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Abstract: Topological nature in different areas of physics and electronics has often been characterized
and controlled through topological invariants depending on the global properties of the material.
The validity of bulk–edge correspondence and symmetry-related topological invariants has been
extended to non-Hermitian systems. Correspondingly, the value of geometric phases, such as the
Pancharatnam–Berry or Zak phases, under the adiabatic quantum deformation process in the presence
of non-Hermitian conditions, are now of significant interest. Here, we explicitly calculate the Zak
phases of one-dimensional topological nanobeams that sustain guided-mode resonances, which lead
to energy leakage to a continuum state. The retrieved Zak phases show as zero for trivial and as π for
nontrivial photonic crystals, respectively, which ensures bulk–edge correspondence is still valid for
certain non-Hermitian conditions.

Keywords: topological invariants; Zak phases; non-Hermitian; guided-mode resonance;
photonic crystal

1. Introduction

Topological photonics, through the means of topological invariants and bulk–edge
correspondence, allows for the manipulation of light in a robust way that is immune to dis-
orders [1,2]. These topological invariants, a cornerstone in condensed matter physics, not
only describe the properties of the bulk material but also predict the presence of localized
states at interfaces between different bulk materials. The phenomenon of localized states,
referring to the bulk–edge correspondence, confines light within a specific region [3,4],
effectively creating a nonconventional cavity [5–7]. This confinement enables the light to
serve as a beam emitter [8], similar to the operation of lasers [9–11]. By implementing such
photonic structures, analogous to electronic systems, photonic topological key function-
alities can be achieved despite the presence of non-Hermitian characteristics, including
leakage [12–14].

The significance underlying the bulk topological invariant in Hermitian systems is
expounded through the concept of the bulk–edge correspondence, where the bulk governs
the topological properties of the edge modes. This correspondence establishes a nexus
between the topological attributes prevalent within the bulk material and the inherent
properties of its boundaries. This leads to amalgamating materials characterized by distinct
topological invariants and an energy gap that necessitates closure within the interface,
thereby facilitating the emergence of localized states. So far, a number of topological
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photonic structures with localized edge states have been realized by the attachment of
two lattices with different topological invariants, like the Jackiw–Rebbi state [9,15–17]. This
state engenders pronounced lateral confinement and delivers distinct spectral signatures.

In non-Hermitian photonic systems, leakage assumes a significant role, acting as a
conduit for interaction with the external environment. This leakage phenomenon presents a
fascinating opportunity where it can serve as a window through which highly refined light
can be emitted from within a structured material. Even though leakage might decrease the
validity of the bulk–edge correspondence, the light emitted by the leak can be harnessed to
characterize the material or facilitate experimental measurement of topological invariants in
the far-field [18–20]. To achieve this, far-field spectra are observed for topological invariants,
or bulk-edge correspondences are experimentally established.

Remarkably, the validity of topological invariants extends to photonic platforms in-
volving leaky non-Hermitian systems, such as plasmonics [21–24], waveguide
arrays [25,26], and photonic crystals (PhCs) [27–30]. Among these platforms, PhC slabs have
gained significant popularity for exploring topological phenomena of light, particularly
guided-mode resonances (GMRs) [31]. GMRs are characterized by their electromagnetic
power being tightly confined within the slab while also being capable of coupling with
external radiation, leading to leaky modes that can interact with extended states and radiate
light [8,32].

In this study, we calculate Zak phases directly from the mode profiles at the band
edge corresponding to the GMR frequency in the PhC slab structure. To achieve this, we
used the simple one-dimensional (1D) Su–Schrieffer–Heeger (SSH) [33] model, which has
been recognized as a topological prototype. The Hermitian SSH model yields topological
invariants quantized to values of 0 and π through the Zak phase [34], and leaky SSH
structures show varying Zak phases, which implies that the geometric phase might be used
to characterize or categorize the non-Hermitian conditions [23]. We calculate the Bloch
modes of the magnetic field (Hz) obtained from the finite-difference time-domain (FDTD)
method in the first Brillouin zone (BZ) and use them to obtain Zak phases of the lowest
band for trivial and nontrivial photonic structures [35,36].

2. Methods

A one-dimensional PhC slab is composed of air holes and a high-refractive index
material, as shown in Figure 1a. The photonic version of the SSH model can be made of
dimerized holes with a normalized distance d by ax. The intracell and intercell hopping
are represented as d1 (unit cell A) and d2 (unit cell B), respectively. Due to the system’s
inversion symmetry, the Zak phase under Hermitian conditions for each distinct energy
band has a quantized value. However, the periodically modulated refraction leads to
GMRs, which can couple to external leaky radiation.

The eigenfunctions of holey PhC structures are TE modes, allowing us to use a z-
directional magnetic field (Hz) to calculate Zak phases. In the absence of external currents
and sources, Maxwell’s equations can be used to solve the following equation [37]:

∇×
[

1
ε(r)

∇× Hz(r)
]
=

(ω

c

)2
Hz(r), (1)

For TE mode, Equation (1) is expressed as an eigenvalue problem in terms of the
magnetic field,Hz(r). Owing to the periodicity of PhC, the solutions of Equation (1) can be
expressed using the Bloch theorem.

Hz,k(r) = eik·ruk(r) = eik·ruk(r + a) (2)

where uk(r) is the Bloch function of the lattice with the lattice periodicity a.
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by the normalized distance d1 (unit cell A) and d2 (unit cell B). Two possible unit cells were chosen 
such that the band inversion occurs when the sum of distances d1 and d2 is one. (b,c) The photonic 
band structures and magnetic field (Hz) mode profiles for PhCs composed of unit cells A with d1 = 
0.4 (b) and B with d2 = 0.6 (c), respectively. The red and blue colors of the band curve indicate the 
inversion. The upper and lower right figures show the magnetic field (Hz) Bloch mode profile of the 
upper and lower band edge. The band structures for the unit cells A and B are identical; however, 
band inversion occurs. The spatial magnetic field (Hz) distributions of the band edge at k = 0.5 are 
illustrated. The grey line corresponds to the light line. The structure is defined by various parame-
ters: lattice constant ax = 270 nm, hole width w = 54 nm, hole length y = 162 nm, slab width l = 432 
nm, slab height h = 172.8 nm, slab index nslab = 3.4. 

Figure 2a displays the calculated photonic band structures and transmission spectra 
for different values: d1 = 0.24, d1 = d2 = 0.5, and d2 = 0.76. The band gap at the band edge 
obtained from PhCs with an infinite structure (left) matches precisely with the transmis-
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placed on the surface of a nanobeam structure consisting of 40 unit cells, corresponding 
to the middle 20 unit cell area. A TE mode dipole source was then launched onto the 

Figure 1. (a) Schematic of 1D leaky PhC structure implementing the SSH model. The 1D SSH model
is composed of dimerized holes in a slab structure. The dimerized holes in the unit cell are arranged
by the normalized distance d1 (unit cell A) and d2 (unit cell B). Two possible unit cells were chosen
such that the band inversion occurs when the sum of distances d1 and d2 is one. (b,c) The photonic
band structures and magnetic field (Hz) mode profiles for PhCs composed of unit cells A with
d1 = 0.4 (b) and B with d2 = 0.6 (c), respectively. The red and blue colors of the band curve indicate
the inversion. The upper and lower right figures show the magnetic field (Hz) Bloch mode profile of
the upper and lower band edge. The band structures for the unit cells A and B are identical; however,
band inversion occurs. The spatial magnetic field (Hz) distributions of the band edge at k = 0.5 are
illustrated. The grey line corresponds to the light line. The structure is defined by various parameters:
lattice constant ax = 270 nm, hole width w = 54 nm, hole length y = 162 nm, slab width l = 432 nm,
slab height h = 172.8 nm, slab index nslab = 3.4.

With Ansys-Lumerical FDTD solutions with a TE source launched into the PhCs, we
calculated the band structures for unit cells A and B. The structures of the lowest and the
first excited bands, as well as the corresponding Bloch modes, are drawn in Figure 1b and
1c, respectively. The emergence of grey light lines from the slab structure indicates the
presence of leaky modes. The upper and lower right figures illustrate the Bloch mode of
the magnetic field (Hz) at each band edge, respectively. Although the band structures of the
two PhCs are identical, the Bloch mode profile of the magnetic field (Hz) at the band edge
suggests band inversion between the two PhCs. This inversion occurs when the sum of
distances d between the two holes of unit cells A and B equals unity.

Even though the band structure of infinite PhCs differs from that of finite structures,
the resonance spectrum can still be observed based on GMRs in a finite structure consisting
of a certain number of unit cells. It becomes crucial to determine the number of unit cells
that yield identical band gaps between finite and infinite structures. We find that when
there are more than 40 unit cells, the band gap at the band edge calculated in the infinite
structure aligns with the band gap in the transmission spectrum of the finite structure.
This allows a direct comparison of the topological natures of an infinite structure from a
sufficiently long finite structure with a leaky mode.

Figure 2 displays the calculated photonic band structures and transmission spectra
for different values: d1 = 0.24, d1 = d2 = 0.5, and d2 = 0.76. The band gap at the band edge
obtained from PhCs with an infinite structure (left) matches precisely with the transmission
spectrum of the finite structure (right). For the transmission spectra, a monitor was placed
on the surface of a nanobeam structure consisting of 40 unit cells, corresponding to the
middle 20 unit cell area. A TE mode dipole source was then launched onto the nanobeam
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to find a resonance peak in the 150~500 THz range. These bands meet at the band edge at
d1 = d2 = 0.5, resulting in a Dirac-like point formation and band crossing.
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Figure 2. (a–c) Photonic band structure and transmission spectra for three conditions: d1 = 0.24,
d1 = d2 = 0.5, and d2 = 0.76. The band gap at the band edge, which is obtained from PhCs with an
infinite structure (left), is identical to the one from the transmission spectrum of a finite structure
consisting of 40 unit cells (right). The yellow regions are photonic band gaps. (d,e) The span of the
band gap as a function of the normalized hole distance d. For both infinite (left) and finite (right) PhC
structures, the yellow region illustrating the band gap size becomes smaller as the normalized hole
distance closes to 0.5. After band crossing occurs at d = 0.5, the band gap size increases gradually,
showing the band inversion. The red and blue colors of the band curves indicate the inversion.

To observe the evolution of the photonic band gap, we gradually span the value of d1
and d2 for both infinite and finite PhCs, as illustrated in Figure 2d,e. For d1, we can observe
an open band gap in both infinite and finite PhCs, and vice versa for d2. However, at
d = 0.5, the photonic band gap closes, indicating the appearance of a Dirac-like point. The
extension of the yellow region in the plot indicates that the photonic band is proportionally
related to the differences in distances.

3. Results

The Zak phase is given as an integral over the BZ:

ϕn = i
∮

⟨un,k|∇k|un,k⟩·dk (3)

where n is the band index. In a continuum limit, the analytical form of the Bloch functions
for each n is required to be known. However, finding the Zak phases for arbitrary photonic
structures requires some manner of discretization. If we discretize the BZ into N intervals,
the Zak phase for each band can be recast in the following form [38]

ϕ = −Im
[
ln
[〈

uk1(r)
∣∣uk2(r)

〉〈
uk2(r)

∣∣uk3(r)
〉
· · ·

〈
ukN−1(r)

∣∣∣ukN (r)
〉]]

(4)

Here, we note that can be extracted from Equation (2) by changing the phases:

uk(r) = e−ik·rHz,k(r) (5)
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where the magnetic field profiles for each spatial and wave number location can be obtained
from FDTD simulation. In principle, the intervals between the adjacent wave numbers
do not need to be equidistant to calculate the entire bra–ket products. However, the
relative phases for bra–ket values should be compensated for by Equation (5) accordingly.
Therefore, we used the simplest subroutine with equal intervals of wave numbers in the
FDTD simulator.

Unlike the finite element method, a pulse-like excitation source is required to obtain
the Bloch modes in the FDTD simulation. Hermitian Zak phase assumes a steady state after
equilibrium is established. Therefore, it is crucial to examine how fast the electromagnetic
fields decay in our structure to retrieve Zak phases. To observe the decay characteristics of
different electromagnetic modes in our PhC, we represent the temporal evolution as spatial
averages in the unit cell, as depicted in Figure 3a, after which the monitored magnetic
field gradually diminishes. After the dipole source generated a pulse during 0 < t < 4.98 fs,
the monitored magnetic field decays sufficiently for every wave number value. Once the
varying magnetic fields attain a uniform state, the Bloch mode profile was obtained at
1000 fs with an apodization time width of 250 fs. To avoid any influence from the light
source, we apply a Gaussian function with a Full-Width Half-Maximum (FWHM) of 250 fs
as an apodization window. This step facilitates the exclusion of light source effects from
the analysis.
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for our calculations. With the data of the Hz field obtained at discrete points in the BZ, we 
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Figure 3. (a) Time evolution of the magnetic field (Hz) leaky mode in the PhCs for k = 0.5 (blue),
k = 0.25 (red), and k = 0 (black). After the decaying magnetic fields reached a uniform state at k = 0
and 0.25, the Hz mode profile was obtained at 1000 fs. At k = 0.5, the magnetic field survives without
decay, which indicates the resonance behavior. (b) Calculated Zak phase γ of each band for the cases
of d = 0.4 (trivial) and d = 0.6 (nontrivial).

For small wave numbers such as k = 0, the spatial average decays quickly, and the
steady state is already established right before 400 fs, as shown in the top figure of Figure 3a.
For k = 0.25, the field also decays similarly. However, for large wave numbers such as
k = 0.5, where the band edge is, the GMRs ensure the persistence of the field amplitude
enough to prolong it for more than 1200 fs. This means the GMRs support a strongly
confined mode in the PhCs plane. When an edge or lattice distortion exists, this GMR mode
can be leaked out from the planar PhC to the far-field.

To numerically compute the Zak phase, we extracted the Bloch functions for d = 0.4
and d = 0.6, which were then inserted into Equation (4). As shown in Figure 1, there is
no degeneracy in the lower and upper bands, allowing us to confidently apply Equation
(4) for our calculations. With the data of the Hz field obtained at discrete points in the BZ,
we defined the first BZ and discretized it into a regular mesh in k-space. Specifically, we
discretized the BZ into N = 100 equal intervals for the x-axis and M = 160 for the y-axis.
Subsequently, we computed the inner products with the adjacent values from

∣∣un,k−0.5

〉
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to
∣∣un,k0.5

〉
. This process generated a distribution of Zak phase values along the y-axis,

effectively summarizing the results of multiple calculations.
The resulting Zak phase distribution along the hole length y for the first BZ is illus-

trated in Figure 3b. Specifically, for PhCs with d1 = 0.4 and d2 = 0.6, the Zak phase values
are almost quantized to 0 and π, respectively, even with GMR leakage. We find that the
finite size effect along the hole length in the y direction shows some distribution of the Zak
phases. We represent this distribution as the y-scale error bar in Figure 3b. Calculating the
Zak phase for the lower band of each PhC proves to be more challenging due to the merging
of the lower band and light line near k = 0, which leads to larger error bars. For PhCs
with d1 = 0.4, both the lower and upper bands exhibit a Zak phase close to 0, indicating
trivial behavior. Conversely, for PhCs with d2 = 0.6, the Zak phase takes on a value of π,
signifying nontrivial behavior. In the GMR structure, the Zak phase relies directly on the
mode profiles of the magnetic field, enabling a straightforward approach to determine
the topological invariants. The most intriguing aspect of this result is that, despite being
non-Hermitian, the topological geometric phases still show good quantized values, unlike
the previously reported non-Hermitian calculation [19].

When attaching two PhCs characterized by a trivial Zak phase of 0 and a nontrivial
Zak phase of π, as shown in Figure 4a, localized modes centered at the edge emerge, as
shown in Figure 4b,c, depending on the optical frequency. Corresponding transmission
spectra showing a topological edge mode clearly emerge, as shown in Figure 4d,e. For
structures characterized as either entirely trivial or nontrivial, the computed magnetic field
distribution at each band edge at 207.1 and 229.4 THz exhibits propagation towards the
exterior. On the other hand, exactly at the peak frequency of 217.1 THz, a more confined
mode emerges, spanning just a few unit cells.
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inversion symmetry, the spectral peak of the topological edge state remains consistently 
positioned at the same frequency, regardless of the values of d1, as shown in Figure 5a. 
This demonstrates that the system maintains its inversion symmetry, thereby ensuring a 
high degree of stability in the frequency of the edge mode. This implies that the eigenfre-
quency of the edge state remains unaltered as long as the integrity of the bulk Zak phase 
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On the other hand, the Q-factor, an indicator of energy leakage through GMR, is 
strongly influenced by d1 (and d2), which is shown in Figure 5b. The Q-factor increases as 

Figure 4. (a) The schematic representation of a photonic junction structure comprising both trivial
and nontrivial PhCs, facilitating a bulk–edge correspondence. (b) The mode profile of the magnetic
field (Hz) encompasses the entire structure and is indicative of the junction configuration. Notably,
a distinctive topological edge mode becomes confined to the interface between two distinct PhCs,
manifesting at a frequency of 217.1 THz. (c) The magnetic field (Hz) mode profiles at the upper and
lower states of the spectral band. (d,e) The transmission spectra of the photonic junction structure
correspond with those of finite structures possessing either trivial or nontrivial phases, respectively.
Of significance, the transmission spectrum exhibits a prominent peak aligned with the topological
attributes, further affirming the concurrence between bulk and edge characteristics. This topological
spectral peak emerges precisely at 217.1 THz, coinciding with the central point of the band gap, which
spans the frequency range of 207.1 to 229.4 THz.

The resilience of the topological edge state occurring at the boundary between two
PhCs possessing distinct Zak phases can be checked by varying ds. Due to the presence of
inversion symmetry, the spectral peak of the topological edge state remains consistently
positioned at the same frequency, regardless of the values of d1, as shown in Figure 5a. This
demonstrates that the system maintains its inversion symmetry, thereby ensuring a high
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degree of stability in the frequency of the edge mode. This implies that the eigenfrequency
of the edge state remains unaltered as long as the integrity of the bulk Zak phase is upheld.
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Figure 5. (a) Spectral peaks at the topological edge state, which are generated at the interface with
varying distances d1. The Jackiw–Rebbi state spectral peak retains the same frequency of 217.1 THz,
regardless of the values of d1. (b) Calculated Q factors (blue squares) of the edge modes for different
d1 values. The maximum value of the Q factor is 37,000 at d1 = 0.38.

On the other hand, the Q-factor, an indicator of energy leakage through GMR, is
strongly influenced by d1 (and d2), which is shown in Figure 5b. The Q-factor increases
as a function of d1 up to 0.38, with the highest value being 38,000, then decreases rapidly.
This is because the mode size becomes larger compared to the simulation domain, with
increasing d1. This leads to additional leakage to the boundary of the simulation domain.
We note that the rapid decay of the Q factor for specific d1 values (like 0.36) aligns with
the previous findings on topological nanocavity lasers [10]. Eventually, the Q-factor as a
function of d1 should increase and be saturated up to a maximal value in the presence of
leakage. However, with the finite number of unit cells in the simulation domain, we could
not observe the increasing feature of the Q-factor with our limited simulation time.

4. Conclusions

In summary, we numerically calculated Zak phases of 1D nanobeams with leaky
guided-mode resonances by discretizing Block magnetic fields in the first BZ. The quantized
values of 0 or π were obtained for trivial and nontrivial PhCs, respectively. The presence
of coexisting leaky modes was observed in the band structure, leading to a resonance
spectrum in line with the implementation of the SSH model. The topological Zak phases
extracted from our model non-Hermitian system were consistent with those derived from
the Hermitian counterpart.

Furthermore, we showed the presence and resilience of bulk–edge correspondence, a
phenomenon achieved by establishing a link between bulk materials possessing distinct
topological invariants. This was tested by the identification of a topological edge state
spectral peak at the junction of the PhC slab, where trivial and nontrivial phases intersect.
The resonant characteristics of this topological edge mode show consistent optical frequency,
regardless of the dimerized distances in the SSH PhCs. Our calculation may offer insights
regarding engineering interface states made of two types of PhCs by investigating global
topological properties in the presence of energy leakage leading to finite Q-factor.
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