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Experimental section 
General Information 
UV–Visible spectra were recorded on a UV-1900i Shimadzu UV–Vis–NIR 
spectrophotometer using a 1 cm quartz cell. Steady-state emission spectra were 
recorded on a Fluorolog-3 JobinYvon-Spex spectrofluorometer (model GL3-21). 
All the fluorescence emission spectra were corrected for the wavelength 
response of the system. The excitation and emission slit width was set to 2 nm 
for quantum yield calculations. Fluorescence quantum yields of BODIPY dyes 
were measured in ethanol by using standard 1cm path-length quartz 
fluorescence cell and calculated from the equation:[63] 

𝛷 = 𝛷#$%
𝐼
𝐼#$%

𝑂𝐷#$%
𝑂𝐷

𝑛*

𝑛#$%*
 

Here, I denotes the integral of the corrected emission, OD is the optical density 
at the excitation wavelength and ɳ is the refractive index of the medium. 
Rhodamine (φn = 50% in ethanol) and cresyl violet (φn = 56 % in ethanol) were 
used as the references for the calculation of quantum efficiencies. A solution of 
each dye in EtOH (2.0 x 10-6 mol/L) was used to measure fluorescence quantum 
yields, absorption and fluorescence spectra. Pico-second time-resolved 
fluorescence spectra were measured by the time-correlated-single-photon-
counting (TCSPC) method on a Nano-Log spectrofluorometer (Horiba 
JobinYvon), by using a laser diode as an excitation source (NanoLED, 488 and 
654 nm) and a UV–vis detector TBX-PMT series (250–850 nm) by Horiba 
JobinYvon. Lifetimes were deconvoluted with the DAS6 Fluorescence-Decay 
Analysis Software, using a light-scattering solution (LUDOX) for instrument 
response. Molar absorption coefficient (ε) was obtained from the equation  

ε = A / cl 

Here, l denotes the path length of the cuvette equal to 1 cm, c is the 
concentration used (2.0 x 10-6 mol/L) and A is the wavelength of maximum 
absorption.  
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NMR and HR-MS spectra of the final dyes  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. 1H NMR spectrum (600 MHz, CDCl3) of dye TC495 

 

Figure S2. 13C NMR spectrum (150 MHz, CDCl3) of dye TC495 

DCM n-hexane 
n-hexane 

H2O 
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Figure S3. HR-MS (APCI+) of dye TC495 
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Figure S4. 1H NMR spectrum (600 MHz, CDCl3) of dye TC496 

 

 

Figure S5. 13C NMR spectrum (150 MHz, CDCl3) of dye TC496 

DCM H2O 
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Figure S6. HR-MS (APCI+) of dye TC496 
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Figure S7. 1H NMR spectrum (600 MHz, CDCl3) of dye TC497 

 

 

Figure S8. 13C NMR spectrum (150 MHz, CDCl3) of dye TC497 

n-hexane 

n-hexane 
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Figure S9. HR-MS (APCI+) of dye TC497 
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Figure S10. 1H NMR spectrum (600 MHz, CDCl3) of dyeTC498 

 

 

Figure S11. 13C NMR spectrum (75 MHz, CDCl3) of dye TC498 
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Figure S12. HR-MS of dyeTC498 
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Figure S13. 1H NMR spectrum (600 MHz, CDCl3) of dye TC500 
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Figure S14. 13C NMR spectrum (75 MHz, CDCl3) of dye TC500 

 

 

  

 

Figure S15. HR-MS (APCI+) of dye TC500 

 

 

 

 

  

615 620 625 630 635 640 645
m/z

0

20

40

60

80

100
0

20

40

60

80

100

R
el

at
iv

e 
A

bu
nd

an
ce

0

20

40

60

80

100
637.1470

638.1500

636.1505

639.1393615.1647 619.5025 633.4542 643.5984 647.4696625.2314 629.5813
615.1655

616.1688
614.1691

617.1612

637.1474

638.1508
636.1510

639.1432

NL:
9.73E5
OK_DYES157#22-52  RT: 
0.16-0.38  AV: 31 F: FTMS 
+ c ESI Full ms 
[130.00-1300.00] 

NL:
4.87E5
C 35 H25 B 1 F 2 N4 S 2 +H: 
C 35 H26 B 1 F 2 N4 S 2
pa Chrg 1

NL:
4.87E5
C 35 H25 B 1 F 2 N4 S 2 +Na: 
C 35 H25 B 1 F 2 N4 S 2 Na 1
pa Chrg 1



 S14 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S16. 1H NMR spectrum (600 MHz, CD3OD) of dye TC514 

 

 

Figure S17. 13C NMR spectrum (75 MHz, CD3OD/CDCl3) of dyeTC514 

Et2O 

MeOH 

Et2O 



 S15 

 

Figure S18. HR-MS (APCI+) of dye TC514 
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Figure S19. 1H NMR spectrum (600 MHz, CDCl3) of  dye TC516 

 

 

Figure S20. 13C NMR spectrum (150 MHz, CDCl3) of dye TC516 

n-hexane 
n-hexane 

H2O 



 S17 

 

 

 

 

Figure S21. HR-MS of dye TC516 
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Optical data of the new dyes  
 

 

Figure S22: Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dye TC495 

 

 

Figure S23: Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dye TC496 
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Figure S24: Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dye TC497 

 

 

 

Figure S25: Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dye TC498 
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Figure S26: Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dyeTC500 

 

Figure S27: Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dye TC514 
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Figure S28. Normalized absorption (dark solid line) and emission (red solid 
line) spectra of dye TC516. 
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Theoretical calculations 
 

Following the work of Jacquemin et al [64−66] geometries in electronic ground 
and first excited state were optimized with the 6-31G* basis set and the hybrid 
M06-2X functional [65], using the polarized continuum model in the integral 
equation formalism (IEFPCM) to include the solvation effect of ethanol; the 
occurrence of a true minimum was confirmed by the calculation of the 
frequencies. To validate the choice of the functional and basis set also for the 
further (TD)DFT calculations, electronic absorption wavelengths were 
computed with the M06-2X functional as well as with the Coulomb-attenuated 
CAM-B3LYP functional, which describes the long-range exchange interaction 
potential via the Hartree-Fock exchange and was specifically designed to 
improve the description of charge-transfer interactions of DFT with standard 
functionals [67]. However, the values obtained with CAM-B3LYP were very 
similar to those obtained with M06-2X (see Table S1), which therefore was used 
in the following analysis. As the use of the better basis set 6-311+G**, as 
advocated in Refs. [64−66] for electronic transition computations, leads only to 
a slight improvement, we continued to use the computationally cheaper basis 
set 6-31G*.  

For all compounds, the transition to the first excited state S1 was found to be 
strongly dipole-allowed, with a large oscillator strength f, and a large 
contribution of the HOMO-LUMO transition. To obtain a more quantitative 
measure of the orbital composition of the S0 - S1 transition, a transformation to 
natural transition orbitals (NTO) [68] was performed, which provides a means 
to analyze the orbital representation for a one-electron transition. The HOMO-
LUMO transition contributes to all cases more than 95% to the two frontier 
NTOs, which were visually indistinguishable from the canonical frontier 
orbitals. Thus, the S0-S1 transition can be described to a very good 
approximation by the HOMO-LUMO transition alone. 

The computed transition energies are in general agreement with the trends of 
the experimental values, although they are systematically overestimated, as 
Table S1 shows. A general overestimation of transition energies has been 
observed previously for BODIPY compounds [69−71], even with the 
considerably more accurate and computationally expensive approach applied 
in Refs. [64−66], and is still the topic of current research (see, e.g. [72,73]). 

 



 S23 

Table S1. Experimental and calculated absorption maxima �abs (in nm); 
oscillation strengths f in brackets. 

Molecule 8-
phenyl-
BODIPY 

TC495 TC496 TC497 TC498 TC500 TC514 TC516 

CAM-
B3LYP/ 6-
31G* 

422 
(0.63) 

472 
(0.97) 

475 
(0.96) 

458 
(0.82) 

473 
(0.99) 

551 
(1.12) 

523 
(1.05) 

571 
(1.13) 

M06-2X/ 
6-31G* 

425 
(0.80) 

474 
(0.96) 

478 
(0.94) 

459 
(0.90) 

475 
(0.98) 

552 
(1.10) 

525 
(1.04) 

572 
(1.11) 

M06-2X/6-
311+G** 

433 
(0.62) 

482 
(0.96) 

485 
(0.94) 

467 
(0.81) 

482 
(0.98) 

562 
(1.08) 

534 
(1.03) 

583 
(1.10) 

Exp. 499 560 560 546  561 649 618 671 
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Photostability of the new dyes after long incubation 
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Figure S29. Photostability of the new dyes after long incubation time. The 
new synthesised dyes were tested for their toxicity and stability after long 
incubation times. The dyes were added in OptiMEMTM reduced serum medium 
and incubated for 30min (A), 90min (B) and 24h (C) in 37 °C, respectively. After 
incubation, cells were washed with PBS and fixed with PFA for 10min. Images 
were acquired in confocal Leica SP8X WLL system and are illustrated in red 
colour. The concentrations used were 1µM for TC496, TC497, TC498 and 
TC500 and 0.1µM for TC514 and TC516. Cell nuclei were stained by DAPI (in 
blue). Scale bars, 20 µm 
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Staining profile of dye TC514  
 

Lamp2 488 / TC514 excite at 590nm 

 

 

 

 

 

 

 

 

Figure S30. TC514 co-staining with lysosome marker (Lamp2). TC514 was 
added in live cells for 5min at 37°C, cells washed, fixed in PFA for 10min and 
stained with immunofluorescence with Lamp2 illustrated in green. TC514 is 
observed in green colour. Images acquired in confocal Leica SP8 microscope.  
Cell nuclei were stained by DAPI (in blue). Scale bars, 10 µm. 

 

 

 

 

 

 

 

 

Figure S31. TC514 excitation spectrum. TC514 Λ capital scans for the excitation 
of the dye. Peaks at 490nm, 580nm and 590nm are noted as the as best excitation 
peaks in orange colour.  
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Figure S32. TC514 co-staining capacity. TC514 λ scan with excitation at 488 
(A) and excitation with 405 (B).  
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Staining profile of dye TC498 
 

 

 

 

 

 

 

 

 

Figure S33. TC498 excitation and emission spectrum. TC498 Λ capital scan 
reveals the best excitation peak at 568nm in orange colour (A). The emission 
spectrum for TC498 when excited at 568nm has a clear and narrow peak at 
583nm (B). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S34. TC498 is suitable for co-staining with other dyes. TC498 is not 
excited with either 488 or 405, λ emission scan shows background signal when 
excited with both wavelengths 488 or 405. (A, B). 
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