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Abstract: Rice, as one of the significant grain products across the world, features a wide range of
varieties in terms of usability and efficiency. It may be known with various varieties and regional
names depending on the specific locations. To specify a particular rice type, different features are
considered, such as shape and color. This study uses an available dataset in Turkey consisting of
five different varieties: Ipsala, Arborio, Basmati, Jasmine, and Karacadag. The dataset introduces
75,000 grain images in total; each of the 5 varieties has 15,000 samples with a 256 × 256-pixel
dimension. The main contribution of this paper is to create Quantized Neural Network (QNN)
models to efficiently classify rice varieties with the purpose of reducing resource usage on edge
devices. It is well-known that QNN is a successful method for alleviating high computational costs
and power requirements in response to many Deep Learning (DL) algorithms. These advantages
of the quantization process have the potential to provide an efficient environment for artificial
intelligence applications on microcontroller-driven edge devices. For this purpose, we created eight
different QNN networks using the MLP and Lenet-5-based deep learning models with varying
quantization levels to be trained by the dataset. With the Lenet-5-based QNN network created at
the W3A3 quantization level, a 99.87% classification accuracy level was achieved with only 23.1 Kb
memory size used for the parameters. In addition to this tremendous benefit of memory usage, the
number of billion transactions per second (GOPs) is 23 times less than similar classification studies.

Keywords: rice classification; deep learning; Quantized Neural Network; LeNet-5

1. Introduction

Rice, as one of the most produced and consumed cereal products, has the highest
production capacity following wheat and corn. It has historically been a food item with
thousands of varieties. In 2022, the production capacity of rice was 513 million tons in
approximately 119 countries [1]. The classification of rice varieties is an attractive research
topic due to its important place among nutrients and trade role throughout the world. The
determination of rice variety before the production process has the potential to enhance
the quality of the final product satisfying the requirements of food safety. The applications
of the classification phase can possibly distinguish the solid products from the form of
seeds. Recent technological developments based on image processing have resulted in
efficient and intelligent classification methods for all branches of agriculture [2–4]. These
novel methods provide fast decisions while satisfying time and resource constraints [5].
Therefore, the drawbacks of manual strategies under the responsibility of human control in
classifying grains are eliminated.
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In recent years, machine learning (ML) algorithms have been successfully applied to
operate classification tasks with high accuracy [6,7]. The basic idea relies on collecting a
sufficient number of images of the products to be processed. This process extracts specific
parameters about the product to enable the classification operation, such as texture, size,
and shape. An important efficiency of ML is its ability to analyze a huge amount of
information in a reliable way. In rice classification, ML methods have been a popular
way of enhancing the final performance with the capability of extracting a lot of physical
features from a specified dataset.

Deep Learning (DL), as a sub-section of ML, is a concept with the aid of artificial neural
networks through advancing learning capabilities in object detection and image recognition.
DL approaches have a complex structure as it requires a high volume of training data and
high-performance computing resources [8–10]. To improve the performance accuracy for
the classification of three rice groups, a deep convolutional neural network (DCNN) based
structure is proposed with a key focus on minimizing training errors [11]. The training
operation is integrated with a stochastic gradient descent structure to avoid the problem of
heuristics and arrange system parameters in a smart vision. The dataset includes 5554 and
1845 images for training and validation, respectively. Another work designs a DL-based
cost-effective solution using AlexNet architecture with two public datasets from Asia [12].
It extracts the features by applying a transfer learning approach with data augmentation
in the training phase. A three-dimensional view from the surface of rice seeds, in place
of two-dimensional images, is associated with a DL network for fast and more accurate
identification of rice varieties [13]. For the feature extraction, PointNet platform targetting at
3D classification and segmentation is used and improved through employing a cross-level
feature connection property. For 8 rice varieties, the dataset was experimentally generated
and contains 210 samples (150 samples for training and 60 samples for validation). A
recent study created DL models based on Artificial Neural Networks (ANNs), Deep Neural
Networks (DNNs), and Convolutional Neural Networks (CNNs) to perform classification
tasks with 75,000 samples of the dataset for five rice varieties [14]. The performance outputs
indicate that the best classification accuracy value is achieved by CNN.

An underlying drawback of DL-based models is the high computational burden as
such models involve intensive mathematical operations [15]. The duration of a training
phase may take several days with respect to network depth and parameters. The parameters
in a trained network can reach GigaByte or even TeraByte levels depending on the size of
the model. Therefore, these models often require computing devices with high resources
which makes the implementation of the models a difficult task in resource-constrained
devices [16,17]. Nowadays, edge devices such as mobile phones and Internet of Things
(IoT) devices are designed to be able to run DL algorithms or train the models. The
edge devices are usually equipped with limited facilities with the purpose of providing
connection to service providers and other edge devices [18–20]. This brings a necessity to
take the limited resources such as processing capacity, operating frequency, memory size,
and power consumption into consideration for a perpetual operation of DL [21]. In this
article, eight various QNN networks are constructed at W1A1, W2A2, W3A3, and W8A8
quantization levels using Pytorch framework and Xilinx Brevitas library [22] on MLP and
Lenet-5 models. Each network quantizes the image input to 8 bits. In general, the complete
workflow for each QNN is demonstrated in Figure 1. The whole process for building
a QNN network model consists of three steps, as presented in the figure. The first step
includes the preparation of the dataset used by resizing the dimensions of the images from
3 × 256 × 256 to 3 × 32 × 32 in RGB format. This is then followed by dividing the dataset
for training and validation. In the second step, the QNN network is created by determining
the required parameters, such as weights and activation. Then, the hyperparameters are
defined to be used for the training of the QNN model. The final step includes the evaluation
of the constructed QNN models. Later, the performance results prove the efficiency of the
proposed models. Performance comparisons with well-known existing studies indicate the
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superiority of the proposed study in terms of resource consumption. To sum up, the main
contributions of this paper can be summarized by following:

• The primary contribution is to develop a solution for an efficient classification strat-
egy for rice variety classification, taking advantage of Quantized Neural Network
(QNN) models.

• The main emphasis has been placed on the utilization of limited resources for edge
devices in IoT applications to reduce the high level of the computational burden of
DL models.

• The proposed QNN networks with various quantization levels benefit from the Py-
torch framework and Xilinx Brevitas library on MLP and Lenet-5 models.

• The performance efficiency of the proposed idea has been extensively tested using a real-
world dataset with five different varieties, in comparison to state-of-the-art approaches.

The forthcoming parts of the article are organized as follows. The second part describes
the definition of the models, including the dataset, performance measurement metrics, and
the proposed QNN networks. In third section of the article, the performance evaluations
are presented with a deep analysis. We finally conclude the paper in the last part.

Figure 1. The workflow for QNN design and evaluation.

2. Definition of Models
2.1. Preparation of Dataset

In this study, a recent dataset comprising five rice varieties (Ipsala, Arborio, Basmati,
Yasemin, and Karacadagas as depicted in Figure 2) is selected due to its high number of
sample images [23]. The number of samples for each class is 15,000, with a pixel size of
256 × 256.

(a) Arborio (b) Basmati (c) Ipsala (d) Jasmine (e) Karacadag

Figure 2. Rice varieties in the dataset.
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A preprocessing is applied to resize the images to 32 × 32 as the main emphasis of this
study is placed on the implementation of QNN models using resource-constrained devices.
A view of both original and resized images can be seen in Figure 3.

Figure 3. A view of the image after resizing the original image.

The advantage of reducing the size of the images on the LENET-5-based CNN model
is presented in Table 1, which shows the memory allocation, the number of parameters,
and the billion floating point operations (GFLOPs) per second. With this reduction, the
proposed model is capable of performing approximately 110 times less than the number of
floating-point operations. Memory usage is also decreased almost 460 times. The dataset is
partitioned into 60,000 images for training, 5000 images for validation, and 10,000 images
for testing.

Table 1. Changing features on Lenet-5 according to the size of the input images.

Input Size Parameters Bias GFLOPs Memory (KB)

3 × 256 × 256 7,157,901 227 142.9 28,632
3 × 32 × 32 61,581 227 1.3 62

2.2. Multi-Layer Perceptron (MLP) Model

Multi-layer Perceptron Network (MLP) is a simple neural network with multiple
hidden layers of perceptrons among the input and output layers [24]. A typical MLP
network is composed of a minimum of three layers beginning with an input layer to
forward the processed data by the hidden layers to the output layer. The classification task
is finalized by the output layer. The number of hidden layers is an application-specific
property acting as computational units in a feed-forward fashion. In this study, the MLP
network contains a flattened layer to shape the incoming image matrix in linear form.
After linearization step, the one-dimensional data are fed to the next two hidden layers
with 128 and 64 neurons. It is then captured by a Softmax layer with 5 outputs as the
number of rice varieties to calculate the probability of membership for each rice class. The
whole MLP model described is shown in Figure 4.

Figure 4. MLP neural network model for rice classification.
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2.3. LeNet-5 Model

LeNet-5 is a pioneering CNN structure that has had a great impact on the evolution of
Deep Learning. It has the fundamental cells of CNN with a multi-layer convolution and
pooling. In total, LeNet-5 comprises 7 layers with the exception of the input layer allowing
the parameters to be trained in each layer. The input in this model is a 32 × 32-pixel image.
The rationale behind the popularity of LeNet-5 is its simplicity and easy architecture. This
study utilizes the original LeNet-5 model proposed in [25] as depicted in Figure 5.

Figure 5. Lenet-5 based CNN model.

2.4. Quantized Neural Network (QNN) Model

Quantization in DL models is defined as a process of reducing the memory requirement
and computational burden by executing low-bit width values instead of floating-point
values. To ensure a high-performance accuracy for applications run on-device, Quantization
becomes a critical technique to supply a compact model leading to a reasonable size of
neural network. Quantized Neural Network (QNN) is a special type of CNN without
sacrificing performance. There are two types of quantization: Post-Training Quantization
(PTQ) and Quantization-Aware-Training (QAT) [26].

PTQ has a straightforward implementation process requiring no quantization in the
training part benefitting from a pre-trained network. The parameters can be quantized
based upon completion of the training of the floating-point network, subject to a quan-
tization error on parameters. This may result in incorrect classification with increased
quantization error. QAT is used to recover this error by computing the parameters during
the training. As QAT performs the quantization process while training the model and
calculating the parameters, one advantage of QAT is to raise the optimization to greater
extents [27]. The all steps of both quantization techniques are shown in Figure 6.

Figure 6. The block diagrams of QAT and PTQ quantization processes.
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CNN algorithms can include millions of floating-point parameters and billions of
floating-point operations to recognize a single image [28]. The winner of the ImageNet
competition performed 244 MB of parameters and 1.4 GFLOPs in 2012 and 552 MB of
parameters and 30.8 GFLOPs per image in 2014 [29]. This requirement of high computing
and memory capacities of deep neural networks hinders the utilization of these applications
on mobile devices. To deal with this issue, quantization allows a model to consume
less computing and memory resources while keeping its accuracy close to the original
model [30]. The quantization process is performed on the weight (W), input (I), bias (B),
and output (O) data. The maximum value in the data to be quantized is calculated with the
following equation.

Qntth = 2N−1 (1)

N indicates the bit width to be quantized, Qntth represents the maximum value to have
occurred as a result of the quantization process. Here th is the value of the element with
the highest absolute value according to the i and j indices of the matrix A to be quantized.

th = max|Ai,j| (2)

Then, a specific scale, k, is defined by dividing th by Qntth:

k =
th

Qntth
(3)

The quantization process is finalized, taking the ratio between A and k.

QntA =
A
k

(4)

2.5. Quantization in Brevitas

Brevitas is a PyTorch library developed by Xilinx Research Lab for QAT-type quantifi-
cation, introducing a quantized version of PyTorch layers. The layers in a neural network
developed by PyTorch are replaced with Brevitas layers, resulting in the creation of the
quantized model. Due to the interoperability of Brevitas with PyTorch layers, it makes the
implementation of hybrid models feasible, thereby making the utilization of quantized
and unquantized layers together. Consequently, this library quantizes the relevant parts
of the layers with the parameters (W, I, B, O) aforementioned above. The frequently-used
quantization techniques in Brevitas are:

• INT: it returns the input tensor to the quantized integer at the specified bit width.
• BINARY: it returns the input tensor quantized at (−1,1) values.
• TERNARY: it returns the input tensor quantized at (−1,0,1).

Binary quantization represents the FP32 type in the W, I, B, O parameters as a 1-bit
number. For example, after a bit quantization, the value of 0.127478 becomes 1, while the
value of −0.05439 is quantized to −1. In the other quantization levels, the parameter value
is converted to the closest number that can be represented by a selected number. The 4-bit
quantization operation is shown on the matrix A given below as a numerical example.

A =

−0.235 0.205 −0.654
0.567 0.709 0.432
0.032 0.456 −0.623

, th = 0.709, N = 4, Qntth = 8

k =
0.709

8

QntA ≈

−3 2 −7
6 8 5
0 5 −7
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It can be seen that after the quantization of the input matrix, its largest value is 8, and
the smallest value is −7. These values are a range of signed numbers that can be written
with a data width of 4 bits. In our study, quantization levels are used in WxAx format.
Here, W represents the weight, A indicates the activation process, and x represents the bit
width at which the quantization process will be performed.

This study implements BINARY for the W1A1 model and INT for the rest of the models.
The networks developed for the MLP and Lenet-5 models are trained with quantized
values at the W1A1, W2A2, W3A3, and W8A8 quantization levels. The complete process of
building the MLP model is provided in Algorithm 1.

Algorithm 1 MLP Quantize model generator algorithm

1: X ← inputData
2: W ← weightBitWidth
3: A← activationBitWidth
4: I ← inputBitWidth
5: C ← numbero f Classes
6: OF ← outputFeatures(128, 64)
7: Require: Brevitas Modules (QuantIdentity,QuantLinear,Dropout,BatchNorm1D,TensorNorm)
8: procedure MLP
9: append QuantIdentity(I) to Model

10: append DropOut to Model
11: for outputFeatures do
12: append QuantLinear(W) to Model
13: append BatchNorm1D to Model
14: append QuantIdentity(A) to Model
15: append DropOut to Model
16: end for
17: append QuantLinear(W) to Model
18: append TensorNorm to Model
19: X ← X× 2− 1
20: for Model from MLP do
21: X ← Modul(X)
22: end for
23: end procedure

The trained QNN networks are converted to ONNX (Open Neural Network Exchange)
format using the BrevitasToONNX module. The complete flowchart of the MLP model in
ONNX format can be seen in Figure 7.

In this figure, X represents the quantized input file of the output layer, which then
takes Y as a power. In the input section, image data in the range of 0–255 is initially
normalized to the range of −127–127. Then, the second normalization is performed on
the normalized data to the range of (−1,1) with FP32 bit data type. In the second step, the
linearized input matrix is multiplied by the weights on the 128-layer MLP block. It is then
followed by multiple thresholding components and matrix transposing operations. After
completing the same operations in the 64-layer MLP block, the classification scores are
generated for the five rice grades.
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Figure 7. The quantized MLP model with Brevitas.

The model created with the Brevitas library on the Lenet-5 model is seen in Figure 8
after the ONNX transformation. In the introductory part of the Lenet-5-based QNN model,
the image data are normalized in the range of (−1,1) in the FP32 bit data type. In the second
and third transaction blocks, the QuntConv2d convolution layer, transpose operation, multi-
threshold, and QuantMaxpool2d pooling operations are performed with the quantized
data. At the entrance of the fourth block, the 2D matrix is flattened into 1D. After this stage,
the operations made as in the quantified MLP model are performed. The pseudo-code of
the entire Lenet-5 model is presented in Algorithm 2.

Figure 8. The quantized Lenet-5 model with Brevitas.
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Algorithm 2 LENET-5 quantize model generator algorithm

1: X ← inputData
2: W ← weightBitWidth
3: A← activationBitWidth
4: I ← inputBitWidth
5: C ← numberO f Classes
6: CF ← ConvFeatures(16, 6)
7: FcF ← FcFeatures(120, 84)
8: Require: Brevitas Modules (QuantConv2d,MaxPool2D,QuantIdentity,
9: QuantLinear,BatchNorm2D,BatchNorm1D,TensorNorm)

10: procedure LENET
11: append QuantIdentity(I) to Model
12: for ConvFeatures do
13: append QuantConv2d(W) to Model
14: append BatchNorm2D to Model
15: append QuantIdentity(A) to Model
16: append MaxPool2D to Model
17: end for
18: for FcFeatures do
19: append QuantLinear(W) to Model
20: append BatchNorm1D to Model
21: append QuantIdentity(A) to Model
22: end for
23: append QuantLinear(W) to Model
24: append TensorNorm to Model
25: X ← X× 2− 1
26: for Model from Lenet do
27: X ← Model(X)
28: end for
29: end procedure

2.6. Performance Criterions

In the developed models of this study, the weight and activation parameters conduct
the classification task at four different quantification levels. One of the most significant
tools used in evaluating the performance of a model in AI-Based classification applications
is the confusion matrix [31]. It paves a way to explore the relationships between the
performance and test outputs better. The knowledge regarding the accurate and inaccurate
classification for both positive and negative samples can be obtained by the confusion
matrix as presented in Table 2 for a two-class confusion matrix.

Table 2. Binary class confusion matrix.

Predicted Class

Positive Negative

Actual Class P (Positive) TP (True Positive) FN (False Negative)
N (Negative) FP (False Positive) TN (True Negative)

Due to the five classes of rice in the dataset, the classification task of this study for each
model includes a five-class confusion matrix. The terms of the confusion matrix are shown
in Table 3. The performances of the two models at all quantization levels are analyzed
using the metrics of accuracy (ACC), precision (Pre), recall (Rec), F1-Score (F1S), operations
per second, and memory usage. The metrics for each class in the multi-class confusion
matrix can be calculated using the equations given below.
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Table 3. Five class confusion matrix.

Predicted Classes
C1 C2 C3 C4 C5

Actual Classes

C1 T11 F12 F13 F14 F15
C2 F21 T22 F23 F24 F25
C3 F31 F32 T33 F34 F35
C4 F41 F42 F43 T44 F45
C5 F51 F52 F53 F54 T55

ACCk =
TPk + TNk

TPk + TNk + FPk + FNk
(5)

Prek =
TPk

TPk + FPk
(6)

Reck =
TPk

TPk + FNk
(7)

F1Sk = 2× Prek × Reck
Prek + Reck

(8)

Accuracy denotes the success level of the classification. Precision stores the number of
positive predictions, and Recall holds the number of positive samples to be identified. By
combining precision and recall metrics, F1-Score is defined as the predictive ability through
detailing a class-wise performance manner instead of accuracy that relies on the entire
performance. The calculations of the values of TP, FP, TN, FN, and the criteria are shown
by Algorithm 3.

Algorithm 3 Multiclass Confusion Matrix Evaluate Algorithm

1: CM⇐ Con f usionMatrix
2: GT ⇐ Sumo f CM
3: N ⇐ Numbero f classes
4: for i = 1, 2, . . . , N do
5: for j = 1, 2, . . . , N do
6: if i is Not equal j then
7: f n[i] = f n[i] + CM[i, j]
8: f p[i] = f p[i] + CM[j, i]
9: end if

10: end for
11: tp[i] = CM[i, i]
12: tn[i] = GT − tp[i]− f p[i]− f n[i]
13: acc[i] = (tp[i] + tn[i])/GT
14: pre[i] = tp[i]/(tp[i] + f p[i])
15: rec[i] = tp[i]/(tp[i] + f n[i])
16: f 1s[i] = 2 ∗ (pre[i] ∗ rec[i])/(pre[i] + rec[i])
17: end for
18: acc = tp/GT

3. Experimental Results

This section presents the outputs of the classification process carried out by MLP ve
Lenet-5 models. The dataset included as input in QNN models covers 75,000 rice images,
and the size of each image is resized from 256 × 256 to 32 × 32. The names of the five
rice varieties are Ipsala, Arborio, Basmati, Yasemin, and Karacadag, acting as classifica-
tion outputs. The hardware specifications, software platforms, and hyperparameters are
summarized in Table 4 running on Google Colab.
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The first experiment presents the performance accuracy of the Lenet-5 model with no
quantization. The models created with the dimension of 32 × 32 images on the Pytorch
framework are trained for 200 epochs. In the model constructed by the MLP, the classifica-
tion accuracy was obtained as 96.45%. The classification success of the model created by
Lenet-5 reached 99.99% in the Lenet-5 model, as demonstrated in Figure 9.

The next figure indicates the records of accuracy and loss values during the training
phase for the two models at four quantization levels. These outputs are shown in Figure 10
with a duration of 200 epochs. It is worth noting that all models in Lenet-5, with the
exception of the 1-bit quantization model (W1A1), achieve a classification accuracy of nearly
98% for 50 epochs. The reason behind taking longer training time at a 1-bit quantization
level is because of the low weight and activation sensitivity level in the backpropagation
algorithm. We, therefore, set the training epoch duration as 200 for all models, in accordance
with the duration at which the W1A1 model reached maximum learning. This permits us
to visualize the results of all models on the same figure.

Table 4. Hardware features and all parameters.

Parameters Specifications

GPU Model Name Nvidia Tesla K80
GPU Memory 12 GB

GPU Memory Clock 0.82 GHZ
GPU Performance 4.1 TFLOPs
CPU Model Name Intel ® Xeon ®

CPU Frequency 2.30 GHz
Number Of CPU Cores 2

Available RAM 12 GB
Operating System Linux

Programing Language Python 3.9
Framework Pytorch, Brevitas
Batch Size 100

Learning Rate 0.02
Epoch 200

Figure 9. Performance accuracy and loss of Lenet-5 model with no quantization.

In total, 8 neural networks were trained according to the model and quantification
levels with 60,000 training images and 5000 validation images in the dataset, and these
network models were recorded with their weights. These eight network models were tested
with 10,000 test images specifically dedicated to only the training phase. To compare the
quantized neural networks with 32-bit floating point MLP and Lenet-5 networks, the same
dataset was applied to test the performance. As a result of the test phase, the value of
ACC, the amount of memory used, the weight and activation parameters of the model,
and the number of billion transactions per second (GOPs) are presented in Table 5. In this
table, the first row of the models indexed by the FP32 term represents the models with no
quantization. It is clearly seen that the accuracy of both models without quantization offers
the best performance but at the expense of a very high memory usage property.
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Figure 10. Accuracy and loss plots for MLP and Lenet-5 models for the training phase.

Table 5. The accuracy, number of transactions, and the amount of memory usage for eight models in
the test implementation.

Model Parameters Bias GOPs Precision Memory (Kb) ACC%

32 Fp 1608 96.45
W8A8 402 94.72

MLP 401,925 193 0.8 W3A3 150 93.88
W2A2 100 92.23
W1A1 50 79.16

32 Fp 247 99.99
W8A8 61 99.99

Lenet-5 61,581 227 1.3 W3A3 23 99.87
W2A2 15 98.20
W1A1 7.7 94.40

MLP-based models, as an overall trend, consume approximately seven times higher
memory usage when compared with Lenet-5 models that achieve better accuracy. On
the other hand, MLP-based quantized models attain 0.8 GOPs per second to quantize
an image, while Lenet-5-based QNN models use 1.3 GOPs. QNN-W1A1 consumes only
7 KB of memory with a performance accuracy of 94.40%. However, MLP-FP32 achieves
a similar performance accuracy using 1.6 MB memory which is almost 228 times larger
than Lenet-5-W1A1. This particular result proves the superior practicality of the proposed
model on resource-constrained edge devices. In addition, since the proposed model is
suitable for data flow, it can reach very high speeds on parallel processing platforms such as
FPGA. In this study, the highest efficiency in terms of memory consumption and accuracy
was obtained in the Lenet-5-W3A3 network, with a memory consumption of 23 KB and an
accuracy of 99.87%.

High accuracy when evaluating an AI model would partly indicate a proper success
level of the network. For a full assessment of the network performance, the scores of Pre,
Rec, and F1S are some examples of metrics to assess the reliability of the model. It can be
inferred from these metrics that an inference regarding the performance accomplishment of
the model is acquired. To extract these metrics, the confusion matrices for the eight QNN
models are constructed from the statistical evaluation of the dataset. We chose to show the



Electronics 2023, 12, 2285 13 of 16

confusion matrices of the best and worst networks instead of presenting eight confusion
matrices. The confusion matrix of the best network in terms of success/resource utilization
ratio, Lenet-5-W3A3, is shown in Figure 11. The accuracy for all rice types is similarly high,
corresponding to a minor level of interference. In particular, for the Ipsala type, one sample
is only classified wrongly.

Figure 11. The confusion matrix of Lenet-5-W3A3 model.

The confusion matrix of MLP-W1A1 exhibits the worst performance, as presented in
Figure 12. It is important mentioning that MLP-W1A1 actually overcomes the classification
of four types with success. However, it has a terrifying classification accuracy for the
Arborio type because an incorrect classification for 1764 Arborio samples was observed.
Nevertheless, the total accuracy drops partly even though mislabeling of the majority of
Arborio samples among 10,000 samples. To further analyze this error, the values of F1 for
all classes are calculated using Algorithm-1, which is presented in Table 6. The F1 scores
confirm the suitability of the seven networks to be applied. On the one hand, although the
MLP-W1A1 network approaches a performance accuracy close to 0.8, the network faces a
very low F1 score of 0.16 caused by improper prediction of Arborio type, as outlined above.
Ipsala type experiences the best F1 score, with almost all scores being equal to 1.

Table 6. F1 scores for the eight networks for each type of rice.

MLP MLP MLP MLP Lenet-5 Lenet-5 Lenet-5 Lenet-5
Classes W1A1 W2A2 W3A3 W8A8 W1A1 W2A2 W3A3 W8A8

Arborio 0.16 0.84 0.95 0.93 0.88 0.97 0.98 0.98
Basmati 0.98 0.98 0.98 0.98 0.95 0.98 0.99 0.99
Ipsala 1 1 1 1 0.99 1 1 1

Jasmine 0.97 0.94 0.97 0.97 0.93 0.97 0.98 0.98
Karacadag 0.69 0.82 0.97 0.95 0.91 0.98 0.98 0.98
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Figure 12. The confusion matrix of the MLP-W1A1 model.

4. Conclusions and Discussion

This study investigates the potential of a high-performance classification approach
through quantized deep learning for different rice varieties. The proposed idea has the
key benefit of providing efficient and intelligent utilization of capacity in terms of memory,
power, and processing speed. The main theme of the present work is, therefore, to design
models running on edge devices that require low resource utilization. The confusion
matrices of the developed models were constructed in connection with class-based F1
scores and accuracy levels. Eight Quantized Neural Network (QNN) networks were
created using the environments of multilayer perceptron (MLP) and LeNet-5 with respect
to various quantization levels. The results verify a successful classification of the seven
models, except the MLP model at 1 quantization precision. We compare the results of the
proposed best model with different studies in the literature as presented in Table 7.

Table 7. Performance comparisons to existing studies in the literature.

References Class Classifier Bit Size ACC GOPs Memory

Koklu2021 [14] 5 CNN (VGG16) Fp32 100% 30.9 537 Mb
Lin2018 [11] 3 DCNN Fp32 95.5% 4.2 98 Mb
Prakash2022 [32] 5 CNN (VGG16) Fp32 99.5% 30.9 537 Mb
Poudel2022 [33] 4 CNN-SVM Fp32 91.0% 30.9 537 Mb
Lakshmi2022 [34] 5 CNN (Resnet-50) Fp32 98.9% 8.3 102 Mb
This Study 5 QNN (Lenet-5) W3A3 99.8% 1.3 23.1 Kb
This Study 5 QNN (Lenet-5) W1A1 94.4% 1.3 7.7 Kb

It is observed that most studies in classifying rice were carried out by using the
Convolutional Neural Network (CNN) models with the examples of VGG-16, ResNet-50,
and LeNet-5. Looking at Table 7, the best classification accuracy is obtained by [14] on
VGG-16 with a 100% accuracy level consuming 537 MB memory and 30.9 GFLOPs. In our
model, the Lenet-5-W3A3 model achieved 99.87% accuracy with only 23.1 Kb of memory
and 1.3 GOPs processing. This reveals that the proposed model performs the classification
with 23 times less processing and much less memory usage without sacrificing too much
accuracy. Another model proposed by [32] with an accuracy level of 99.5% is built on
VGG-16 with 23 times more resource consumption than our study. To sum up Table 7, as
an overall trend, all compared schemes exhibit a high accuracy level at an unacceptable
amount of memory usage and GFLOPs transactions for resource-limited edge devices.
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As a result, instead of an input image of 3 × 256 × 256 dimensions, the input image of
3 × 32 × 32 dimensions was quite sufficient for rice classification with this dataset. In
addition, it is observed that Lenet-5, which is a simpler model compared to models such as
VGG-16 and Resnet-50, successfully classifies this dataset. QNN models can be used by
choosing the quantization level according to the source size and preferred accuracy level in
the edge devices.
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