interpretation. The limit value to be selected
must be high enough to capture the details of the metal parts, without being so high that
information is lost in the bone tissue, which would mean that all the stresses would be in
a range determined by similar colours and, therefore, it would be difficult to distinguish
the values between different areas. These limitations with the indicated scales have been
necessary due to the phenomenon of bending or the nodal concentration of singular
stresses, which is very common in finite element models. However, these models provide
a straightforward interpretation of the stress distribution: higher values exist in those
areas of the colour map coloured with a shade different from dark blue. As noted in
the article by Pérez-Pevida et al., the colourimetry of the models is key to understanding
biomechanical behaviour [36].

Following the analysis of these findings, the hypothesis proposed in this study has to
be rejected; considering that this is a lever arm system, the results confirm that the greater
the height of the Ti-base abutment, the greater the deformation of the abutment, which
leads to greater transferred stress to the implant and, therefore, greater deformation and
transferred stress to the peri-implant bone. Such results should be treated with caution as
they will depend to a large extent on the properties and geometries of the material, the
applied load and how these conform to reality [37].

When comparing these results with those obtained in retrospective in vivo studies [3],
it can be observed that the abutment height was the variable that most influenced marginal
bone loss and that the prosthetic abutment with the lowest height was the one that gen-
erated the greatest bone loss. These findings offer a biological point of view, since the
influence of the biological width [38] is a limitation to be taken into account when extrapo-
lating these results. Consequently, the abutment that transmits the least load to the bone is
the one that generates the greatest bone loss, since it does not respect the biological space.
However, the abutment with the greatest height transfers the greatest load but maintains
the biological width better.

Regarding the models developed in this research, it is assumed that all simulated
structures are homogeneous, isotropic and of linear elasticity, although this does not
always conform to reality, especially in bone. This is a way of simplifying the models and
carrying out the analysis as validated in the literature, which includes several studies that
assess the biomechanical behaviour of implant and prosthesis models assuming the same
characteristics as the present study [10,36,39,40].

In addition, all three models had a cortical and trabecular bone with identical geometry
and mechanical properties. This is consistent with most of the biomechanics studies on
finite elements, although some studies establish a type of transitional bone in contact with
the implant with a different modulus of elasticity and Poisson’s ratio than the rest of the
modelled bone [41]. This study assumes that both the trabecular and cortical bone have
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intimate and 100% contact with the implant surface, simulating complete osseointegration
of the entire surface [40,42,43].

Concerning the load applied to the models, in this study, a load of 150 N was applied
to the central fossa of the modelled crown at a six-degree angle relative to the axial axis
of the implant to simulate the average values that occur during functional chewing in
patients with an implant-supported prosthesis. However, during the mastication process,
complex loading patterns that are difficult to reproduce in this type of study occur, which
implies a simplification of the loads when simulating them in the finite element models.
Similarly, the functional loads caused during mastication are dynamic, but those used in the
models are static, corresponding to the force’s characteristic of centric bruxism. Moreover,
the type of load and the elastic properties of the modelled materials may influence the
biomechanical result and should be considered as a limitation when interpreting the results.
Several studies that apply similar loads can be found in the literature, which allows us to
validate the loads applied in this research [44–47].

Another limitation to be considered when interpreting the results is that modelling
of the soft tissues has not been carried out. The complexity of modelling soft tissue, as
well as the complexity of its mechanical properties as it is a non-rigid element, makes its
application in finite element studies challenging. Other studies on abutments performed
on patients, such as that by Galindo-Moreno et al. [3], reported the importance of soft
tissues and, when interpreting the results, tissular biology, the importance it has on the
prosthetic system and the fact that the peri-implant bone should be considered. In this
sense, extrapolating the mechanical results and applying the concepts of tissular biology,
opposing results are found, since from a mechanical perspective, the longer abutments
transfer greater tension and, therefore, the bone-implant system suffers greater deformation.
However, these abutments maintain larger tissue volumes and have been shown to better
maintain the peri-implant bone compared to shorter abutments with less peri-implant soft
tissue [48,49]. In this regard, as Frost’s mechanostat theory proposes, bone adaptation
to load transfer, translated into deformation, can be influenced by both an excess and a
defect of load and therefore the mechanical results obtained are hardly comparable with
the biological results, even if they are opposed to each other.

In this sense, it should be considered that the magnitude of deformation and load
transferred to the peri-implant bone determined in the test are within acceptable ranges
with a physiological and adaptive bone response and, therefore, would not pose a risk to
the osseointegration of the implant in any situation.

In addition, the choice of the restorative material for crowns on abutments has been
based on the evolution of CAD-CAM design prostheses and, therefore, the most commonly
used material is milled zirconia. This is consistent with studies that evaluated the effect
of the use of different prosthetic materials on implant stress distribution and peripheral
bone structure and concluded that the choice of prosthetic material is not determined and
has only a minor effect on stress patterns [47,50,51]. In this study, the crowns show similar
behaviour, even though the crown size is reduced as the abutment size increases to keep
the size of the prosthetic system constant.

Finally, another limitation to be taken into account is the screw preload. Jorn et al. [52]
indicate that the screw preload should be included in a dental implant investigation for
a realistic study of the implant complex. Nevertheless, in the present study, the screw
preload is omitted to simplify the system and only the stress applied and its deformation
are analysed, considering it as one more element of the assembly and with an intimate
connection of 100%. This simplification is found in most of the finite element tests described
in the literature, which evaluate the behaviour of implant-supported restorations [46,53,54].
However, the results show that as the abutment size increases, the stress and deformation
suffered by the prosthetic screw increases, which may favour screw loosening and in
extreme cases, extrapolating the results to clinical practice, may lead to fatigue fracture.
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5. Conclusions

Considering the limitations inherent to this type of analysis and the simplifications
assumed, it can be concluded that the stress transferred to the bone-implant system is de-
termined by the height of the abutment used in the implant-supported prosthesis, with the
transferred stress increasing as the abutment height increases. Moreover, as the abutment
height increases, a greater deformation of all the elements of the prosthesis-implant-bone
system occurs, all of them being within the physiological ranges. Proper treatment planning
prior to surgery to determine the position of the implant and the size of the prosthetic
abutment to be used is of great importance; priority should be given to the use of abutments
of an intermediate height that respect both the biological width and acceptable ranges of
transferred stress. The use of any of the evaluated abutments is within the proper biome-
chanical range consistent with the biological results found in the literature. Therefore, a
greater increase in abutment height would be ideal for the maintenance of the peri-implant
marginal bone, combined with proper biological and biomechanical behaviour, assuming
that the longer the abutment, the greater the load transferred and the greater the deforma-
tion. It would be of great interest to develop similar studies in vivo to contrast the results
obtained, as well as to promote the development of abutments with different macroscopic
designs to reduce the load transferred to the peri-implant bone.
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