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Simple Summary: DExplore is a user-friendly web application addressing challenges in analyzing
mRNA microarray experiments for gene expression profiling. For over fifteen years, microarray ex-
periments have played a vital role in understanding gene expression in various conditions. DExplore,
built with the R programming language, Shiny package, and Bioconductor, caters to researchers
lacking programming skills. It facilitates the detection of differentially expressed genes using data
from the NCBI Gene Expression Omnibus (GEO) and integrates with WebGestalt for functional
enrichment analysis. DExplore incorporates visualization plots, enhancing the interpretability of
analysis results. These plots provide researchers with deeper insights into gene expression pat-
terns, facilitating informed decision-making. The application’s versatility extends to a Docker image
available on Docker Hub, enabling local usage of data not submitted to GEO. Currently tailored
for the Affymetrix platforms, DExplore serves as a powerful application, simplifying the analysis
of high-throughput data. This online accessible tool empowers molecular biologists to focus on a
smaller number of biologically relevant genes, eliminating complexity and enhancing the utility of
publicly available data in advancing gene expression research. DExplore is a free and open-source
web application.

Abstract: Microarray experiments, a mainstay in gene expression analysis for nearly two decades,
pose challenges due to their complexity. To address this, we introduce DExplore, a user-friendly
web application enabling researchers to detect differentially expressed genes using data from NCBI’s
GEO. Developed with R, Shiny, and Bioconductor, DExplore integrates WebGestalt for functional
enrichment analysis. It also provides visualization plots for enhanced result interpretation. With
a Docker image for local execution, DExplore accommodates unpublished data. To illustrate its
utility, we showcase two case studies on cancer cells treated with chemotherapeutic drugs. DEx-
plore streamlines microarray data analysis, empowering molecular biologists to focus on genes of
biological significance.

Keywords: web application; bioinformatics; differential expression analysis; gene expression; gene
enrichment analysis; microarrays; response to chemotherapeutics; gene expression profile

1. Introduction

DNA microarrays are used to detect the presence and abundance of mRNA molecules
in various biological samples [1]. Thus, they can be used in the following ways: (a) to
measure gene expression levels on a whole-genome scale at a specific time-point; (b)
to compare gene expression in different conditions; (c) to study responses to drugs or
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other treatments, such as genotoxic agents like chemicals or radiation; and (d) to obtain
useful information on the biological function of an organism or tissue by identifying the
genes that are activated or suppressed at various developmental stages or in response to
environmental stimuli [2].

Despite the development of new technologies, such as RNA sequencing, microarray
technology remains one of the most powerful and affordable methods for identifying and
analyzing cellular signaling pathways. The ability to simultaneously analyze thousands
of transcripts provides a detailed molecular phenotype, which can be used to deduce the
different subsets of responses affected upon activation or inhibition of a signaling pathway.
Moreover, in recent years, datasets from microarray experiments are increasingly utilized
for re-analyses (e.g., [3,4]) or meta-analyses (e.g., [5,6]) in the context of systems biology
approaches. Thus, the analysis of mRNA microarray experiments for detecting gene
expression profiles remains a common process for biologists and biomedical researchers.

A microarray experiment produces one set of images that are transformed into nu-
merical values, representing absolute (single-channel) or relative (two-channel) intensities
depending on the array used. The quality of raw data needs to be examined and assessed;
further data preprocessing is required to reach the gene expression matrix. Essentially, there
are two or three steps depending on the type of array: a background adjustment to remove
signals due to non-specific hybridization of the probe; normalization to correct systematic
(non-biological) signals, such as different dye absorption, and spatial heterogeneity on
the chip. The normalization is usually performed assuming that only a relatively small
number of genes is differentially expressed and that these genes are equally under- or
over-expressed. In the Affymetrix (Santa Clara, CA, USA) arrays, it is also necessary to
summarize the different signals obtained from all the probes representing one gene in a
unique value. The aforementioned steps generate the gene expression matrix, wherein
rows represent the genes and columns represent the samples. Each data value (a cell in
the gene expression matrix) represents the expression level of a gene (row) in a sample
(column). The numeric value per se is not that important. However, the relative expression
level of a gene in various samples is valuable in this analysis. Subsequently, the gene
expression matrices are used to detect the genes that are differentially expressed among
treated samples.

Currently, a growing number of computational tools for analyzing the output of
microarray experiments is available. Undoubtedly, the most widely used among them
are R programming language [7] and Bioconductor [8]. Both are open source and provide
the ability of multiple modifications depending on the user’s requirements. The main
disadvantages of R and Bioconductor are that users need to be familiar with programming
and that the tools required for the analysis need to be downloaded and installed on their
computer. For these reasons, a number of tools, commercial or freely available, have been
developed for wet lab biologists and researchers.

Since microarray analyses have been conducted for more than 15 years, many on-
line tools, such as GEPAS [9], EzArray [10], Expression Profiler [11], MIDAW [12], Ar-
rayNorm [13], and ArrayPipe [14], are no longer updated or may not even be available. On
the other hand, Babelomics [15] and CARMAweb [16] are some examples of widely used
online applications that are freely available to non-commercial users. These applications
require researchers to upload raw data stored in their computer and adjust parameters
for analysis. The process of uploading raw data is typically time-consuming, even for
experiments with a small number of replicates, and utilizing these tools can be intricate.
Currently, GEO2R [17] emerges as the most widely used tool for analyzing microarray
data. GEO2R is integrated into the NCBI Gene Expression Omnibus (GEO) database and
can be easily used online to identify differentially expressed genes (DEGs) between two
experimental conditions.

In this paper, we introduce DExplore, an online user-friendly web application designed
for the detection of DEGs using data from NCBI GEO [17,18]. GEO is an international public
repository that archives and freely distributes high-throughput functional genomics data
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submitted by the research community. DExplore is also equipped for local data analysis,
even for datasets not submitted to NCBI’s GEO, because of a Docker image built for the
application. This feature ensures privacy for users who have not yet submitted their data
and seek a preliminary estimation of their experimental results. The capability for local
analysis is particularly advantageous in cases where the server’s upload limitations may
affect the ease and speed of data processing.

Moreover, our application facilitates a seamless transition to functional enrichment
analysis using the well-established online tool, WebGestalt [18]. Users can utilize the
results obtained from DExplore’s preceding differential expression analysis directly in
WebGestalt. Additionally, the tool provides graphical representations since visualization
plots help users interpret results better than large lists of genes and statistical values.
DExplore generates histograms, boxplots, interactive heatmaps, interactive volcano plots,
and PCA plots (including scree plots, PCA scores plots, and biplots) in a .zip file for users
to download and explore.

To showcase DExplore’s versatility, we present two examples involving human breast
cancer cells treated with doxorubicin (GEO Series: GSE39870 [19]—https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE39870, accessed on 17 April 2024; and GSE113427 [20,21]—
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113427, accessed on 17 April
2024). The results of the analyses with DExplore, followed by the functional enrichment
analysis with WebGestalt, are compared to those obtained from GEO2R. We also conducted
a comparison with CARMAweb. Additionally, the findings are shown to be consistent with
cellular pathways reported in the literature for this specific chemotherapeutic agent. At
present, DExplore is capable of analyzing single-channel mRNA microarray experiments
performed by the Affymetrix platforms for all organisms. In the near future, it will be
extended to include other commercially available platforms, such as Illumina and Agilent.

In conclusion, DExplore stands as a robust application, serving as a valuable refer-
ence. It simplifies the complexities of publicly available high-throughput data, allowing
molecular biologists to focus on the selection of few genes with biological relevance for
their experiments without requiring any programming skills.

DExplore is available at www.dexplore.gr, accessed on 19 April 2024, and the source
code can be found at https://github.com/annakatsiki/dexplore, accessed on 19 April 2024.

2. Materials and Methods

DExplore can be used to perform all steps of a classical differential expression analysis
(DEA), including data retrieval from GEO, data preprocessing, and differential expression
analysis through an empirical Bayes-moderated t-test. The results provide a list of the DEGs
annotated with metadata as well as graphical representations for visual inspection of the
data and the analysis results. Additionally, users can directly utilize functional enrichment
analysis with WebGestalt to identify enriched gene ontology (GO) terms [22,23].

2.1. Implementation

DExplore is a web application built using the R programming language, Shiny, and
Bioconductor, making it accessible to researchers without requiring advanced program-
ming skills. The primary R and Bioconductor packages employed in implementing DEx-
plore include the following: (a) Shiny [24]—for constructing interactive web applications;
(b) GEOquery [25]—for downloading raw data from the NCBI GEO; (c) oligo [26]—for the
analysis of gene expression raw-level data (microarray preprocessing); (d) limma [27]—for
data analysis, linear modeling, and differential expression analysis; (e) annotate [28]—
for annotating the identified DEGs; (f) the annotation package corresponding to each
Affymetrix platform to be analyzed, as provided by Bioconductor. In the development of
the application, we also utilized the shinyjs [29], shinyBS [30], and DT [31] packages. For
the visualization plots, we used ggplot2 [32] for the static image plots and heatmaply [33]
and plotly [34] for the interactive heatmaps and volcano plots, respectively.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39870
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39870
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113427
www.dexplore.gr
https://github.com/annakatsiki/dexplore
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Furthermore, as many researchers continue to rely on microarray experiments for
exploring and comparing molecular pathways activated or inactivated after a specific treat-
ment, we integrated the WebGestaltR package [35] to enable direct functional enrichment
analysis. Within the tab panel labeled “WebGestalt Over-Representation Analysis (ORA)”,
users can conveniently proceed to the WebGestalt ORA using the list of DEGs identified by
DExplore. The functional database employed for the analysis is GO [22,23], encompassing
all three categories: Biological Process, Molecular Function, and Cellular Component.

Over the last ten years, the necessity to develop and distribute software tools among
developers and users, as well as among developers themselves, has driven the development
of Docker and Kubernetes. Containerization using Docker allows the packaging, shipping,
and running of entire applications along with their dependencies on any computer [36–38].
Recognizing the potential need for researchers to use our tool locally, we created a Docker
image of DExplore, which is available for direct download from Docker Hub. This enables
users to employ the application on their computer’s operating system without the need to
install the R programming language, R, or Bioconductor packages, and without requiring
any knowledge of R programming.

2.2. Tool Overview

DExplore offers users versatility, enabling seamless analysis whether conducted online
or locally. Its user interface is designed to be straightforward and user-friendly. This tool
is freely accessible to all users, requiring only an internet connection and a browser and
eliminating the need for installation or registration. Users have the flexibility to utilize data
from the NCBI GEO database or upload raw data generated from the Affymetrix GeneChips
in .CEL file format. When using the platform online with uploaded .CEL files, it is important
to note that data is temporarily stored in the server and automatically deleted upon a user’s
exit or session expiration, ensuring data security. Due to file size limitations for uploaded
.CEL files, we strongly recommend that users employ DExplore with uploaded data and
run the Docker image on their infrastructure following the instructions on the image’s
webpage. Running DExplore through the locally installed Docker image prevents any risk
of data leakage.

DExplore is organized into four main tab panels, Data Input, Data Description, Results,
and WebGestalt Over-Representation Analysis, along with a user’s guide and contact email
in the “About” tab. The user’s guide for DExplore is provided as Supplementary File S1.

As input, users can provide a GSE accession number from the NCBI GEO database or
upload data (.CEL files) from their computer (Figure 1). For GSE input, DExplore validates
the query accession number and provides a hyperlink to the corresponding GEO page.
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Figure 1. DExplore’s layout, featuring four main tab panels: Data Input, Data Description, Re-
sults, and WebGestalt Over-Representation Analysis. The “About” tab provides Supplementary
Information, including a user’s guide and contact details.

DExplore enables the user to customize the analysis by choosing the comparison to
be performed. The “Data Description” tab enables users to provide experimental design
details, specify the platform for analysis (if multiple platforms exist in the same GSE), and
define controls and treatment specifics (e.g., type of treatment, duration and concentration
of chemical substances, dose of radiation) (Figure 2).
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Figure 2. The “Data Description” tab. Experimental design information is retrieved directly from
GEO when a GSE input is provided (in this case, GSE39870). Users have the option to select the
comparison criterion, such as type of treatment, and designate which samples should serve as control
and which are treated as samples.

In the context of gene expression analysis, we often compare the expression levels of
thousands of genes simultaneously. When performing individual statistical tests for each
gene without corrections, the probability of making at least one Type I error (false positive)
becomes unacceptably high. As a result, running adjustments for multiple comparisons is
essential when analyzing data from microarray experiments to control the overall Type I
error rate in order to maintain the overall significance level. There are various methods
for adjusting p-values to control the proportion of false discoveries among the significant
results [39].

DExplore allows users to select an adjustment method for their analysis among the
Bonferroni correction (“bonferroni”) [40], the correction introduced by Holm (1979) [41]
(“holm”), by Hochberg (1988) [42] (“hochberg”), by Hommel (1988) [43] (“hommel”), by
Benjamini & Hochberg (1995) [44] (“BH” or its alias “fdr”), and by Benjamini & Yekutieli
216 (2001) [45] (“BY”). A pass-through option (“none”) is also included.

The first four methods are designed to give strong control of the family-wise error rate
(FWER). There seems to be no reason to use the unmodified Bonferroni correction, since it
is overridden by Holm’s method, which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are inde-
pendent or when they are non-negatively associated [46,47]. Hommel’s method is more
powerful than Hochberg’s, but the difference is usually small, and the Hochberg p-values
are faster to compute.

The “BH” (also known as “fdr”) and “BY” method by Benjamini, Hochberg, and
Yekutieli control the false discovery rate (FDR), which is the expected proportion of false
discoveries amongst the rejected hypotheses. The false discovery rate is a less stringent
condition than the family-wise error rate, and thus these methods are more powerful than
the rest.
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J.P. Shaffer has written a detailed review of commonly used adjustment methods [48].
Users can further tailor the analysis by selecting statistical parameters, including

the method for adjusting multiple comparisons, absolute log2 fold-change threshold, and
adjusted p-value threshold, ensuring the desirable statistical power (Figure 3).
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Figure 3. The statistical parameters for the differential expression analysis include the method for
adjusting the p-value for multiple comparisons, the absolute log2 fold-change (FC) threshold, and
the adjusted p-value threshold. Users can opt to use the default parameters, which employ false
discovery rate (FDR) or “fdr” for multiple comparisons’ adjustment, 0.5 as the absolute log2 fold-
change threshold, and 0.05 as the adjusted p-value threshold for the analysis. Alternatively, users
have the flexibility to adjust these values based on their preferences.

After selecting the parameters, the tool generates a list of DEGs. Users can then print,
copy to clipboard, or download the list as a .csv or .tsv file for further analysis. Additionally,
the tool provides visualization plots that can be downloaded as a .zip file. These include a
histogram presenting the distribution of adjusted p-values plotted against the number of
probes, a boxplot, an interactive heatmap, and an interactive volcano plot. Furthermore,
DExplore generates three plots based on the results of a principal component analysis
(PCA): a PCA plot depicting different sample groups based on PC1 and PC2, a scree plot,
and a biplot.

2.3. DExplore’s Workflow

DExplore employs the GEOquery Bioconductor package [25] to download raw data
and all necessary Supplementary Files for the analysis from GEO, or it uses the uploaded
.CEL files. To read the .CEL files, the oligo package is utilized [26]. Raw data preprocessing
is conducted using the RMA (Robust Multi-array Average) algorithm of the oligo package,
employing default parameters such as background subtraction, quantile normalization,
and summarization via median-polish [49–51].
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Before advancing to linear modeling, DExplore conducts non-specific filtering using
the pOverA method, where p represents the proportion of treated samples to the total
number of samples, and A is log2100, an empirical value commonly used in such exper-
iments. The linear modeling of the non-specific filtered values is performed using the
limma package [27]. The user constructs the design matrix of the microarray experiment,
determining which samples are treated as controls and which are target samples. To pro-
ceed with the analysis, there should be at least two replicates for each group. The lmFit
function of the limma package fits a linear model to the expression data for each probe.
The eBayes function computes moderated t-statistics, moderated F-statistic, and log-odds
of the differential expression through the empirical Bayes moderation of the standard
errors towards a global value [52]. The topTable function returns the genes that exceed the
user-defined thresholds, i.e., absolute log2 fold-change and adjusted p-value thresholds
computed by the chosen multiple correction method.

In DExplore, the principal component analysis (PCA) is integrated using the prcomp
function from the stats R package. The purpose of performing the PCA is to simplify
high-dimensional microarray data by transforming them into a lower-dimensional space
while retaining most of its variability. By identifying data patterns and relationships, the
PCA aids in visualizing complex datasets and uncovering underlying structures. The PCA
within DExplore generates PCA plots illustrating sample groupings based on PC1 and PC2
along with scree plots and biplots, providing enhanced data interpretations and insights.
Furthermore, DExplore provides PCA plots generated with the ggplot2 R package along
with other graphical representations, such as interactive heatmaps (heatmaply package),
interactive volcano plots (plotly R package), histograms, and boxplots, to further facilitate
data visualization and interpretation.

If the experiment’s platform has an annotation file in Bioconductor, the annotation is
performed using the annotate package [28]. Unannotated DEGs are filtered out. In case no
annotation file exists, DExplore provides a list of differentially expressed genes with their
probe IDs instead of gene symbols.

The optional step, functional enrichment analysis using WebGestalt’s overrepresenta-
tion analysis (ORA), is implemented through the WebgestaltR package [18], using the same
parameters as WebGestalt’s web version.

While implementing functional enrichment analysis through overrepresentation anal-
ysis, it is crucial to be mindful of the significant impact that different gene reference back-
ground settings can have on enrichment p-values, even with the same statistical method
and annotation content [53]. Therefore, configuring the gene reference background requires
careful consideration. Although there is no universally accepted “gold” standard, a general
guideline is to define it as the pool of genes selectable for the studied annotation cate-
gory [54]. Additionally, choosing the right gene identifiers is vital for efficient mapping to
available annotations. Ensuring comprehensive mapping for ID-to-ID and ID-to-annotation
content in the database maximizes the translation of gene lists into potential annotation
content for subsequent high-throughput enrichment analysis algorithms [54]. To avoid
potential confusion from unannotated or inaccurately annotated probes, it is highly rec-
ommended to use probe IDs specific to the microarray platform used in the analyzed
experiment.

2.4. Output

DExplore generates an annotated list of DEGs, providing both the probe ID used by
Affymetrix and the corresponding gene symbol. Additionally, statistical values such as the
log2 fold-change, average expression, and p-value are included for each gene (Figure 4).
The gene symbol column also includes hyperlinks to NCBI’s Gene database, allowing users
to further explore the listed genes. Furthermore, users can easily download a .zip file
containing graphical representations of the differential expression analysis by clicking the
corresponding button in the Results tab.
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Figure 4. After analysis completion, DExplore presents a comprehensive list of differentially expressed
genes (DEGs) in the ‘Results’ tab. Each entry includes the probe ID from Affymetrix, its corresponding
gene symbol, and statistical values such as log2 fold-change, average expression, and p-value. Gene
symbols are hyperlinked to NCBI’s Gene database for exploration. Users can also download a .zip
file containing various graphical representations of the analysis, including heatmaps, volcano plots,
histograms, boxplots, and PCA plots, facilitating further exploration and analysis of the DEGs list.

2.5. Functional Enrichment Analysis Using WebGestalt

After completing the differential expression analysis, the user can proceed directly
to functional enrichment analysis of the identified DEGs. WebGestalt (WEB-based GEne
SeT AnaLysis Toolkit) is one of the most widely used gene set enrichment analysis tools
that helps users extract biological insights from the genes of interest. It was introduced in
2005 [55] and has been widely established among researchers for the interpretation of gene
lists derived from large-scale omics studies, such as those from microarrays. WebGestalt
can be freely accessed at https://www.webgestalt.org, accessed on 17 April 2024. In the
most recent update of WebGestalt (2019), developers wrapped the core computing into an
R package called WebGestaltR, which we used to provide users of DExplore with a direct
connection to WebGestalt.

By proceeding to the WebGestalt over-representation analysis using the corresponding
tab panel, users may select one of the 12 organisms currently supported by WebGestalt
and one of the reference sets for the selected organism to customize their analyses. The 12
organisms currently supported by WebGestalt are (1) Arabidopsis thaliana (athaliana), (2) Bos
taurus (btaurus), (3) Caenorhabditis elegans (celegans), (4) Canis lupus familiaris (cfamiliaris),
(5) Danio rerio (drerio), (6) Sus scrofa (sscrofa), (7) Drosophila melanogaster (dmelanogaster),
(8) Gallus gallus (ggallus), (9) Homo sapiens (hsapiens), (10) Mus musculus (mmusculus),
(11) Rattus norvegicus (rnorvegicus), and (12) Saccharomyces cerevisiae (scerevisiae). It is
worth mentioning that DExplore’s utility for differential expression analysis is not confined
to specific organisms, as it can analyze microarray data from all Affymetrix Gene Chips
(deposited on GEO or uploaded by the user). However, the functional enrichment analysis
with WebGestalt is limited to the aforementioned 12 organisms. DExplore via WebGestaltR
renders the same output as that of the over-representation analysis using WebGestalt via
its own website. The output can be viewed directly on the user’s browser and/or can be
downloaded as a .zip file for saving or for further analyses.

2.6. Docker Image

The introduction of a Docker version for DExplore offers several key advantages, em-
phasizing scalability and maintainability for our online analysis tool. Dockerization brings
enhanced portability, isolation, scalability, versioning, resource efficiency, and consistency
to the application [37,38]. Through encapsulation of the runtime environment into a single
container, Docker ensures uniform behavior across diverse systems.

Versioning and rollbacks are simplified with Docker, allowing for easy tagging, and
tracking of different releases. The isolation provided by Docker containers fosters a repro-
ducible and predictable environment, thereby minimizing the likelihood of runtime errors.

https://www.webgestalt.org
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This approach not only enhances portability but also contributes to a consistent and reliable
deployment process.

The Docker image provided through DExplore’s Data Input tab panel on Docker
Hub is accessible for download and installation on any computer, facilitating local use
in a manner identical to its online counterpart. This feature is particularly advantageous
for users with poor internet connections or those wishing to upload their own data for a
differential expression analysis. While the online version of DExplore supports data upload,
it is strongly recommended to perform analyses locally, considering the 25 MB maximum
size limit per uploaded file on the online version. A tutorial for running DExplore’s Docker
version is available in Supplementary File S2.

2.7. Source Code Availability

DExplore can be found at www.dexplore.gr, accessed on 19 April 2024. The source
code is available on GitHub (https://github.com/annakatsiki/dexplore, accessed on 19
April 2024) and the Docker image on the Docker Hub (https://hub.docker.com/r/akatsiki/
dexplore, accessed on 19 April 2024).

3. Results

In this section, we demonstrate the application of DExplore by analyzing two publicly
available datasets and comparing our results with those obtained using GEO2R. We also
conducted comparisons with CARMAweb, and the detailed results are provided in Supple-
mentary File S3. Furthermore, we confirm the alignment of our findings with the existing
literature.

3.1. Differential Expression Analysis

To assess the performance of our application, we utilized two datasets obtained from
the GEO.

3.1.1. Dataset GSE39870

In the first dataset, MCF7 human breast cancer cells underwent a 3-day hormone-
depletion period, followed by treatment with 10 µM doxorubicin for 12 h (accession
number: GSE39870, Ref. [19]). The analysis was conducted using the Affymetrix GeneChip
Human Genome U133A 2.0 Array, representing 14,500 well-characterized human genes.
The comparative analysis involved MCF7 cells subjected to a vehicle treatment regimen
versus those treated with 10 µM doxorubicin for 12 h.

Applying criteria of absolute log2 fold-change ≥ 0.5 and adjusted p-value ≤ 0.05,
with the false discovery rate (FDR) method [44] used for adjusting multiple comparisons,
DExplore identified 739 differentially expressed genes.

The same criteria were also applied to GEO2R [17], which is a well-established online
tool from NCBI that is integrated into GEO to analyze datasets from the database. GEO2R
identified 1055 differentially expressed genes. The full lists of the identified DEGs from
both DExplore and GEO2R analyses, along with some statistical parameters, gene symbols,
and gene names, are provided in the Supplementary Materials (Tables S1 and S2).

A total of 681 genes were identified as differentially expressed by both DExplore
and GEO2R, comprising 410 down-regulated and 271 up-regulated genes (Figure 5). The
complete list of common DEGs is available in Supplementary Materials (Tables S4–S6).

www.dexplore.gr
https://github.com/annakatsiki/dexplore
https://hub.docker.com/r/akatsiki/dexplore
https://hub.docker.com/r/akatsiki/dexplore
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Figure 5. Venn diagram showing (a) all the differentially expressed genes, (b) the under-expressed
genes, and (c) the over-expressed genes following treatment with doxorubicin identified by DExplore
(light navy blue) and GEO2R (coral pink) (dataset GSE39870). To draw the diagrams, we used the
“Venn Diagrams” online tool available at https://bioinformatics.psb.ugent.be/webtools/Venn/,
accessed on 17 April 2024.

In addition to identifying differentially expressed genes, Dexplore also provides
comprehensive visualizations of the dataset. Figure 6 illustrates the PCA results, showing
the six samples in two groups, i.e., control and treated samples, against PC1 and PC2.

In Figure 7, we present a static image of the heatmap from the differential expression
analysis, rendered by Dexplore. The interactive version of the heatmap, along with other
plots rendered by Dexplore, is provided in Supplementary Materials (File S4).

Figure 8 depicts a static image of the volcano plot, also rendered by Dexplore, where
downregulated genes are shown in blue and upregulated ones in red. The interactive
version of the volcano plot is also available in Supplementary Materials (File S4).

https://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 6. The PCA plot illustrates the results of principal component analysis for dataset GSE39870,
presenting the six samples categorized into control and treated groups. Control samples are depicted
in blue, while treated samples are colored red, facilitating visual discrimination between the two
groups. Additionally, the plot showcases the distribution of the two groups in distinct regions of the
PC1-PC2 two-dimensional space, providing insights into the separation and clustering patterns of
the samples based on their gene expression profiles.
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Figure 7. The heatmap for dataset GSE39870, generated by Dexplore. The produced dendrogram
is displayed on the left side. For the clustering, Pearson correlation distance metric was utilized
and row scaling was applied. The colors range from blue to yellow, reflecting the distance from the
mean in units of standard deviation, since row scaling was applied, with blue colors corresponding
to the negative values and yellows to the positive values. Additionally, the interactive version of
this plot, available in Supplementary Materials (File S4), allows users to hover over each gene to
view detailed information including the gene’s symbol, the sample name, the scaled value, and the
adjusted p-value.
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Figure 8. Volcano plot representing dataset GSE39870, generated by Dexplore. The plot visually
highlights differentially expressed genes, with upregulated genes displayed in red, downregulated
genes in blue, and genes with no significant or lower fold-change shown in black. Additionally,
the interactive version of this plot, available in Supplementary Materials (File S4), allows users to
hover over each gene to view detailed information including the gene’s symbol, log2FC, and adjusted
p-value.

3.1.2. Dataset GSE113427

The second dataset utilized to showcase Dexplore pertains to MDA-MB-231 human
breast cancer cells. These cells underwent a 48 h pretreatment with a mixture of 40 µM oleic
acid (OA) and 40 µM linoleic acid (LNA). Following the removal of the fatty acids, the cells
were exposed to 0.41 µM doxorubicin for 24 h (accession number: GSE113427, [20,21]). The
analysis utilized the Affymetrix GeneChip Human Genome 2.0 ST Array [transcript (gene)
version], representing 26,000 well-characterized human genes. The comparative analysis
involved MDA-MB-231 cells subjected to control treatment regimen versus those treated
with 0.41 µM doxorubicin for 24 h.

The analysis was conducted using b”th D’xplore and GEO2R, applying the same
criteria as described for dataset GSE39870. Dexplore identified 237 differentially expressed
genes, while GEO2R identified 243 differentially expressed genes. The complete lists
of the identified DEGs from both Dexplore and GEO2R analyses, along with statistical
parameters, gene symbols, and gene names, can be found in Supplementary Materials
(Tables S25 and S26).

A total of 128 genes were identified as differentially expressed by both Dexplore and
GEO2R, comprising 72 down-regulated and 56 up-regulated genes (Figure 9). The complete
list of common DEGs is available in Supplementary Materials (Tables S28–S30).

Figure 10 presents the PCA plot, illustrating the grouping of samples against PC1
and PC2.

In Figure 11, a static heatmap from the differential expression analysis is presented,
offering insights into the expression patterns of differentially expressed genes.

Figure 12 showcases a static volcano plot, highlighting downregulated genes in blue
and upregulated genes in red. The interactive versions of both these plots, along with
others rendered by DExplore for this dataset, can be found in Supplementary Materials
(File S5).
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Figure 9. Venn diagram showing (a) all the differentially expressed genes, (b) the under-expressed
genes, and (c) the over-expressed genes following treatment with doxorubicin identified by DExplore
(light navy blue) and GEO2R (coral pink) (dataset GSE113427). To draw the diagrams, we used
the “Venn Diagrams” online tool available at https://bioinformatics.psb.ugent.be/webtools/Venn/,
accessed on 17 April 2024.
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Figure 10. The PCA plot illustrates the results of principal component analysis for dataset GSE113427,
presenting the eight samples that were compared categorized into control and treated groups. Control
samples are depicted in blue, while treated samples are colored red, facilitating visual discrimination
between the two groups. Additionally, the plot showcases the distribution of the two groups in
distinct regions of the PC1-PC2 two-dimensional space, providing insights into the separation and
clustering patterns of the samples based on their gene expression profiles.

https://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 11. The heatmap for dataset GSE113427, generated by DExplore. Only the samples of interest
are shown. The produced dendrogram is displayed on the left side. For the clustering, Pearson
correlation distance metric was utilized, and row scaling was applied. The colors range from blue
to yellow, reflecting the distance from the mean in units of standard deviation, since row scaling
was applied, with blue colors corresponding the negative values and yellows the positive values.
Additionally, the interactive version of this plot, available in Supplementary Materials (File S4),
allows users to hover over each gene to view detailed information including the gene’s symbol, the
sample name, the scaled value, and the adjusted p-value.
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Figure 12. Volcano plot representing dataset GSE113427, generated by DExplore. The plot visually
highlights differentially expressed genes, with upregulated genes displayed in red, downregulated
genes in blue, and genes with no significant or lower fold-change shown in black. Additionally,
the interactive version of this plot, available in Supplementary Materials (File S5), allows users to
hover over each gene to view detailed information including the gene’s symbol, log2FC, and adjusted
p-value.

3.2. Functional Enrichment Analysis Using WebGestalt

To gain biological insights into the functional roles of the identified DEGs, we per-
formed the WebGestalt ORA using the results from both DExplore and GEO2R. This
analysis, seamlessly integrated into our application, facilitates the identification of enriched
gene ontology (GO) terms within a subset of genes.

The parameters employed for WebGestalt’s ORA are illustrated in Figure 13. For
the input list, we directly uploaded the probe IDs of the identified DEGs to prevent any
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potential confusion caused by unannotated or inaccurately annotated probes. Accordingly,
the ID type used was affy_hg_u133a_2 for dataset GSE39870 and affy_hugene_2_0_st_v_1
for dataset GSE113427, corresponding to the probe IDs. The analysis was conducted
individually for under- and over-expressed genes identified by both DExplore and GEO2R,
as well as for all DEGs.
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GSE39870.

3.2.1. Dataset GSE39870

The WebGestalt’s ORA for dataset GSE39870 identified 359 enriched GO terms using
all DEGs detected with DExplore. The same input and statistical parameters were used
for the analysis with GEO2R and resulted in 361 enriched GO terms. As depicted in
Figure 14, both analyses shared 322 common enriched GO terms (Table S10). Detailed
results, along with comparisons between DExplore and GEO2R, considering separately
under- or over-expressed DEGs, are available in Supplementary Materials (Tables S10–S24).
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Figure 14. Venn diagram showing the comparison of enriched Gene Ontology terms derived from
WebGestalt over-representation analysis (ORA) using all differentially expressed genes detected by
DExplore (light navy blue) and GEO2R (coral pink) for dataset GSE39870. To draw the diagrams, we
used the “Venn Diagrams” online tool available at https://bioinformatics.psb.ugent.be/webtools/
Venn/, accessed on 17 April 2024.

3.2.2. Dataset GSE113427

The WebGestalt’s ORA for dataset GSE113427 revealed 104 enriched GO terms when
using all DEGs detected with DExplore. Employing the same input and statistical parame-
ters for the analysis with GEO2R resulted in 69 enriched GO terms. Figure 15 illustrates that
both analyses shared 62 common enriched GO terms (Table S43). Additional comprehensive

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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results, including comparisons between DExplore and GEO2R and considering separately
under- or over-expressed DEGs, are available in Supplementary Materials (Tables S34–S47).
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3.3. Comparative Analysis of DExplore against GEO2R

To evaluate DExplore’s performance against GEO2R, we assessed the concordance
between their identified differentially expressed genes (DEGs) and enriched gene ontology
(GO) terms using WebGestalt for a functional enrichment analysis. The overlap ratio,
measuring the proportion of common DEGs identified by both methods relative to the total
number of DEGs identified by either method, was computed. Additionally, we calculated
the false discovery rate (FDR), representing the proportion of DEGs uniquely identified by
one application relative to the total number of DEGs identified by that application. A lower
FDR indicates higher confidence in the significance of the identified features.

For dataset GSE39870, DExplore exhibited an overlap ratio of 0.612, whereas GEO2R
showed a higher ratio of 0.948, indicative of GEO2R identifying more DEGs in this dataset.
However, when comparing the overlap ratio of enriched GO terms, where the number of
terms is similar, DExplore showed a notable increase to 0.81, representing a substantial
20% improvement. This suggests that DExplore’s functional enrichment analysis pro-
vides enhanced detection of the affected biological processes in response to doxorubicin
treatment.

Similarly, for dataset GSE113427, DExplore yields an overlap ratio of 0.364 for DEGs,
while GEO2R exhibits a higher ratio of 0.690, reflecting the larger number of DEGs iden-
tified by GEO2R. However, the overlap ratio of enriched GO terms increases to 0.559
for DExplore, marking a significant 20% increase and indicating improved detection of
underlying biological processes compared to GEO2R.

Furthermore, DExplore demonstrates a significantly lower FDR of 0.079 for all iden-
tified DEGs in GSE39870, compared to GEO2R’s FDR of 0.355. Similarly, in GSE113427,
DExplore’s FDR of 0.460 is comparable to GEO2R’s FDR of 0.473. These findings highlight
DExplore’s effectiveness in analyzing high-throughput gene expression data.

It is noteworthy that DExplore’s approach to identifying DEGs emphasizes specificity,
which could explain the smaller set of DEGs compared to GEO2R. This conservative
approach tends to reduce false positives, leading to a more reliable set of high-confidence
DEGs for downstream analysis. However, this comes with the trade-off of potentially
increasing the false negative rate, as some true positives might not be detected due to more
stringent criteria.

Despite this trade-off, the lower FDR and improved GO term overlap ratios suggest
that DExplore’s conservative approach yields a high-quality set of DEGs, providing a robust
foundation for downstream functional enrichment analysis. This balance between reducing

https://bioinformatics.psb.ugent.be/webtools/Venn/
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false positives and minimizing false negatives reflects our commitment to providing users
with reliable and accurate results while acknowledging the inherent uncertainties in gene
expression analysis.

3.4. Summarization and Visualization Using REVIGO

To deepen our understanding of the results of the WebGestalt’s ORA, we took advan-
tage of REVIGO [35]. REVIGO, accessible at http://revigo.irb.hr/ (accessed on 28 February
2024), is a web server designed to summarize and visualize extensive lists of GO terms.
This computational tool accomplishes two primary tasks: (a) it condenses lengthy GO lists
by reducing functional redundancies through semantic similarity; and (b) it presents the
remaining GO terms using two-dimensional plots, interactive graphs, tree-maps, or tag
clouds.

As input for REVIGO, we provided the GO terms and their corresponding FDR val-
ues, which were derived from the WebGestalt’s ORA for all DEGs detected by DExplore.
The chosen parameters are illustrated in Figure 16. The output from REVIGO, including
representative GO terms for each cluster, are presented in distinct sets of tables for the two
analyzed datasets. These tables correspond to the Biological Process, Cellular Component,
and Molecular Function categories for both dataset GSE39870 and dataset GSE113427.
Tables 1–3 associated with dataset GSE39870 cover aspects of Biological Process, Cellu-
lar Component, and Molecular Function, while Tables 4–6 related to dataset GSE113427
provide additional insights into these categories.

DEGs obtained through DExplore and the enriched GO terms from the subsequent
functional enrichment analysis using the ORA in WebGestalt reveal dysregulation in
key biological processes following the treatment of MCF7 human breast cancer cells
with doxorubicin. Specifically, we observe dysregulation in the DNA replication process
(e.g., GO:0006260—DNA replication, GO:0006301—post-replication repair, GO:0022616—
DNA strand elongation, and GO:0051095—regulation of helicase activity) and disrup-
tion of cell cycle progression (e.g., GO:0000280—nuclear division, GO:0007077—mitotic
nuclear membrane disassembly, GO:0031145—anaphase-promoting complex-dependent
catabolic process, GO:0032886—regulation of microtubule-based process, GO:0044770—
cell cycle phase transition, GO:0050000—chromosome localization, GO:0051301—cell di-
vision, GO:0051302—regulation of cell division, GO:0051726—regulation of cell cycle,
GO:0051782—negative regulation of cell division, GO:0051783—regulation of nuclear divi-
sion, and GO:1901987—regulation of cell cycle phase transition). Furthermore, we detect
changes due to a reactive nitrogen species stimulus (GO: 1902170—cellular response to
reactive nitrogen species) and dysfunction in iron homeostasis (GO:0006879—intracellular
iron ion homeostasis).
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Table 1. The results of REVIGO for Gene Ontology (GO) Biological Process for dataset GSE39870.
Only the representative GO terms for each identified cluster are displayed here.

Term ID Name

GO:0000280 nuclear division
GO:0002483 antigen processing and presentation of endogenous peptide antigen
GO:0006260 DNA replication
GO:0006301 post replication repair
GO:0006403 RNA localization
GO:0006596 polyamine biosynthetic process
GO:0006760 folic acid-containing compound metabolic process
GO:0006879 intracellular iron ion homeostasis
GO:0006913 nucleocytoplasmic transport
GO:0007077 mitotic nuclear membrane disassembly
GO:0008630 intrinsic apoptotic signaling pathway in response to DNA damage
GO:0009314 response to radiation
GO:0010839 negative regulation of keratinocyte proliferation
GO:0022616 DNA strand elongation
GO:0030330 DNA damage response, signal transduction by p53 class mediator
GO:0031099 Regeneration
GO:0031100 animal organ regeneration
GO:0031123 RNA 3′-end processing
GO:0031124 mRNA 3′-end processing
GO:0031145 anaphase-promoting complex-dependent catabolic process
GO:0031503 protein-containing complex localization
GO:0032886 regulation of microtubule-based process
GO:0032922 circadian regulation of gene expression
GO:0034502 protein localization to chromosome
GO:0038111 interleukin-7-mediated signaling pathway
GO:0042594 response to starvation
GO:0042770 signal transduction in response to DNA damage
GO:0043484 regulation of RNA splicing
GO:0044770 cell cycle phase transition
GO:0046040 IMP metabolic process
GO:0050000 chromosome localization
GO:0050657 nucleic acid transport
GO:0051052 regulation of DNA metabolic process
GO:0051054 positive regulation of DNA metabolic process
GO:0051095 regulation of helicase activity
GO:0051301 cell division
GO:0051302 regulation of cell division
GO:0051642 centrosome localization
GO:0051726 regulation of cell cycle
GO:0051782 negative regulation of cell division
GO:0051783 regulation of nuclear division
GO:0060576 intestinal epithelial cell development
GO:0061351 neural precursor cell proliferation
GO:0061842 microtubule organizing center localization
GO:0070734 histone H3-K27 methylation
GO:0071166 ribonucleoprotein complex localization
GO:0071824 protein-DNA complex organization
GO:0072001 renal system development
GO:0072331 signal transduction by p53 class mediator
GO:0104004 cellular response to environmental stimulus
GO:1901987 regulation of cell cycle phase transition
GO:1902170 cellular response to reactive nitrogen species
GO:1903311 regulation of mRNA metabolic process
GO:2000241 regulation of reproductive process
GO:2000736 regulation of stem cell differentiation
GO:2000241 regulation of reproductive process
GO:2000736 regulation of stem cell differentiation
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Table 2. The results of REVIGO for Gene Ontology (GO) Cellular Component for dataset GSE39870.
Only the representative GO terms for each identified cluster are presented here.

Term ID Name

GO:0000307 cyclin-dependent protein kinase holoenzyme complex
GO:0000793 condensed chromosome
GO:0005635 nuclear envelope
GO:0005819 Spindle
GO:0030496 Midbody
GO:0032300 mismatch repair complex
GO:0032993 protein-DNA complex
GO:0090543 Flemming body

Table 3. The results of REVIGO for Gene Ontology (GO) Molecular Function for dataset GSE39870.
Only the representative GO terms for each identified cluster are displayed here.

Term ID Name

GO:0000217 DNA secondary structure binding
GO:0003682 chromatin binding
GO:0003684 damaged DNA binding
GO:0003688 DNA replication origin binding
GO:0003697 single-stranded DNA binding
GO:0003777 microtubule motor activity
GO:0004674 protein serine/threonine kinase activity
GO:0005515 protein binding
GO:0008094 ATP-dependent activity, acting on DNA
GO:0015631 tubulin binding
GO:0016791 phosphatase activity
GO:0019887 protein kinase regulator activity
GO:0044389 ubiquitin-like protein ligase binding
GO:0140297 DNA-binding transcription factor binding

Table 4. The results of REVIGO for Gene Ontology (GO) Biological Process for dataset GSE113427.
Only the representative GO terms for each identified cluster are displayed here.

Term ID Name

GO:0007088 regulation of mitotic nuclear division
GO:0007163 establishment or maintenance of cell polarity
GO:0030010 establishment of cell polarity
GO:0031145 anaphase-promoting complex-dependent catabolic process
GO:0032886 regulation of microtubule-based process
GO:0048285 organelle fission
GO:0050000 chromosome localization
GO:0050909 sensory perception of taste
GO:0140014 mitotic nuclear division

Table 5. The results of REVIGO for Gene Ontology (GO) Cellular Component for dataset GSE113427.
Only the representative GO terms for each identified cluster are presented here.

Term ID Name

GO:0000775 chromosome, centromeric region
GO:0005819 spindle
GO:0030496 midbody
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Table 6. The results of REVIGO for Gene Ontology (GO) Molecular Function for dataset GSE113427.
Only the representative GO terms for each identified cluster are displayed here.

Term ID Name

GO:0008017 microtubule binding
GO:0008527 taste receptor activity

The results for dataset GSE113427, involving the treatment of MDA-MB-231 human
breast cancer cells with doxorubicin, exhibited similar patterns. However, due to the
smaller number of identified DEGs, the subsequent functional enrichment analysis using
the ORA in WebGestalt resulted in a reduced number of enriched GO terms. Neverthe-
less, it is evident that there is dysregulation in mitotic nuclear division, as indicated by
GO:0007088—regulation of mitotic nuclear division, GO:0031145—anaphase-promoting
complex-dependent catabolic process, GO:0032886—regulation of microtubule-based pro-
cess, GO:0050000—chromosome localization, and GO:0140014—mitotic nuclear division.

The observed differences can be attributed to inherent molecular distinctions between
the two distinct breast cancer cell lines; for instance, MCF7 cells are ER+ (estrogen receptor
+), whereas MDA-MB-231 cells are ER- (estrogen receptor −). Additionally, variations
in experimental protocols, including differences in doxorubicin concentration (10 µM vs.
41 µM) and treatment duration (12 h vs. 24 h), contribute to the variations in the results.

4. Discussion

Differential gene expression analysis is a routine task for researchers investigating
the impact of various treatments on cell lines or tissues. Despite the emergence of RNA-
sequencing as a viable alternative, the microarray technology remains a popular choice for
its cost-effectiveness, high-throughput, and the substantial volume of data accumulated
over more than 15 years, cementing microarrays as a robust and established method [3–6].

Given the continued use of microarrays, numerous online tools and local applications
have been developed to identify DEGs from microarray experiments. However, many
of these tools are no longer maintained, and others either require payment or demand
programming expertise [9–14,56]. To address these challenges, we introduced DExplore.
It is an online application designed to detect DEGs between two experimental conditions
using data from the Affymetrix GeneChips available on NCBI GEO or stored locally,
without the need for programming skills.

It is common knowledge that there is an inherent challenge in the field of differential ex-
pression analysis [37,53,54,57]. Since the exact gene expressions are not known, identifying
DEGs between two experimental conditions lacks a single “gold” standard tool [53,58–61].
Consequently, making comparisons among available applications is challenging and can
be misleading. Nevertheless, the findings of differential expression analysis with DExplore
are in good accordance with those from GEO2R, a well-established and widely recognized
online tool dedicated to differential expression analysis, exclusively utilizing data from the
NCBI GEO. The minor differences observed in the showcased examples can be mitigated
through the performance of functional enrichment analysis.

Doxorubicin, formerly known as Adriamycin, is a cytotoxic anthracycline antibiotic
isolated from cultures of Streptomyces peucetius var. caesius. It is used as a chemotherapeutic
drug to treat various malignancies, including leukemias, lymphomas, metastatic breast
cancer, ovarian carcinomas, soft tissue, and bone sarcomas, as described in the FDA’s Drug
database (https://www.accessdata.fda.gov/scripts/cder/daf/, accessed on 22 January
2024).

There are mainly three proposed mechanisms for doxorubicin’s anticancer properties:
DNA intercalation, topoisomerase II inhibition, and free radical generation, leading to
the induction of regulated cell death [62–64]. Doxorubicin and the related anthracyclines
consist of flat aromatic moieties that intercalate between DNA bases, each anchored tightly
by one or more sugars in the minor groove. Intercalation pushes apart the neighboring

https://www.accessdata.fda.gov/scripts/cder/daf/
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bases, resulting in the bidirectional transmission of positive torsion. These alterations
in DNA structure can inhibit enzymes, including topoisomerases [65]. Doxorubicin can
also trap topoisomerase II in the double-strand cleavage form and prevent ligation, as it
stabilizes the DNA-topoisomerase II cleavage complex [63]. The generation of free radicals
by doxorubicin causes damage to cellular membranes, DNA, and proteins [66]. Specifically,
it has been shown that doxorubicin causes lipid peroxidation, membrane damage, and DNA
damage oxidative stress [66] and also triggers various pathways of cell death, including
apoptosis, autophagy, necroptosis, and ferroptosis [62].

The results from DExplore and the subsequent functional enrichment analysis using
the ORA with WebGestalt not only corroborate existing findings but also unveil additional
specific biological insights into the mechanism by which doxorubicin exerts its anticancer
activity. Specifically, dysregulation in the DNA replication process and disruption of cell
cycle progression suggest potential disturbances caused by DNA intercalation induced
by doxorubicin. Furthermore, our results support the proposed mechanism whereby
doxorubicin contributes to the production of intracellular nitrogen free radicals, as indicated
by GO:190270—cellular response to reactive nitrogen species. We also detect dysfunction
in iron homeostasis (GO:0006879—intracellular iron ion homeostasis), likely linked to the
mechanism of programmed cell death via ferroptosis.

Comparing our results to the publications associated with the case study datasets,
common findings emerge. However, the use of DExplore and WebGestalt’s ORA de-
tected additional biological processes. Specifically, in the original publication for dataset
GSE39870 [19], cell cycle dysfunctions and apoptosis were identified, aligning with our
results, but nitrosative stress and iron ion homeostasis dysregulations were not mentioned.
It is worth noting that in the original paper, a different, more stringent threshold in the
p-value (p-value < 0.01) was used, with no reference to fold-change threshold. As for
dataset GSE113427, the original publication [21] used a cutoff of p-value < 0.05, similar to
our approach, but with a stricter log2 fold change threshold (1.2). Their analysis, like ours,
detected differentially expressed genes involved in cell death, apoptosis, cell survival, and
cell cycle regulation.

Our comparative analysis of DExplore alongside GEO2R and CARMAweb revealed
insights into their performance in identifying DEGs and enriched GO terms. Initially, both
GEO2R and CARMAweb identified a larger number of DEGs compared to DExplore across
the GSE39870 and GSE113427 datasets. However, further analysis, including overlap ratio
and false discovery rate (FDR) calculations, shed light on the effectiveness of DExplore’s
approach. Notably, after subjecting the data to gene enrichment analysis, we observed a
significant reduction in the initially observed disparity. In both showcased datasets, the
overlap ratio increased by approximately 20% following functional enrichment analysis.
This enhancement underscores the value of DExplore’s integrated functional enrichment
analysis, which provides deeper insights into the underlying biological processes beyond
the sheer number of identified DEGs.

Additionally, DExplore exhibited a significantly lower FDR compared to GEO2R
and CARMAweb, indicating higher confidence in the identified DEGs. These findings
suggest that DExplore’s conservative approach tends to reduce false positives, providing a
more reliable set of high-confidence DEGs. This reduced false positive rate can improve
downstream analyses, such as Gene Ontology (GO) term enrichment, leading to more
accurate interpretations of biological processes and pathways.

However, this approach may increase the false negative rate, implying that some true
positive DEGs could be missed due to stringent criteria. While this trade-off prioritizes
specificity and reliability, researchers should be aware of this balance when choosing tools
for gene expression analysis.

Overall, these findings highlight the robustness and reliability of DExplore in analyz-
ing high-throughput gene expression data, positioning it as a valuable tool for uncovering
biologically relevant insights from microarray experiments. Future studies may explore
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strategies to balance specificity and sensitivity in DEG identification to ensure comprehen-
sive results.

The integration of functional enrichment analysis as a complementary step to dif-
ferential expression analysis proves to be crucial, especially given the absence of a gold
standard for microarray differential expression analysis. Designed for seamless integration,
DExplore, with its connection to WebGestalt, provides researchers with a comprehensive
view of the biological processes and molecular functions associated with the identified
differentially expressed genes.

Delving into a detailed exploration of the disparities observed in DE gene analysis
among DExplore, GEO2R, and CARMAweb, multiple factors come into play. Firstly,
variations in R and Bioconductor package versions may play a role. For instance, different
versions of the limma package are utilized: 3.26.9 in CARMAweb, 3.54.0 in GEO2R, and
3.58.1 in DExplore. This difference in package versions could potentially contribute to the
observed divergent outcomes.

Furthermore, the preprocessing methods applied by each tool introduce another
layer of diversity. CARMAweb utilizes the rma function of the affy package [67], GEO2R
performs log2 transformation and normalization using the normalizeBetweenArrays func-
tion of the limma package [27], while DExplore employs the rma function of the oligo
package [26], encompassing background correction, normalization, and summarization.
Existing literature emphasizes that the choice of preprocessing algorithm significantly
influences analysis outcomes [59].

An additional point of divergence lies in the annotation process [37,60,68]. DExplore
employs the annotate Bioconductor package [28], utilizing platform-specific design files for
microarray chips. In contrast, GEO2R and CARMAweb lack explicit disclosure regarding
the annotation package used, introducing an element of ambiguity.

Additionally, the absence of access to individual results at each step of the analysis
complicates the pinpointing of the exact divergence point. Regardless of the specific genes
identified as differentially expressed, our results underscore the reconciling impact of
functional enrichment analysis. As demonstrated in the two case studies, the incorporation
of this additional step not only diminishes discrepancies but also reveals converging
biological insights, as evidenced by the noTable 20% increase observed in the overlap ratio
after applying the functional enrichment analysis.

This multifaceted analysis underscores the complexity of DE gene analysis, urging a
nuanced interpretation of differences and highlighting the importance of comprehensive
methodological transparency.

Moreover, one of the notable strengths of DExplore lies in its versatility. It is not con-
fined to working solely with .CEL files submitted to NCBI GEO; instead, it offers flexibility
by accommodating uploaded data, facilitating both online usage and local application.
This flexibility is further enhanced by the availability of a Docker image on Docker Hub,
enabling users to seamlessly incorporate DExplore into their analyses in diverse computing
environments.

Furthermore, DExplore stands out from other applications like CARMAweb and
GEO2R by providing comprehensive visualization plots, including interactive options such
as heatmaps and volcano plots. Unlike these alternatives, DExplore’s plots offer enhanced
interactivity, providing users with a dynamic and informative exploration of their data.
This feature sets DExplore apart, offering users a more intuitive and insightful analysis
experience.

5. Conclusions

In summary, we introduce an open-source, robust application designed to serve as a
reference, simplifying the intricacies of publicly available high-throughput data. DExplore
(www.dexplore.gr, accessed on 19 April 2024) aims to assist molecular biologists in focusing
on the select few genes that hold biological relevance to their experiments. Whether
utilized online or locally, DExplore offers flexibility, and a Docker image is conveniently

www.dexplore.gr
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available through our website. Additionally, users can seamlessly conduct functional
enrichment analysis using the popular online tool WebGestalt directly within the DExplore
website. Furthermore, DExplore stands out by providing comprehensive visualization
plots, including interactive options such as heatmaps and volcano plots. These plots offer
enhanced interactivity, providing users with a dynamic and informative exploration of
their data.

As mentioned before, DExplore performs comparably to GEO2R, a well-established
online tool for differential expression analysis using data available in the NCBI GEO.
In the showcased examples, GEO2R identified almost the same number or more genes
as differentially expressed than DExplore, but this difference appears to be overcome
when gene enrichment analysis is applied. Notably, functional enrichment analysis with
the integrated WebGestalt led to a significant increase in the overlap ratio of identified
differentially expressed genes, indicating the enhanced detection of affected biological
processes. Furthermore, DExplore exhibited a significantly lower false discovery rate
(FDR) for all identified DEGs compared to GEO2R, further underscoring its reliability
in identifying differentially expressed genes with higher confidence. Additionally, the
results obtained using DExplore, followed by functional enrichment analysis with the
integrated WebGestalt, align with the known mechanism through which doxorubicin exerts
its anticancer activity. Moreover, DExplore offers versatility, allowing usage not only with
.CEL files submitted to the NCBI GEO but also with uploaded data, online, and locally, due
to the Docker image available on Docker Hub.

DExplore currently has a limitation, restricting its analysis to raw data from microarray
experiments utilizing Affymetrix Gene Chips. While this limitation is acknowledged, we
are committed to addressing it in future releases. Additionally, we plan to integrate gene
set enrichment analysis (GSEA), a second-generation pathway analysis, into DExplore to
enhance the functional characterization of differentially expressed genes.

The source code is available on GitHub (https://github.com/annakatsiki/dexplore,
accessed on 19 April 2024) and the Docker image on the Docker Hub (https://hub.docker.
com/r/akatsiki/dexplore, accessed on 19 April 2024).
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