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Abstract: Derived from malachite green, new triaryl-carbonium-ion-functionalized gold nanopar-
ticles have been synthesized for detecting anions. The detection process, and concomitant colour
change, is based on charge compensation on the surface of nanoparticles, which triggers their
aggregation, resulting in a bathochromic shift of the plasmon resonance band. The difference in
electrophilicity of the malachite green triaryl ions in solution or on gold nanoparticles makes it
possible to distinguish different anions related to their nucleophilic character.
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1. Introduction

Electrophilicity and nucleophilicity are key concepts in chemistry to understand reac-
tion mechanisms and quantify their reaction rate and thus gain insight into the molecular
behaviour. In 1953, Swain and Scott [1] were the first authors to attempt a systematic
quantification of the nucleophilicity in SN2 reactions. They defined nucleophilicity, n, as
an inherent property of a substance according to the following equation: log (k/KH20) = sn,
where s stands for the sensitivity (specific for each electrophile). Later, in 1972, Richie
introduced a new parameter, N+, to characterize this property, which is independent of the
nature of the electrophile [2]. On the other hand, in 1994, based on the reaction rates of some
carbocations, and diazonium ions with n- and π-nucleophiles, Mayr and Patz introduced a
three-parameter equation: log k(20 ◦C) = sN(N + E), where k(20 ◦C) is the second-order rate
constant at 20 ◦C, N is the nucleophilicity parameter, E is the electrophilicity parameter
and sN is the nucleophile-specific sensitivity parameter (which is solvent-dependent) [3,4].
Critical dependence of several factors, such as basicity, polarizability, oxidation potential
and solvation, were well confirmed. Parr et al. considered the electrophilicity concept on
the basis of density functional theory (DFT) [5]. They proposed the ω index as the measure
of electrophilicity, which is directly related to the energy difference corresponding to the
charge transfer process. Parr found a correlation between the index and the electron affinity
of atoms and molecules. Based on this analysis, Kiyooka et al. introduced a theoretical
intrinsic reactivity index (IRI). This index is valid as a single scale directed towards both
electrophilicity and nucleophilicity using the energy levels of frontier molecular orbitals [6].
Table 1 shows the different parameters of some of the nucleophiles used in this study
according to different scales. In consequence, there have been numerous attempts in the
literature [7,8] in recent years to provide a unified theoretical framework for quantifying
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electrophilicity and nucleophilicity, but unfortunately none of them have been completely
successful to date.

Table 1. Nucleophilicity parameters, in acetonitrile, of some nucleophiles used in this study.

Nucleophilicity Parameters

Nucleophile n N SN ω/ε IRI

HS− 5.1
CN− 5.1 16.27 0.70
Cl− 2.7 17.20 0.60 1.74/0.37 0.34
F− 10.88 * 0.83 * 4.52/0.45 0.50

AcO− 2.7 16.90 0.75 0.43/0.23 0.05
Malachite green −42.0 0.82

* 2% water.

Following our studies on the use of functionalized gold nanoparticles with triaryl-
methane derivatives as sensors [9], we have found an important effect of these nanoparticles
in the electrophilicity of triarylmethane dyes that we want to describe here.

Triarylmethane dyes constitute a very important class of dyes that have been used
in several fields, including biochemical applications [10–13], recognition of anions [14,15],
cations [16,17] and neutral molecules [18], as well as pH indicators [19].

One structurally interesting class of carbocations are the 4-dialkylamino arylmethane
dyes. The highly electron-donating character of 4-diakylaminophenyl groups endow
carbonium ions with remarkable stability in aqueous solutions. Further, steric hindrance of
the aryl groups around the central carbocation results in considerably slower reaction rates
with nucleophiles than those of most of other cations of similar stability [20].

Functionalized gold nanoparticles (AuNPs) have recently attracted interest in sensor
applications [21–25]. Following our interest in the development of probes for the detection
of anions, we have studied the use of gold nanoparticles functionalized with triarylmethane
dyes as signalling systems. The sensing strategy is based on the colour change that arises
from the shift in the surface plasmon resonance band that occurs during the aggregation of
AuNPs or the dispersion of AuNPs aggregates. The red colour of dispersed nanoparticles
turns dark blue upon aggregation and the colour change can be observed by the naked eye
even at low concentrations [26,27]. Triarylmethane-functionalized AuNPs remain dispersed
in solution due to the electrostatic repulsion of the cationic charges at the triaryl carbonium
ions. In the presence of reactive anions, their nucleophilic addition to the electrophilic
carbocations will neutralize the positive charges, triggering the aggregation process (see
Figure 1).
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2. Materials and Methods

Hydrogen tetrachloaurate (III) tetrahydrate, p-bromobencyalcohol, n-Buli, Malachite
green carbinol 90% dye, sodium citrate tribasic dyhidrate and 4,4′-bis(dimethylamino)-
benzophenone were obtained from Sigma-Aldrich. NH4PF6, NH4OAc, KCN, NaCl, NaClO4,
NaSH and KF were also obtained from Sigma-Aldrich.

2.1. General Procedures

All reagents were commercially available and were used without further purification.
Silica gel 60 F254 (Merck) plates were used for TLC. Milli-Q ultrapure water was used for
the synthesis of the AuNPs and in the sensing experiments. 1H and 13C NMR spectra
were recorded with a Bruker Avance 300 MHz spectrometer. Chemical shifts are reported
in ppm with tetramethylsilane as an internal standard. High-resolution mass spectra
were recorded in the positive ion mode with a VG-AutoSpec mass spectrometer. UV-vis
absorption spectra were recorded in a 1 cm path length quartz cuvette with a Shimadzu UV-
2101PC spectrophotometer. All measurements were carried out at 293 K (thermostatically
controlled). Zeta potentials were measured with a Malvern Zetasizer ZS three times in
10–25 cycles. X-ray photoelectron spectroscopy (XPS) was employed to verify the success of
the molecular modification of the NP surfaces. The spectra were recorded with an Escalab
210 spectrometer from Thermo VG Scientific. The base pressure in the analysis chamber
was 1.010–10 mbar. Photoelectrons were extracted by using the Mg-Kα excitation line
(hν = 1253.6 eV). The binding energy of the spectra refers to the Fermi level. The electronic
images were obtained with a JEOL-1010 transmission electron microscope operating at
100 kV. Samples were prepared for TEM characterization by applying a drop of colloidal
solution to a carbon-coated copper grid.

2.2. Synthesis of Compound 1

Compound 1 was synthesized according to the literature [28]. The Malachite green
(MG+) dye (1.6 g, 4.6 mmol) was dissolved in 15 mL of DMSO and heated to 60 ◦C. A
concentrated HCl solution was added (10 M, 4.6 mmol) followed by the addition of KCN
(0.65 g, 10 mmol), and the resulting pale solution was stirred for 10 min. The mixture
was allowed to cool down to room temperature. Next, 50 mL of water was added, and
the mixture was extracted with ethyl acetate (50 mL). The organic layer was washed with
50 mL of brine, dried over anhydrous MgSO4 and evaporated in vacuum. The compound
was purified by column chromatography (SiO2, DCM/AcOEt 9:1) and a pale green solid
was obtained (1.143 g, 70%).

1H-NMR (300 MHz, CDCl3): δ = 7.39–7.22 (m, 5H), 7.07 (d, J = 9.1 Hz, 4H), 6.68 (d,
J = 9.03, 4H), 2.97 (s, 12H) ppm; 13C-NMR (75.4 MHz, CDCl3): δ = 150.2; 142.0; 133.1; 129.8;
128.8; 128.5; 124.7; 112.3; 110.9; 44.4; 40.4 ppm.

2.3. Synthesis of Compound 5

In a typical run, p-bromobenzyl alcohol (0.187 g, 1.00 mmol) was dissolved in 20 mL of
anhydrous THF under argon atmosphere. The solution was cooled to −70 ◦C. n-Butyllithium
(1.0 mL of a 2.5 M solution in hexane, 2.5 mmol) was added dropwise with a syringe under
continuous stirring. The mixture was left at−70 ◦C for 15 min. Then, 4,4′-bis(dimethylamino)-
benzophenone (0.188 g, 0.7 mmol) was added as a solid under stirring, and the mixture was
allowed to warm to room temperature and left for 2 h. Saturated solution of NaHCO3 (50 mL)
was added to quench the reaction, and ethyl acetate (50 mL) was used to extract the crude
product. The organic phase was washed with 30 mL of brine and dried over anhydrous
MgSO4. The insoluble solids were removed by vacuum filtration, and ethyl acetate was
concentrated using a rotary evaporator. The crude product was further purified by silica gel
column chromatography using hexane/ethyl acetate (1:3, v/v) as eluent. After removing all
the solvents, the product, 4, was obtained as a green solid (0.160 g, yield: 60%).
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1H-NMR (300 MHz, CDCl3): δ = 7.15 (d, J = 6.8 Hz, 2H), 7.05 (d, J = 6.8 Hz, 2H), 6.80 (d,
J = 6.7 Hz, 4H), 6.63 (d, J = 6.7 Hz, 4H); 4.50 (s, 2H), 2.91 (s, 12H) ppm; 13C-NMR (75.4 MHz,
CDCl3): δ = 150.2; 149.6; 140.3; 135.1; 129.8; 127.8; 126.9; 113.7; 81.5; 69.4; 40.5.

A 50 mL round-bottom flask was charged with lipoic acid (0.112 g, 4.91 mmol), DCC
(0.112 g, 4.91 mmol) and anhydrous DCM (20 mL). The reaction mixture was cooled to 0 ◦C
in an ice water bath, and a solution of 4 (0.160 g, 4.25 mmol), DMAP (catalytic amount)
and anhydrous CH2Cl2 (25 mL) was added dropwise over a period of 1 h under magnetic
stirring. After the addition was completed, the reaction mixture was stirred at 0 ◦C for 1 h
and then allowed to warm to room temperature for 12 h. After removing the insoluble salts
via vacuum filtration, the filtrate was concentrated and further purified by silica gel column
chromatography using hexane/ethyl acetate (1:6, v/v) as eluent. After removing all the
solvents with a rotary evaporator, the product, 5, was obtained as a green solid (0.068 g,
yield: 40%).

1H-NMR (300 MHz, CDCl3): δ = 7.25 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.80 (d,
J = 8.0 Hz, 4H), 6.60 (d, J = 8.0 Hz, 4H), 5.05 (s, 2H), 2.90 (s, 12H), 2.5–2.3 (m, 5H), 1.80–1.60
(m, 2H), 1.55–1.45 (m, 4H), 1.42 (m, 2H) ppm; 13C-NMR (75.4 MHz, CDCl3): δ = 173.8;
157.2; 150.0; 147.5; 140.5; 129.6; 129.2; 128.1; 114.1; 81.9; 66.3; 56.7; 40.9; 40.6; 38.9; 34.3; 29.1;
26.8; 25.0.

2.4. Preparation of the Functionalized AuNPs: NP1

Gold nanoparticles were prepared by reducing HAuCl4 with trisodium citrate. All
glassware was thoroughly cleaned with freshly prepared aqua regia (HCl:HNO3 in 3:1
molar ratio), rinsed thoroughly with water and dried in air. NPs with a diameter of 13 nm
were synthesized as reported previously [29,30]. Briefly, 5 mL of 38.8 mM trisodium citrate
solution was added into 50 mL of 1 mM HAuCl4 boiling solution, and the resulting solution
was then kept continuously boiling for 30 min until a red solution was obtained. The
solution was cooled to room temperature, and then the mixture was filtrated through a
0.22 µm membrane filter to remove the precipitate and the filtrate was then stored in a
refrigerator at 4 ◦C for further use. The size of NPs was measured with a transmission
electron microscope. Modification of NPs through the ligand-exchange reaction was
performed at room temperature by mixing 10 mL of the as-prepared NPs with 20 µL
of aqueous solution of 1 mM of compound 5 in DMF. NP1 was centrifuged for 20 min
(13.000 rpm) and then suspended in DMF.

3. Results
3.1. Study of Commercial Malachite Green (MG+) Dye versus Anions in Solution

First, the behaviour of the commercial malachite green (MG+) triarylmethane dye was
studied in solution. This compound has a strong absorption band in the visible region to pro-
duce intense, brilliant shades of blue-green [31]. Its absorption spectrum in DMF (Figure 2,
top) is characterized by an intense absorption band at 619 nm (ε = 62,980 cm−1 mol−1 L),
arising from a π→ π* transition, along with two less intense π→ π* transitions at 420 nm
(ε = 11,440 cm−1 mol−1 L) and 312 nm (ε = 11,430 cm−1 mol−1 L), respectively. It is well
established that MG+ cations react with a variety of nucleophiles (such as cyanide and
bisulfide anions or amines) in different solvents following second-order kinetics [32].
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Figure 2. (Top) Changes in the UV-vis absorption spectrum of a solution of MG+ (1× 10−5 M) in DMF 
after the addition of 200 µL of an aqueous solution of different anions (3 × 10−3 M). (Bottom) Visual 
colour changes of DMF solutions of MG+ after the addition of different anions. 

The nucleophilic addition of cyanide anion to MG+ was confirmed by the independ-
ent synthesis of the corresponding leucocyanide adduct from the reaction of the carbinol 
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after the addition of 200 µL of an aqueous solution of different anions (3 × 10−3 M). (Bottom) Visual
colour changes of DMF solutions of MG+ after the addition of different anions.

This nucleophilic addition can be easily followed by the disappearance of the main
absorption bands in the visible region of the UV-vis spectra, resulting in a bleaching of the
solution [33]. In fact, when aqueous solutions of different anions (CN−, SH−, AcO−, F−,
Cl−, ClO4

− and PF6
−) (3× 10−3 M) were added to a solution of MG+ in DMF (1 × 10−5 M),

only cyanide and bisulfide anions led to an important decrease in the intensity of the
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three characteristic UV-vis absorption bands of MG+ with concomitant disappearance of
the blue-green colour of the solution (see Figure 2, bottom).

The nucleophilic addition of cyanide anion to MG+ was confirmed by the independent
synthesis of the corresponding leucocyanide adduct from the reaction of the carbinol
derivative of MG+ with excess of KCN in acidic media (see Supplementary Materials). We
envisaged that the observed colour change in the titration of MG+ with CN− may arise
from the addition reaction of CN− at the carbocationic core, resulting in the formation of
the colourless species 1 (Scheme 1). To corroborate this hypothesis, when a DMF solution
of GM was reacted with an excess of CN−, the blue-green colour of MG+ changed to
colourless. To confirm the formation of 1, the reaction was performed according to the
literature [28]. Subsequent to the disappearance of the blue-green colour of MG+, 1H and
13C NMR spectra were recorded, which unequivocally confirmed the formation of 1 (see
Supplementary Materials). In the 13C NMR spectrum, a signal at 207.1 ppm, corresponding
to the carbocation, was observed. On rection with -CN, this signal disappeared and a signal
at 110.9 ppm, corresponding to the nitrile moiety, appeared instead.
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Scheme 1. Synthesis of compound 1.

Figure 3 summarizes the kinetic reactivity studies of MG+ with different anions in
DMF. The decrease of the characteristic absorption band of MG+ at 619 nm in the presence
of HS− was too fast to be measured.
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UV-vis titration studies performed with DMF solutions of MG+ in the presence of
increasing amounts of KCN and NaSH showed a decrease in the intensity of the band
centred at 619 nm (see Figure S2 of Supplementary Materials). In a similar trend to the
kinetic study, MG+ gave a linear response from small amounts of HS−, whereas the CN−

anion requires a threshold concentration to give a linear response.

3.2. Study of MG+ Functionalized AuNPs versus Anions in Solution

AuNPs react easily with disulfide groups and then, for the synthesis of MG+-
functionalized AuNPs we decided to synthesize a malachite green derivative bearing an ap-
pending thioctic ester (compound 5 in Scheme 2). Thus, triarylcarbinol 4 was synthesized, in
60% yield, from 4-bromobenzyl alcohol, butyllithium and 4-(dimethylamino)benzophenone.
The less hindered primary alcohol in 4 was esterified with thioctic acid in the presence of
DCC and DMAP to yield compound 5 in a 40% yield after column chromatography [9].
The chemical structure and purity of 5 were confirmed by spectroscopic techniques (see
Supplementary Materials). It is noteworthy that this compound did not show any absorp-
tion bands in the visible region of the UV-vis spectrum, indicating that no carbocation was
generated. To generate the corresponding triaryl carbonium ion, concentrated HCl was
added to DMF or acetonitrile solutions of 5, and a broad UV-vis absorption band centred at
619 nm (5 × 10−5 M in DMF) was observed.
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The functionalized AuNPs were synthesized through a two-step procedure. First,
citrate-stabilized nanoparticles were prepared by reducing tetrachloroauric acid with
trisodium citrate in boiling water [29,30]. Monodisperse citrate-stabilized nanoparticles
were thus obtained with an average size of 13 nm, as determined by TEM. In a second step,
in a ligand-exchange reaction, the citrate was replaced from the surface of the nanopar-
ticles by cation of ligand 5. According to our experience [34], this ligand exchange does
not significantly increase the size, and consequently, the typical SPR band at 530 nm
appears in the UV-vis spectrum for dispersed AuNPs smaller than 25 nm. The function-
alized AuNPs (NP1) were then centrifuged and re-dissolved in DMF. The concentration
of NP1 was calculated to be 1.9 × 10−9 M from an estimated molar extinction coefficient
of ε = 2.47 × 108 M−1 cm−1 [35]. These nanoparticles were neither stable in water nor in
aqueous buffer solutions, probably due to a slow hydration of the triaryl carbonium ion,
leading to aggregation processes.

DMF solutions of dispersed triaryl-carbonium-ion-functionalized AuNPs (NP1) ex-
hibited the characteristic surface plasmon resonance (SPR) band at 530 nm in the UV-vis
spectrum and showed a wine-red colour. Figure 4 depicts the UV-vis spectra of DMF
solutions of NP1 (blank) after the addition of 300 µL aqueous solutions (3 × 10−3 M) of
different anions (CN−, AcO−, F−, Cl−, ClO4

− and PF6
−). As expected, the presence of

some anions promoted a decrease in the intensity of disperse AuNPs at 530 nm and the
appearance of a new peak at around 620 nm, which is consistent with an aggregation of
the nanoparticles (as can be seen in the TEM Figure S1, right). This was observable to the
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naked eye as a colour change from red to blue, although, as can be seen in Figure 4, both
bands coexist to some extent. This is due to the addition of nucleophilic anions towards
the carbocation of MG+ moiety or through the compensation of the electrostatic charges.
For CN− anions, only 180 µL of a 3 × 10−3 M solution was added because the aggregation
process was very fast, leading to the precipitation of the AuNP aggregates.
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4. Discussion

Different trends in the reactivity of monoanionic nucleophiles towards MG+ are ob-
served when the cationic dye is free in solution and when it is attached to the surface of
AuNPs. In the first case, only the stronger nucleophiles (CN− and HS−) are able to react
with MG+. On the contrary, when the triaryl carbonium ion is attached to the AuNPs, it
is also able to detect, with good LODs, AcO−, Cl− and PF6

−. It is not clear whether a
reaction or a charge compensation process, leading to aggregation of the Nps, is responsible.
However, a modification of the electrophilicity of the supported cation is likely, as only the
hard nucleophiles ClO4

− and F− do not promote the aggregation.

5. Conclusions

In summary, we have synthesized MG+-functionalized AuNPs, NP1, for the detection
of anions. The detection process is based on the compensation of the positive charges at the
surface of the nanoparticles, which triggers their aggregation, resulting in a bathochromic
shift in the plasmon resonance band. A different electrophilicity capacity is observed for the
carbocation in solution or linked to the AuNPs, which made it possible to distinguish the
nucleophilic character of different anions. Only the strong and soft nucleophile anions such
as cyanide and hydrogen sulphide decolorate malachite green in DMF solution. However,
when a malachite green derivative is anchored to AuNPs, fewer nucleophilic anions are
able to promote aggregation, except for hard nucleophiles such as ClO4

− and F−.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/colorants2040030/s1, Figure S1: TEM images of NP1 and aggre-
gated NP1; Figure S2: UV-vis spectra of the MG+ on addition of increasing amounts of KCN and
NaSH; Figure S3: UV-vis spectra of the NP1 on addition of increasing amounts of anions expressed;
Table S4: Determination of the LODs.
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