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Abstract: By applying the “safety atmosphere” measurement theory to Chinese management compa-
nies engaged in road transportation, a corporate and individual safety risk assessment system was
established that is consistent with the management and cultural climate in China, thereby reducing
the driving safety risk of truck drivers. The system realizes the safety risk assessment of enterprises,
fleets and individuals in the form of test scales by constructing a structural model of the enterprise
safety atmosphere, including the management, communication, and supervision of enterprises, fleets,
and individuals. The safety climate was modeled using a two-level framework, at the organizational
level and fleet level, and three dimensions of test items for each level were obtained by exploratory
factor analysis. The three dimensions of safety management, safety supervision, and safety priority
at the organizational level, and the three dimensions of positive communication, safety awareness,
and self-discipline at the fleet level, respectively, passed a valid factorial test (p < 0.01). Finally, the
validity of the system evaluation results was verified by relying on the actual in-vehicle monitoring
data and accident records of the corporate transportation fleet. The results show that the total test
scores at the organizational level and the fleet level are significantly correlated with their driving risk
behaviors, and both are linearly and negatively correlated with the number of accidents per thousand
kilometers. This indicates a high degree of consistency between the system’s test results and actual
risky accidents.

Keywords: security environment; transportation security; test systems; factor analysis; security
assessment

1. Introduction

As a basic service industry for China’s economic development, road cargo transporta-
tion plays a very important role in promoting economic development and safeguarding
and improving people’s livelihoods. As of June 2021, the number of cargo vehicles in China
reached 31.91 million, accounting for 10.91% of the total number of automobiles, and the
number of newly registered cargo vehicles in the first half of 2021 amounted to 2.42 million,
an increase of 29.12% compared with the same period last year [1]. Although truck drivers
play an important role in road transportation, their driving safety risks and the existence
of hidden dangers have not received sufficient attention from the relevant departments.
Based on relevant statistical information, in 2016, a total of 39,462 road traffic accidents
occurred in China’s operating vehicles, resulting in 19,018 deaths, of which 26,649 accidents
occurred in operating trucks, accounting for 67.53% of the total, resulting in 14,231 deaths,
accounting for 74.83% of the total. In operational vehicle accidents, improper driving
behaviors caused by drivers of operational trucks, such as speeding, fatigue driving, and
the violation of traffic regulations, are the main causes of accidents [2]. Unlike other vehicle
drivers, truck drivers are usually required to drive alone for long periods of time and face
physical and psychological fatigue [3]. The fact that they need to reach their destinations
within strict time limits can lead to dangerous driving behaviors [4]. At the same time, in
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the current trend of expanding the scale of logistics and transportation enterprises, as a link
in the logistics chain, a variety of safety hazards is also increasingly prominent in logistics
transportation, and safety accidents occurring in the process of cargo transportation may
bring a heavy blow to the enterprise [5]. In view of the high driving safety risks of truck
drivers in logistics and transportation enterprises, it is necessary to assess the impact of the
driving risk of trucks in logistics and transportation enterprises for research.

The concept of the safety climate was first introduced by Israeli scholar Zoher in
1980 and is defined as the perception of a risky work environment shared by employees
within an organization [6]. In the decades since its introduction, numerous scholars have
begun research on the safety climate in relation to production. Unlike safety culture, the
safety climate is a measurable safety management mechanism, i.e., it can be quantitatively
assessed [7], and it is a reliable predictor of safety behavior and safety outcomes [8].
Current research on the safety climate is centered around developing level-specific and
industry-specific subscales of the safety climate and discovering relationships between
the safety climate and antecedent variables, moderators, mediators, or other concepts [9].
Yumin et al. explained the relationship between the PSC, work–family conflict, burnout,
and unsafe behaviors through a survey of frontline coal miners [10]. Chen Yanlin et al.
introduced construction workers’ safety perceptions and safety self-efficacy as mediator
variables to explain the intrinsic mechanism of the role of the construction company’s
mismanagement climate on the safety performance of construction workers [11]. Other
researchers have tested the predictive effect of the safety climate on the driving behavior
of truck drivers, using them as subjects. In these studies, the safety climate has been
found to be associated with workplace injuries [12], self-reported road traffic accidents, and
truck driver distraction-related crashes [13], and driver group distinctions have also been
examined using an interpretable clustering approach to the safety climate analysis [14].
Furthermore, the safety climate has a negative predictive and mediating effect on attempts
to drive safe behavior [15], while a two-year study verified that the safety climate has a
sustained predictive ability for truck drivers’ driving safety behavior [16]. Huang et al.
conducted a long-term follow-up study on the measurement and number of safety climates
among foreign long-haul truck drivers [17]. Hussain et al. introduced the safety climate
theory to Pakistan and argued that improving the “work safety climate” in the trucking
industry could help control social cognitive factors and risky driving behaviors, and
potentially improve road safety in Pakistan [18]. Pattarachat M et al. demonstrated the
effect of the safety climate on the safety behaviors of Thai civil aviation pilots [19].

Whether to prioritize safety or efficiency, or even to compete with peers, is still a
difficult and necessary choice for enterprises [20]. China is still a developing country,
and economic development is still a top priority at present [21], so trucking companies in
China are more likely than in developed countries to lower their safety priority in order to
improve their efficiency. In addition, considering the significant differences between China
and developed countries in terms of management models and cultural dimensions [22], it
is essential to establish a set of China’s own safety management assessment systems for
truck drivers.

This study developed a set of safety atmosphere test scales for testing the safety
atmosphere of logistics and transportation enterprises in China according to the actual
situation of logistics and transportation enterprises in China. Combined with the actual
driving situation of truck drivers, it evaluates the truck driving safety of China’s logistics
and transportation enterprises, finds the potential risks and related relationships, and thus
puts forward the corresponding opinions in order to improve the truck driving safety of
China’s logistics and transportation enterprises and to provide reference for other logistics
and transportation enterprises.

2. Research Methodology

In accordance with the relevant concepts and theories of the safety atmosphere, the
structural relationship of the safety atmosphere managed by this enterprise was established
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by taking all the drivers of China Deppon Logistics Co., Ltd. in the Zhejiang region as
objects for study. This was performed by establishing the preliminary test scale, and
establishing the safety assessment system of the enterprise by adopting the qualitative and
quantitative methods through interviews and tests, etc. Finally, the data were analyzed by
comparing and contrasting them with the actual risk monitoring data of this enterprise on
the transportation vehicles and the statistics of the accidents. It is necessary to ascertain the
efficacy of this test system.

2.1. Corporate Safety Management and Safety Climate

The concept of the safety climate was first introduced by Zoher in 1980 in his research
study on safety in the Israeli manufacturing industry. He defined it as “the common
perception of hazardous work environments by employees within an organization”. Fur-
thermore, he demonstrated that the safety climate is one of the strongest predictors of
safety behavior and safety outcomes in a variety of environments [23]. Researchers in
various countries began to examine this theory and propose corresponding theories and
research methods. Dedobbeleer and Niskanen posit that the safety climate is defined as the
natural attributes of the managerial behavior of an enterprise organization at a particular
moment. Cheyne, Cox, and Flin posit the following: “Safety awareness, safety attitudes,
and safety behaviors exert a profound influence on the construction of enterprise safety
climate”. According to Neal et al., the safety climate is an effective tool for objectively
and accurately diagnosing the safety status of employees and organizations within the
enterprise, as well as the characteristics of the location [24–27]. Neal et al. posit the fol-
lowing: “As an effective tool to measure and reflect the current state of enterprise safety
culture in a particular moment, safety climate is able to objectively and accurately diagnose
the safety status of employees/organizations on the enterprise in a particular moment,
as well as the characteristics of the location”. In conjunction with the prevailing safety
management paradigm in China, the safety climate can be defined as a “series of key
elements that can be discerned by employees within a specific period of time, reflecting
the current safety culture attributes within the target enterprise, as well as the current
status quo of safety management of the enterprise’s organizational behavior”. Given that
safety climate evaluation can objectively reflect the current state of organizational health
and safety, quantitatively diagnose the safety culture of an enterprise, and continuously
improve the performance of enterprise safety management, it is an inevitable development
trend for solving and preventing accidents, and improving the level of enterprise safety
management and safety performance.

2.2. Safety Climate Measurement Scale Design

The research process on the safety of truck drivers employed by transportation com-
panies involved the measurement of the safety climate of truck drivers in transportation
companies. The scale survey method was employed as a common survey method to study
the safety climate of truck drivers.

2.2.1. Initial Question Design

Since the advent of safety climate theory in 1980, a considerable body of research
has been conducted in this field by numerous scholars. In their review of the literature,
Cooper et al. [6] identified the following four key themes in safety climate research: the
design of measurement tools, the development of theoretical models, the examination of the
relationship between the safety climate and safety performance, and the examination of the
relationship between the safety climate and the organizational climate. Zohar, in a review
of over 30 years of related research in the field, observed that a significant proportion of
the work has focused on methodology rather than on theoretical and conceptual issues [9].
Additionally, numerous tools exist for assessing the safety climate, with questionnaires
representing the most prevalent research methodology [28].
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The differing industries and companies under investigation have led to the devel-
opment of the following two distinct research methodologies: qualitative research on
safety culture and quantitative research on the safety atmosphere. However, despite these
differences, the questionnaire composition structure and key elements are relevant in the
investigation and analysis of both safety culture and the safety atmosphere. Furthermore,
the methods and principles used are essentially similar. A combination of key elements de-
veloped by numerous researchers to describe the safety management climate of a company
was employed, with the actual situation of the logistics industry in China serving as the
basis for the investigation. Multiple interviews were conducted with truck drivers and their
supervisors in the companies surveyed, focusing on job functions, communication patterns,
work prioritization, supervisory interactions, and related workplace safety practices. A
preliminary set of test scales was developed by synthesizing the above information. A total
of 70 question items were developed, with 40 items utilized at the organizational level,
30 items at the fleet level, and 10 items for the acceptance and fairness of the in-vehicle
monitoring system and for the validation of the test system.

2.2.2. Pre-Testing

Following the development of the survey questions, cognitive interviews of the test
items were conducted with 43 truck drivers at the pilot station during the pilot station’s
safety officer’s job summary. The purpose of these interviews was to examine the meaning
of the items, identify language or content problems in completing the test (e.g., long pauses,
inconsistent responses, indications of confusion), and determine the extent to which the
items covered all the relevant safety measures. This procedure was employed to enhance
the content and face validity of the instrument. The participants were drivers for the pilot
fleet where the initial item-generated interviews were conducted. The item wording, order
of presentation, and survey formatting were revised based on participant comments and
suggestions. The revised scale, which was developed following the cognitive interviews,
included 20 items at the organizational level and 20 items at the fleet level. This revised
scale was then utilized in the subsequent step, with a 5-point Likert scale employed for all
test items.

2.2.3. Formal Survey

At this juncture, there are a plethora of methodologies for disseminating question-
naires, including online distribution and on-site distribution, among others. However, truck
drivers represent a single operation with low aggregation, which precludes the possibility
of guaranteeing the effectiveness of on-site distribution in the event of a long recovery
period. Consequently, following the conclusion of the agreement, the questionnaire was
disseminated and subsequently collected via the company’s internal employee platform. In
this study, the questionnaire was distributed among all truck drivers in the Zhejiang region
of Deppon Logistics Company. This was performed in order to collect data from all truck
drivers in the Zhejiang region of the company.

The revised questionnaire was subjected to an online test with a sample of fleet drivers
in the company’s Zhejiang region. At the same time, the personal data of the test drivers
and the on-board data of the vehicles they drove were collected, resulting in the acquisition
of 422 test questionnaires. The collected questionnaires were subjected to statistical analysis,
with those that lacked sufficient quality being excluded. Initially, the basic information
of the drivers was statistically classified. Subsequently, the validity and reliability of the
remaining questionnaires were tested, and they were then used for subsequent exploratory
factor analysis. Subsequently, the questionnaires were distributed for a second time, with
the intention of being filled out and subsequently collected for the purpose of validating
the factor analysis.
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2.3. Exploratory and Confirmatory Factor Analysis
2.3.1. Exploratory Factor Analysis

A reliability analysis and internal consistency test for the sample can be employed to
further ensure the reasonableness of the scale. In this study, the total correlation coefficient
(CITC) and Cronbach’s alpha were employed to assess the reliability of the scale’s ques-
tion items, while exploratory factor analysis was utilized to ascertain the validity of the
survey scale.

The Cronbach’s α coefficient is a number between 0 and 1. The higher the value, the
higher the internal consistency of the scale items. If the Cronbach’s α coefficient is greater
than 0.8, the reliability is high. If it is between 0.7 and 0.8, the reliability is better. If it is
between 0.6 and 0.7, the reliability is acceptable. If it is lower than 0.6, the reliability is poor,
and a certain part of the question items need to be removed. In general, the Cronbach’s
alpha coefficient for the overall scale should be greater than 0.7, and the Cronbach’s alpha
coefficients for the dimensions measured by each factor should be greater than 0.6. In
addition to the reliability test, the item total correlation coefficient should be evaluated for
each item on the scale. Items with an item total correlation of less than 0.4 should be deleted.
Once the scale has been tested for reliability, it is necessary to proceed to a test of its validity.
In this paper, exploratory factor analysis was employed for validation purposes. The KMO
(Kaiser–Meyer–Olkin) test and Bartlett’s sphere test were performed on the scale data to
ascertain the scale’s validity. When the requisite conditions are met, it can be indicated that
the scale is valid.

2.3.2. Confirmatory Factor Analysis

The CFA was employed to ascertain the structural validity of the safety climate scale
(SCS), which was evaluated on data from pilot companies in order to guarantee the factorial
structural validity of the SCS. The comparative fit index (CFI), Tucker–Lewis Index (TLI),
and root mean square approximation error (RMSEA) were employed to assess the quality
of the model fit. The values of the CFI and TLI ranged from 0 to 1, with values closer to 0
indicating a poorer fit and values closer to 1 indicating a better fit. In general, a model fit is
considered to be good when the CFI and TLI values are ≥0.9. A value of the RMSEA below
0.05 indicates a good model fit, while a value between 0.05 and 0.08 indicates a reasonable
fit. Conversely, a value above 0.10 indicates a poor fit.

2.4. Practical Validity Test of the Safety Climate Test Scale

The objective of this study is to examine the correlation between safety climate scores
and self-reported driving safety behaviors, as well as objective safety outcomes, which will
be evaluated through the use of both subjective and objective safety criteria.

2.4.1. Subjective Safety Criteria

Because the fleet-level safety climate scale includes self-reported driving safety be-
haviors from participating truck drivers, it was selected to include the following six items:
When I am about to go overtime on a delivery, I speed up to get it there on time; Sometimes
I take shortcuts and rush for important customers; I increase my speed after unloading to
save time; I do not pay much attention to the warning system in my car; I do not think that
using my cell phone while driving will interfere with my driving; I will continue to drive
even if I feel tired or uncomfortable during transportation. As shown in Table 1, the data
from the freight companies were tested for these six items with a correlation Cronbach’s
alpha coefficient of 0.776. The mean score of these six items was used as an indicator of the
construct. One-way and multiple regression analyses were used to analyze the relationship
between the safety climate and self-reported safety behaviors.
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Table 1. Results of the self-reported safety behavior reliability analysis.

Project Name CITC
Cronbach’s α

Coefficient after
Deletion of Items

Overall
Cronbach’s α

Coefficient

When I am about to run overtime on a
delivery, I will speed up to get the load to

the truck on time
0.841 0.665

0.776

Sometimes I take shortcuts and rush to get
to an important customer 0.741 0.684

I increase my speed after unloading
to save time 0.693 0.699

I do not pay much attention to the warning
system in my car 0.712 0.687

I do not think that using my cell phone
while driving will interfere with my driving 0.675 0.700

I will continue to drive even if I feel tired or
uncomfortable during transportation −0.402 0.902

2.4.2. Objective Safety Standards

As measures of driving safety behavior are based on subjects’ self-reports, this may
affect the validity of the measure. To address this issue, objective safety data were collected
as criteria for predictive validity testing. Two of the objective safety criteria were the number
of in-vehicle system warnings and the number of accidents. The number of incidents (over
a six-month period) of drivers’ safe driving behaviors (e.g., talking on the phone, smoking,
not wearing seatbelts, deviating from driving, yawning, and distracted driving) were
intercepted and regressed against the safety climate scale through the Telematics platform
jointly built by Deppon and G7 E-Flow, as well as the implementation of monitoring data
from the on-board equipment. A Poisson log-chain generalized linear model was then
applied to the number of thousand-kilometer accidents per driver over the six-month
period to observe whether changes in the scale scores would have an impact on the number
of thousand-kilometer accidents.

3. Results
3.1. Statistical Analysis of Survey Data
3.1.1. Basic Information

According to the questionnaire design, the questionnaire partially included basic
information about the respondents and safety climate issues, and the respondents were
the drivers–workers of the transportation companies. The questionnaire was based on a
five-point Likert scale (one = strongly disagree, five = strongly agree). Based on the way
other researchers have surveyed the safety climate in the transportation industry, and the
way the results were collected and screened [18,19,21], the target business subjects were
asked to score the question items based on their perceptions of fleet and business safety. As
shown in Table 2, excluding the unqualified as well as incomplete questionnaires (a total of
50), the formal experiment collected a total of 347 questionnaires, and finally obtained 297
valid questionnaires; the recovery rate of the valid questionnaires was 85.6%, so the data
collected after this screening were valid and could be analyzed in the next step.

3.1.2. Scale Reliability and Validity Tests

As illustrated in Table 3A,B, the overall Cronbach’s alpha coefficient of the organization-
al-level scale is 0.916, while the overall Cronbach’s alpha coefficient of the fleet-level scale
is 0.811. These values fall within the interval of high reliability, indicating that the overall
reliability of the pre-survey is assured. This suggests that the overall reliability of the scale
is consistent with the standard of goodness and exhibits good stability.
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Table 2. Sample data.

Variant Categorization Frequency Proportions

Gender male 297 100

Age

25–30 56 18.86
31–35 90 30.30
36–40 89 29.97
41–45 51 17.17
>45 11 3.7

Education level
junior 122 41.08

high school 151 50.84
college 24 8.08

Driving license
B 39 13.13
C 195 65.66
D 63 21.21

Years of driving
experience

<5 23 7.74
5–10 116 39.06

11–15 95 31.99
16–20 44 14.81
>20 19 6.40

Workplace

Hangzhou 74 24.92
Wenzhou 61 20.54
Ningbo 41 13.80
Jinhua 51 17.17

Yuhang 70 23.57

Table 3. (A) Results of the reliability analysis of the organizational-level safety climate scale. (B) Re-
sults of the reliability analysis of the fleet-level safety climate scale.

(A)

Test Topic CITC Cronbach’s α Coefficient
after Deletion of Items

Overall Cronbach’s
α Coefficient

1 0.654 0.897

0.916

2 0.723 0.895
3 0.671 0.897
4 0.570 0.899
5 0.766 0.894
6 0.554 0.900
7 0.692 0.896
8 0.695 0.897
9 0.747 0.894
10 0.401 0.905
11 0.718 0.895
12 0.680 0.896
13 0.229 0.911
14 0.409 0.903
15 0.095 0.913
16 0.506 0.901
17 0.400 0.904
18 0.448 0.902
19 0.649 0.897
20 0.691 0.897
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Table 3. Cont.

(B)

Test Topic CITC Cronbach’s α Coefficient after
Deletion of Items

Overall Cronbach’s
α Coefficient

1 0.555 0.779

0.811

2 0.429 0.785
3 0.518 0.780
4 0.543 0.780
5 0.554 0.778
6 0.549 0.780
7 0.306 0.794
8 0.524 0.782
9 0.575 0.776
10 0.366 0.789
11 0.240 0.797
12 0.227 0.796
13 0.298 0.793
14 0.370 0.789
15 0.274 0.794
16 0.331 0.791
17 0.321 0.792
18 0.304 0.792
19 0.039 0.808
20 0.140 0.804

Note. Cronbach’s α Coefficient ranges from 0 to 1, with higher values representing higher internal consistency of
the scale’s question items; if the Cronbach’s α Coefficient >0.8 (bold), then reliability is high.

Once the scale had been subjected to reliability testing, the KMO test and Bartlett
sphere test were required for the scale data. As shown in Table 4, the KMO value for the
organizational level of the scale was 0.909, while the KMO value for the fleet level was
0.921, both of which exceeded 0.7, thus satisfying the fundamental criteria. Furthermore,
the significance of the Bartlett sphere test for the scale was found to be significant (p < 0.05),
thereby paving the way for the exploratory factor analysis to be conducted.

Table 4. KMO test and Bartlett sphere test.

Test Items Organizational Level Fleet Level

KMO test 0.909 0.921

Bartlett Sphere
Inspection

χ2 2790.228 3041.862
df 190 190

Sig. 0.000 0.000

3.2. Construction of Scale Factors and Factor Structure
3.2.1. Scale Reliability and Validity Test dimensions

The principle of principal component number extraction is that the principal com-
ponent corresponds to the first m principal components whose eigenvalues are greater
than one. The eigenvalue can be regarded as an indicator of the strength of the influence
of the principal component to some extent. If the eigenvalue is less than one, it indicates
that the explanatory strength of the principal component is not as robust as that of the
average explanation of the original variable, which was introduced directly. Therefore, the
eigen-value of more than one can be used as a criterion for the inclusion of the principal
component.

The aggregate contribution of the variance of the organizational-level indicators can
be derived from Table 5A. Three principal components can be obtained by selecting the
components with eigenvalues greater than one. Using the maximum variance rotation
method of exploratory factor analysis (EFA), three factors of the organizational-level safety
climate were generated separately. The factor structure, factor loadings, and content validity
were employed to identify three main factors for the organizational-level safety climate.
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These factors were derived from Table 5A and are as follows: safety management, safety
monitoring, and driver safety priority.

Table 5. (A) Organizational-level cumulative variance contribution. (B) Fleet-level cumulative
variance contribution.

(A)

Ingredient
Initial Eigenvalue Extracting Sum-of-Squares Loads Rotation Sums of Squared Loadings

Add Up VAR Cumulative Add Up VAR Cumulative Add Up VAR Cumulative

1 8.080 42.526 42.526 8.080 42.526 42.526 6.672 35.116 35.116
2 2.472 13.010 55.535 2.472 13.010 55.535 2.546 13.399 48.514
3 1.106 5.821 61.356 1.106 5.821 61.356 2.440 12.842 61.356
4 0.903 4.751 66.107 — — — — — —
5 0.795 4.186 70.293 — — — — — —
6 0.759 3.997 74.290 — — — — — —
7 0.692 3.645 77.935 — — — — — —
8 0.641 3.373 81.308 — — — — — —
9 0.574 3.023 84.331 — — — — — —

10 0.476 2.506 86.837 — — — — — —
11 0.430 2.262 89.099 — — — — — —
12 0.401 2.110 91.209 — — — — — —
13 0.374 1.970 93.179 — — — — — —
14 0.322 1.696 94.875 — — — — — —
15 0.256 1.349 96.225 — — — — — —
16 0.238 1.250 97.475 — — — — — —
17 0.196 1.030 98.505 — — — — — —
18 0.162 0.851 99.356 — — — — — —
19 0.122 0.644 100.000 — — — — — —

(B)

Ingredient
Initial Eigenvalue Extracting Sum-of-Squares Loads Rotation Sums of Squared Loadings

Add Up VAR Cumulative Add Up VAR Cumulative Add Up VAR Cumulative

1 8.505 38.660 38.660 8.505 38.660 38.660 7.896 35.890 35.890
2 4.183 19.015 57.675 4.183 19.015 57.675 4.402 20.009 55.900
3 1.205 5.476 63.151 1.205 5.476 63.151 1.595 7.252 63.151
4 0.992 4.509 67.660 — — — — — —
5 0.918 4.175 71.835 — — — — — —
6 0.781 3.548 75.383 — — — — — —
7 0.628 2.856 78.239 — — — — — —
8 0.499 2.267 80.506 — — — — — —
9 0.488 2.218 82.724 — — — — — —

10 0.476 2.165 84.889 — — — — — —
11 0.425 1.934 86.823 — — — — — —
12 0.413 1.877 88.700 — — — — — —
13 0.353 1.606 90.307 — — — — — —
14 0.314 1.427 91.734 — — — — — —
15 0.310 1.410 93.144 — — — — — —
16 0.278 1.263 94.407 — — — — — —
17 0.267 1.212 95.619 — — — — — —
18 0.258 1.171 96.790 — — — — — —
19 0.228 1.035 97.825 — — — — — —
20 0.193 0.878 98.703 — — — — — —
21 0.155 0.703 99.406 — — — — — —
22 0.131 0.594 100.000 — — — — — —

Table 5B presents the cumulative variance contributions of the fleet-level indicators.
The selection of components with eigenvalues greater than one yielded three principal
components. The EFA maximum variance rotation was employed to generate three inde-
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pendent factors for the fleet safety climate. Table 5B indicates that three principal factors
for the fleet-level safety climate were identified based on factor structure, factor loadings,
and content validity. These factors are positive communication, safety awareness, and
self-regulation.

3.2.2. CFA

As can be seen in Figure 1, the chi-square statistic of the OSC model (χ2 = 611.814,
p < 0.001), the comparative fit indices (CFIs) ≥ 0.90, Tucker–Lewis Index (TLI) ≥ 0.90,
and root mean square error of approximation (RMSEA) < 0.10 indicate that the test model
fits the data well. As can be seen in Figure 2, the chi-square statistic of the FSC model
(χ2 = 567.752, p < 0.001), the comparative fit indices (CFIs) ≥ 0.90, Tucker–Lewis Index
(TLI) ≥ 0.90, and root mean square error of approximation (RMSEA) < 0.10 indicate that
the test model also fit the data well.
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3.3. Practical Validity Test of the Safety Climate Test Scale
3.3.1. Overall Safety Climate Score and Subjective Safety Criteria

In the subsequent analysis, the predictive validity of the newly developed organization-
al- and group-level safety climate scales was tested using regression analyses with data
from the freight forwarding companies that participated in this study. As illustrated in
Table 6, the regression analysis utilizing safety management as the independent variable
and self-reported safety behaviors as the dependent variable yielded a B-value of 0.283 (95%
confidence interval = [0.32,0.434], p < 0.01) and an R-squared value for the model of 0.054,
respectively, indicating that safety management explains 5% of the variance in self-reported
safety behaviors. The regression analysis using safety supervisors as the independent
variable and self-reported safety behaviors as the dependent variable revealed that 4% of
the variations in self-reported safety behaviors could be explained by safety supervision.
The regression analysis yielded a B-value of 0.006 (95% confidence interval = [−0.150,0.135],
p > 0.01), with a model R-squared value of 0.005. This implies that safety supervision
could explain the zero value. A regression analysis was conducted to determine the
relationship between driver safety priority and self-reported safety behavior. The results
indicated that 5% of the variation in self-reported safety behavior could be explained by
the independent variable, driver safety priority. The B-value was 0.493 (95% confidence
interval = [0.375,0.617], p < 0.01), while the model R-squared value was 0.224. This implies
that driver safety priority could explain 22% of the variation in self-reported safety behavior.
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A regression analysis using the organizational level as an independent variable and self-
reported safety behaviors as a dependent variable revealed that 4% of the reasons for
the change in self-reported safety behaviors can be attributed to the organizational level.
The B-value was 0.698 (95% confidence interval = [0.490,0.906], p < 0.01) and the model
R-squared value was 0.168, indicating that the organizational level explains 16.8% of the
variation in self-reported safety behaviors.

Table 6. (A) Exploratory factor analysis (EFA) results for the organizational-level safety climate
(OSC) scale (with pilot company data, n = 297). (B) Exploratory factor analysis (EFA) results for the
fleet-level safety climate (FSC) scale (with pilot company data, n = 297).

(A)

Factor

F1 F2 F3

F1: safety management
X1: Listen carefully to the safety officer’s advice on improving safety 0.853 0.211 −0.090

X2: Provide adequate safety education and training to help improve
driver safety 0.822 0.165 −0.064

X3: Understand the health condition of drivers through regular
medical checkups 0.805 −0.064 −0.047

X4: Continuously improving existing safety rules based on the
actual situation 0.799 0.110 −0.080

X5: Allow drivers to adjust their working hours when they are
too tired 0.787 −0.062 −0.049

X6: Regular safety assessments, ratings, rewards, and penalties
for drivers 0.776 0.262 −0.097

X7: Restrictions on the use of drivers who do not pass the tests or who
have physical or mental problems 0.762 0.219 −0.044

X8: Other logistics companies pay more attention to safe driving 0.726 0.330 −0.056

X9: When drivers report safety-related problems, they can be
solved quickly 0.689 0.456 −0.098

X10: Giving drivers enough time to deliver goods 0.681 0.431 −0.075

X11: If there is a problem with a delivery vehicle, it will be repaired
before it is used again 0.633 0.490 −0.021

X12: Safety officers are able to alert drivers to unsafe behavior in a
timely manner 0.620 0.488 −0.057

F2: safety monitoring
X13: Safety alerts are used for personal and fleet safety evaluations 0.171 0.669 −0.300

X14: There is a strict management, reward, and punishment
mechanism for safety supervisors 0.504 0.591 −0.067

X15:
Drivers’ safety alerts are usually corrected by the drivers

themselves, and drivers who fail to do so will be
penalized afterwards

0.128 0.588 −0.193

F3: driver safety priority
X16: On-time delivery is more important than safety 0.035 −0.019 0.776

X17 Drivers are allowed to make and receive important cell phone calls
or send and receive important cell phone messages while driving 0.075 0.210 0.739

X18: Safety supervisors are assigned too many drivers and sometimes
it is difficult to monitor each driver −0.192 −0.246 0.633

X19: The driver’s actual travel and scheduling can be changed if the
driver is able to make the delivery on time −0.120 −0.255 0.628

X20: Allow drivers to work extra hours to make deliveries when they
are out of schedule −0.112 0.316 0.569

Eigenvalues 6.672 2.440 2.546
Percentage variance 35.116 12.842 13.399
Cumulative variance 35.116. 47.958 61.356
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Table 6. Cont.

(B)

Factor

F1 F2 F3

F1: positive communication
Y1: Team members frequently discuss safety issues on the job 0.884 0.118 −0.123

Y2: The team manager or safety officer is able to promptly address safety
issues that drivers encounter on the job 0.876 0.092 −0.060

Y3: The safety officer will talk to drivers who have more safety alerts 0.856 0.086 0.081
Y4: I often talk to other drivers about how to improve driving safety 0.837 0.029 0.048

Y5: The safety officer uses communication (not commands) to get drivers to
drive safely 0.830 0.034 0.028

Y6: The safety officer looks at the driver’s family life and personal well-being 0.823 0.036 −0.221
Y7: Team managers and safety officers treat every driver with respect 0.799 0.168 −0.081

Y8: Dispatchers are able to effectively mediate problems between customers
and drivers 0.759 0.010 −0.146

Y9: If there is a problem with a vehicle, I will take care of it before traveling 0.701 0.117 0.245
Y10: I will get enough sleep the night before work 0.685 0.026 0.341
Y11: I will always prioritize safety in my work 0.618 0.167 0.463

F2: safety awareness

Y12: I will speed up my vehicle to deliver goods on time when I am about to
exceed the time limit 0.149 0.839 0.140

Y13: I will take shortcuts and rush for important customers 0.082 0.832 0.019
Y14: I will increase my speed after unloading to save time 0.098 0.812 0.180
Y15: I do not pay much attention to the warning system in my car 0.170 0.715 0.399
Y16: I do not think it’s too intrusive to use my cell phone while driving 0.089 0.671 0.404

Y17: I will continue to make deliveries even if I state that I am not feeling well
or am tired 0.393 0.636 0.196

Y18: We are asked to work extra hours during online shopping festivals (e.g.,
Double 11, 618, etc.) 0.065 0.586 −0.379

F3: self-regulation

Y19: I will continue to drive even if I feel tired or uncomfortable during the
transportation driving process 0.116 0.501 0.584

Y20: I do not receive reminders or warnings from the safety officer when I do
something unrelated to driving −0.214 0.172 0.506

Eigenvalues 7.896 4.402 1.595
Percentage variance 35.890 20.009 7.252
Cumulative variance 35.890 55.500 63.151

Note. All responses for items with negative wordings were reversely coded. Bolded values indicate factor loadings
> 0.40 that are appropriate for a particular factor.

As shown in Table 7, regression analyses using positive communication as the inde-
pendent variable and self-reported safety behaviors as the dependent variable yielded a
B-value of 0.295 (95% confidence interval = [0.144,0.445], p < 0.01), with a model R-squared
value of 0.062, respectively. This implies that positive communication explains 6% of the
variation in self-reported safety behaviors. The regression analysis revealed that 2% of the
variation in self-reported safety behaviors could be attributed to safety awareness. Using
safety awareness as the independent variable and self-reported safety behaviors as the
dependent variable, the regression analysis yielded a B-value of 1.014 (95% confidence
interval = [0.973,1.005], p < 0.01), with a model R-squared value of 0.913. This implies that
safety awareness could explain 91% of the variation in self-reported safety behaviors. Three
percent of the reasons for the changes in self-reported safety behaviors can be attributed to
self-regulation. With self-regulation as the independent variable and self-reported safety
behaviors as the dependent variable in the regression analysis, the B-value was 0.473
(95% confidence interval = [0.339,0.607], p < 0.01), with a model R-squared value of 0.178.
This implies that self-regulation can explain 17% of the variance in self-reported safety
behaviors. A regression analysis using the fleet level as an independent variable and
self-reported safety behaviors as a dependent variable yielded a B-value of 1.071, with a
95% confidence interval of [0.939,1.203] and a p-value of less than 0.01. This indicates that
the fleet level explains 53.2% of the reasons for a change in self-reported safety behaviors.
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Table 7. Predictive regression analysis of the total organizational-level safety climate (OSC) and
group-level safety climate (GSC) scores on self-reported driving safety behavior.

Self-Reported Safe
Driving Behaviors R2 B

95%CI
pUpper

Limit
Lower
Limit

Safety management 0.057 0.283 0.132 0.434 0.000
Safety supervisor 0.005 0.006 −0.150 0.139 0.939

Driver safety priority 0.224 0.493 0.375 0.617 0.000

Complete organizational level 0.163 0.698 0.490 0.906 0.000

Positive communication 0.062 0.295 0.144 0.445 0.000

Safety awareness 0.913 1.014 0.973 1.005 0.001
Self-regulation 0.178 0.473 0.339 0.607 0.000

Complete fleet level 0.532 1.071 0.939 1.203 0.000

As illustrated in Figures 3 and 4, the variability of self-reported safety behaviors, with
a total of eight items, namely, safety management, safety supervision, driver safety priority,
organizational level, positive communication, safety awareness, self-regulation, and fleet
level, was investigated using ANOVA (all referred to as one-way ANOVA). As can be seen
in the figures, the self-reported safety behaviors of different samples in safety management,
safety supervision, driver safety priority, organizational level, positive communication,
safety awareness, self-regulation, and fleet level were found to be statistically significant
(p < 0.05). This indicates that different samples of self-reported safety behaviors exhibit
differences in safety management, safety supervision, driver safety priority, organizational
level, positive communication, safety awareness, self-regulation, and fleet level (p < 0.05);
that is, the various self-reported safety behavior samples exhibited differential patterns in
relation to the following variables: safety management, safety supervision, driver safety
priority, organizational level, positive communication, safety awareness, self-regulation,
and fleet level.
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3.3.2. Overall Safety Climate Score and Objective Safety Criteria

In order to test the predictive validity of the newly developed safety climate scale at
the organizational and fleet levels, driving in-vehicle risk data from the freight companies
participating in this study were utilized. The in-vehicle device utilized to obtain the data
was the G7 Extreme Intelligence Safety Management Service V2.0. The alarm events
included the following six items: talking on the phone, smoking, not wearing a seatbelt,
deviating from driving, yawning, and distracted driving. Regression analyses of the data
indicated that the total scores at the organizational level and fleet level were significantly
associated with drivers’ driving safety behaviors. The first-order coefficient B-values were
0.031 (SE = 0.002, 95% confidence interval = [0.023,0.048], p < 0.01) and 0.028 (SE = 0.001,
95% confidence interval = [0.024,0.031], p < 0.01), respectively. The R2 statistic indicated
that the organizational-level safety climate score explained 52.8% of the variance in driving
safety behavior, while the fleet-level safety climate score explained 48.8% of the variance
in driving safety behavior (see Table 8. Automatic linear modeling was also conducted
using the six variables of driver driving safety behavior as independent variables and the
organizational-level safety climate and fleet-level scores as target variables. The results are
presented in Tables 8 and 9. The importance of distracted driving and deviated driving
was 0.491 and 0.490, respectively, at the organizational level, and 0.525 and 0.416 at the
fleet level.

For the purpose of predicting the volume of accidents involving drivers who have
driven for 1000 km, the results indicated that the organizational- and fleet-level safety
climate scores significantly predicted the number of 1000 km accidents. The first-order
coefficient B-values were −0.286 (SE = 0.004, 95% confidence interval = [−0.293,−0.278],
p < 0.01) and −0.268 (SE = 0.003, 95% confidence interval = [−0.274,−0.261]), respectively
(p < 0.01) (Table 9). As illustrated in Figures 5 and 6, the data points in the organizational-
level and fleet-level P-P plots appear to approximate a straight line, suggesting that the data
conform to the formulated distribution. The negative B-value indicates that the accident
rate is negatively correlated with the safety climate score, indicating that, as the safety
climate score increases, the number of accidents decreases.
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Table 8. Predictive regression analysis of OSC and FCD scores on real vehicle data.

Driver Behavior R2 Ba (SE)
95%CI

p
Upper Limit Lower Limit

OCS Overall Score 0.528 0.031 (0.002) 0.023 0.048 0.000
FCS Overall Score 0.488 0.028 (0.001) 0.024 0.031 0.000

Accidents per 1000 km R2 Ba(SE)
95%CI

p
Upper Limit Lower Limit

OCS Overall Score 0.866 −0.28 (0.004) −0.293 −0.278 0.000
FCS Overall Score 0.860 −0.26 (0.003) −0.274 −0.261 0.000

Note. OSC: organizational-level safety climate. FSC: fleet-level safety climate.

Table 9. Automated linear modeling analysis of six variables of driver safety behavior using OSC
and FCD scores.

Square Sum df Mean Square F Sig Importance

implicit variable: OSC
Calibration model 42.043 9 4.671 98.442 0.000

Distraction 17.510 4 4.378 36.023 0.000 0.492
Vehicle deviation 16.036 1 16.036 131.961 0.000 0.450

Yawning 1.808 3 0.603 4.960 0.002 0.051
Smoking 0.319 1 0.319 2.625 0.107 0.009

implicit variable: FSC
Calibration model 36.399 8 4.550 42.748 0.000

Distraction 15.843 4 3.961 37.212 0.000 0.525
Vehicle deviation 12.549 1 12.549 117.901 0.000 0.416

Yawning 1.798 3 0.599 5.631 0.001 0.060

Note. OSC: organizational-level safety climate. FSC: fleet-level safety climate.
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In summary, the criterion-related validity of the developed safety scale is supported.

4. Discussion

This paper employed the following two levels of measurement to assess the safety
climate of the company being analyzed: the organizational level and the fleet level. The
statistical analysis of the test results revealed that the Cronbach’s alpha coefficients for
both the organizational-level and fleet-level scales were above 0.8, indicating that the scale
content exhibited an acceptable level of reliability. The statistical analysis of the results
demonstrated that the KMO values of both the organizational-level and fleet-level scales
were above 0.6. Additionally, the significance probability value of the Bartlett test of spheric-
ity, p = 0.000 < 0.05, indicated that the data exhibited a high degree of correlation and that
their variables were suitable for factor analysis. The principal component analysis yielded
three factors with eigenvalues greater than one, which were subsequently designated as
principal factors at the organizational and fleet levels. At the organizational level, these
factors were identified as safety management, safety supervision, and driver safety priority.
At the fleet level, the factors were designated as proactive communication, safety group
awareness, and self-restraint. The cumulative variances of all extracted factors were greater
than 60%, thereby demonstrating the reliability of the extracted factors. The structure of the
measurement models and the standardized path coefficients were subjected to validation
factor analysis. The fit results of both measurement models for the OSC and FSC were
deemed to be acceptable, with all indicators meeting the requisite criteria.

A regression analysis of the data on the volume of accident alerts triggered by the
dependent firms’ driving risk behaviors revealed a significant correlation between the
total test scores at the organizational and fleet levels and their driving risk behaviors. The
results of the automated linear modeling indicated that six driving risk behaviors, namely,
talking on the phone, smoking, not wearing a seatbelt, deviating from driving, yawning,
and distracted driving, were the most significant independent variables. The scores on
the organizational-level and fleet-level scales were identified as the target variables. The
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analysis revealed that distracted driving and deviating from driving behaviors had the
greatest impact on safety and should be the focus of corporate driver safety education. As
previously stated, the importance of safety training and education in the context of heavy
goods vehicle operational driving has been widely acknowledged [29–31]. Consequently,
it follows that both the behaviors of distracted driving and deviated driving must be
controlled by management at the organizational level. Furthermore, it is the responsibility
of corporate supervisors to monitor and remind drivers in real time. In light of this, it can be
concluded that the management of transport companies must implement systems thinking
in the road transport organizational approach to implement a safety management system.
Finally, it is important to note that drivers should not be held fully responsible for unsafe
driver behavior. In this study, the safety climate was measured from two dimensions to
understand the driver’s perception and the actual implementation of safety management at
the organizational level of the company through real situation feedback, and to understand
the specifics of safety management from the bottom up. Therefore, through the score of
the safety atmosphere test scale, transportation companies can improve the safety training
of drivers, targeting training for drivers, while the management can also find, in a timely
manner, inapplicable safety management programs as well as their own management
loopholes so as to make adjustments to reduce the occurrence of the road traffic accidents
of truck drivers.

The results of the linear regression analyses indicated a linear and negative correlation
between the organizational-level and fleet-level scale scores and accidents per 1,000 km.
It was found that higher safety climate scores were associated with lower accident rates.
The aforementioned analyses indicate that the scale scores in this study can be utilized
as an efficacious indicator to elucidate drivers’ driving safety behaviors, and can also be
employed to predict driving risks in enterprises. Consequently, the scale scores can be
employed to reveal deficiencies or loopholes in management from multiple dimensions for
managers and employees, and to provide an efficacious basis for managers to improve the
safety climate in their enterprises.

According to the results obtained above, the safety management of truck driving in
transportation enterprises can start from the following aspects:

1. Driver training and assessment: Regularly organize safe driving training for drivers,
including traffic rules, driving skills, emergency treatment, etc., to ensure that drivers
have basic driving skills and safety awareness. A driver assessment system can be
implemented to assess the driving skills, safety awareness, and service attitudes of
drivers on a regular basis, and those who are not qualified can be retrained or adjusted
in their positions.

2. Safe driving rules and regulations: Formulate detailed rules and regulations for the
safe driving of trucks, including the speed limit, traveling distance, rest time, etc., to
ensure that drivers comply with the relevant regulations. Seriously deal with drivers
who violate the rules and regulations, and strengthen the enforcement of the rules
and regulations.

3. Risk assessment and prevention: Evaluate the risks that may be encountered in the
process of truck driving and formulate corresponding preventive measures. The
implementation of the preventive measures should be regularly checked to ensure the
effectiveness of the preventive measures.

4. Cultivation of safety culture: Through publicity and education, improve the safety
awareness of drivers and enterprises, and form a positive safety culture. Encourage
drivers to actively participate in safety management, put forward suggestions for
improvement, and jointly maintain the safety and stability of the enterprise.

The limitations of this study include the conditions under which the driver data were
collected. The data originate from different fleets of the same enterprise, and there is no
comparison with other enterprises in terms of application. To address this, subsequent
studies should increase the experimental samples of different enterprises to reduce the
differences. The investigation area was limited to Zhejiang Province, which is considered
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to be one of the more economically developed provinces in China. However, there are
differences between this province and inland provinces. Therefore, in the next study,
different parts of the country will be selected to reduce the differences in the comparative
study. This will enable the unified application of the logistics and transportation enterprise
safety atmosphere test scale in China. Furthermore, this paper is directed towards the
employees of logistics and transportation enterprises, and does not undertake targeted
research on drivers of other modes of operation (such as bus drivers, dangerous goods
drivers, self-employed drivers, etc.). Subsequently, the research will be analyzed and
compared across these different groups, thereby increasing the diversity and practicality of
the study. Furthermore, this paper does not provide a comprehensive analysis of in-vehicle
data. Consequently, subsequent in-depth studies of in-vehicle data are necessary to address
this limitation.

The final objective of this study on the safety assessment of truck drivers in logistics
and transportation enterprises is the construction of a safety atmosphere test platform based
on the safety atmosphere test scale. This platform will enable the real-time monitoring of
the safety atmosphere of enterprises, the identification of safety hazards, the improvement
of driving safety, and the reduction in accidents.

5. Conclusions

The “safety climate” test theory has been employed to develop a set of safety risk
assessment systems for logistics and transportation enterprises in accordance with the
prevailing management and cultural climates in China. These assessment systems have
been implemented in the form of test scales, enabling the safety risk assessment of China’s
logistics and transportation enterprises and fleets.

The scales were constructed and analyzed for reliability and validity at the business
organizational level and at the fleet level. Exploratory factor analysis of the test data
yielded valid test items on the dimensions of safety management, safety monitoring,
and safety prioritization at the organizational level, and proactive communication, safety
awareness, and self-regulation at the fleet level, respectively. Validation factor analyses at
the organizational and fleet levels, respectively, demonstrated the validity of the system
architecture and the satisfactory fit of the model.

The correlation analysis of the overall safety atmosphere scores of truck drivers and the
objective safety performance data of onboard equipment indicate a significant correlation
between the total test scores of the organizational level and fleet level and their driving risk
behaviors. Distracted driving and deviated driving behaviors have the greatest impact on
safety. Therefore, these behaviors should be used as the key point of a company’s driving
safety education. The scores of the organizational and fleet levels are negatively correlated
with the number of accidents per 1000 km, indicating a high degree of consistency between
the test results and actual risky accidents. Therefore, these scales can be used as a valid
means of evaluating the safety risk of a company.
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