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Abstract: In addressing the challenges associated with low convergence accuracy and unstable
optimization results in the original gazelle optimization algorithm (GOA), this paper proposes a
novel approach incorporating chaos mapping termed multi-strategy particle swarm optimization
with gazelle optimization algorithm (MPSOGOA). In the population initialization stage, segmented
mapping is integrated to generate a uniformly distributed high-quality population which enhances
diversity, and global perturbation of the population is added to improve the convergence speed
in the early iteration and the convergence accuracy in the late iteration. By combining particle
swarm optimization (PSO) and GOA, the algorithm leverages individual experiences of gazelles,
which improves convergence accuracy and stability. Tested on 35 benchmark functions, MPSOGOA
demonstrates superior performance in convergence accuracy and stability through Friedman tests
and Wilcoxon signed-rank tests, surpassing other metaheuristic algorithms. Applied to engineer-
ing optimization problems, including constrained implementations, MPSOGOA exhibits excellent
optimization performance.

Keywords: gazelle optimization algorithm; optimization methods; particle swarm optimization;
Wilcoxon rank sum test

1. Introduction

Optimization is the process wherein individuals, under certain constraints, employ
specific methods and techniques to enhance the performance of existing entities, thereby
seeking the optimal solution to a given problem within the solution space. Nowadays,
optimization issues are ubiquitous in daily life and engineering technology, serving as
popular research topics in fields such as automation, computer science, telecommunications,
aerospace, and more.

Heuristic algorithms, which draw inspiration from natural laws, can be broadly classi-
fied into the following categories: physical methods based on principles such as gravity,
temperature, and inertia, which randomly search for the optimal solution to optimization
problems, for instance, methods like gravitational search [1]; simulated annealing [2]; and
black hole algorithms [3]. Evolutionary algorithms, grounded in Darwin’s theory, facil-
itate the gradual discovery of optimal solutions as the individuals within a population
evolve through iterations during the search process. Typical examples include genetic algo-
rithms [4], biogeography-based optimization algorithms [5], artificial algae algorithm [6],
widow optimization search algorithm [7], and taboo search algorithm [8]. In a population
of organisms, each individual has its own role, and communication among individuals
enables the acquisition of superior information, ultimately completing the population’s
evolution. Swarm intelligence optimization algorithms are essentially mathematical models
created by researchers to simulate the behavior of collective animals in the natural world.

Inspired by various behaviors exhibited by natural biological populations such as
insects, birds, fish, and herds, numerous swarm intelligence optimization algorithms have
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been proposed and have played a crucial role in many scientific and engineering appli-
cations. Mayer Martin Janos et al. used genetic algorithms to find an optimal solution
for a hybrid renewable energy system at the home level that is both economical and
environmentally friendly [9]. Laith Abualigah and Muhammad Alkhrabsheh can effec-
tively solve the problem of cloud computing task scheduling using a hybrid multilateral
optimizer optimized by a genetic algorithm [10]. G Lodewijks et al. [11] significantly re-
duced CO2 emissions in the airport baggage handling transportation system by applying
particle swarm optimization (PSO) algorithm. Bilal Hussain [12] proposed decomposi-
tion weighting and PSO (DWS-PSO), which provides a new solution for price-driven
demand response and home energy management systems for renewable energy and stor-
age scheduling. Paul Kaushik and Hati Debolina [13] applied the Harris hawk optimization
algorithm to household energy management, resulting in reduced power consumption.
Jiang [14] and others utilized the artificial bee colony algorithm for ship structural profile
optimization. Abd Elaziz Mohamed and colleagues [15] improved the artificial rabbit
optimization algorithm for skin cancer prediction, achieving reliable predictive results.
Bishla Sandeep and team [16] employed the chimpanzee optimization algorithm for opti-
mizing the scheduling of batteries in electric vehicles. Percin Hasan Bektas and Caliskan
Abuzer [17] utilized the whale optimization algorithm to control fuel cell systems. Jagadish
Kumar N. and Balasubramanian C. [18] implemented the widow optimization algorithm for
cloud service resource scheduling, effectively reducing the cost of cloud services. Zeng [19]
optimized heterogeneous wireless sensor network coverage using the wild horse opti-
mization algorithm, achieving significant coverage and connectivity. Chhabra Amit [20]
and others applied the vulture search optimization algorithm in feature selection. Liu
and team [21] predicted the lifespan of lithium-ion batteries using an improved sparrow
algorithm. Xu and colleagues [22] performed feature selection using the binary arithmetic
optimization algorithm.

With the development of heuristic algorithms, integrating different optimization mech-
anisms and evolutionary characteristics into algorithms, as well as drawing on each other’s
strengths and overcoming the inherent deficiencies of the algorithms, has gradually become
a new trend in the development of optimization algorithms. Chen [23] and others combined
the differential evolution algorithm with the biogeography-based optimization algorithm
for application in the three-dimensional bin packing problem, significantly improving
the utilization of box volume. Long and colleagues [24] integrated the bacterial foraging
optimization algorithm and simulated annealing algorithm in local path planning for un-
manned vessels, efficiently planning obstacle avoidance paths. Zou and team [25] employed
a cross-strategy of whale optimization algorithm and genetic algorithm in the cogeneration
system, reducing energy consumption. Ramachandran Murugan [26] and others balanced
the locust optimization algorithm and the Harris hawk optimization algorithm in the initial
and later convergence stages, applying it to the economic dispatch problem of the thermal-
electric field. Manar Hamza and team [27] combined the differential evolution algorithm
with the arithmetic optimization algorithm, enhancing the optimization effect. Pashaei
Elham and Pashaei Elnaz [28] combined the binary arithmetic optimization algorithm with
the simulated annealing algorithm, improving computational accuracy. Bhowmik Sandeep
and Acharyya Sriyankar [29] combined the differential evolution algorithm with the genetic
algorithm in the image encryption problem.

PSO, as one of the classic metaheuristic algorithms, has been applied in many fields
in recent years. Valiollah Panahizadeh [30] used PSO to improve the impact strength and
elastic modulus of polyamide-based nanocomposites. Kim Kang Hyun et al. [31] used
the PSO algorithm to optimize the drainage system of the undersea tunnel, significantly
reducing the construction cost. Kirti Pal et al. [32] optimized the installation cost of flexible
AC transmission system through PSO to improve the stability and load conditions of
the power system. Zezhong Kang et al. [33] applied the improved PSO algorithm to the
rural power grid auxiliary cogeneration system in the North China Plain to determine
the optimal unit capacity configuration. In addition, particle swarm computing is often
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combined with other methods to improve the search performance and has been applied in
various fields. Somporn Sirisumrannukul et al. [34] combined artificial neural networks
(ANNs) and PSO algorithms to not only collect real-time environmental data and air
conditioner usage records, but also autonomously adjust the operation of air conditioners.
Sathasivam Karthikeyan et al. [35] adopted the artificial bee swarm (ABC) algorithm and
PSO algorithm to optimize the Boost converter and improve the efficiency of the system.
Norouzi Hadi and Bazargan Jalal [36] used the linear Musjingen method and PSO algorithm
for the first time to study river water pollution and calculate the time change of pollution
concentration at different river locations. Shaikh Muhammad Suhail [37] and others
combined the PSO algorithm with the moth-flame optimization algorithm for application in
power transmission systems. Makhija Divya and colleagues [38] overcame the drawbacks
of both the local search of the PSO algorithm and the global search of the grey wolf
optimization algorithm, applying this method to the workflow task scheduling problem.
Tijani Muhammed Adekilekun and team [39] combined the PSO algorithm with the bat
algorithm to effectively avoid falling into local optima, applying this method to the joint
economic dispatch scheduling problem in power systems. Osei Kwakye Jeremiah [40] and
others combined the PSO algorithm with the gravitational search algorithm to overcome
premature convergence. Wang and colleagues [41] integrated the PSO algorithm with
the marine predator algorithm. Samantaray Sandeep and team [42] combined the PSO
algorithm with the slime mold algorithm in flood flow prediction. Wang [43] and others
combined the PSO algorithm with the artificial bee colony algorithm in underwater terrain-
assisted navigation, enhancing the matching effect.

Among the swarm intelligence optimization algorithms mentioned above, the gazelle
optimization algorithm (GOA) [44] has gained increasing usage in practical engineering
optimization problems due to its advantage in finding the optimal solution in test functions.
However, due to its inherent drawbacks such as low convergence accuracy and unstable
optimization results, it may not yield satisfactory results in all optimization problems.
This paper aims to improve the shortcomings of the GOA, addressing its deficiencies and
enhancing the convergence speed and stability of GOA. The main contributions of this
work are as follows:

1. Initializing the population through chaotic mapping to improve the quality and
diversity of initial solutions.

2. Implementing phased population perturbation to enhance the stability of optimization
results while maintaining high precision.

3. Combined with PSO, the role of the individual experience of the gazelle in the escape
process is used to improve the ability of the algorithm to jump out of the local optimum.

This paper is divided into seven sections. Section 2 provides a review and analysis of
the literature. Section 3 briefly describes the principles of the traditional GOA. Section 4
introduces the MPSOGOA. Section 5 presents the experimental design for testing functions
and engineering applications. Section 6 discusses the experimental results. The conclusion
is presented in the final section.

2. Gazelle Optimization Algorithm
2.1. Exploration Phase

During this phase, the gazelles, without predators or any signs of their presence,
remain in a calm state, grazing. Drawing on the foraging behavior of gazelles freely
grazing, the algorithm simulates the random movements of gazelles within the solution
space. In nature, the strongest gazelles not only possess strong survival abilities but also
lead other gazelles in evading predators, with the fittest individual in the population being
referred to as the alpha gazelle. Assuming the d-dimensional alpha gazelle is represented
as shown:

x′ = [x′(1) x′(2) · · · x′(d − 1) x′(d)] (1)
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We extend the top gazelle individuals to construct an n × d dimensional Elite matrix,
where n represents the population number and d represents the dimension. The matrix is
given by Equation (2):

Elite =


x′1,1(1) x′1,2(2) · · · x′1,d−1(d − 1) x′1,d(d)
x′2,1(1) x′2,2(2) · · · x′2,d−1(d − 1) x′2,d(d)
...

... x′i,j
...

...
x′n,1(1) x′n,2(2) · · · x′n,d−1(d − 1) x′n,d(d)

 (2)

The updating strategy of individual positions in the gazelle population is related to
the current optimal individual position. Based on the distance between the current optimal
individual and its own grazing position, the individual position is updated, with the
displacement step controlled by Brownian motion. The mathematical model is shown in:

gazellet+1 = gazellet + s · R · RB · (Elitet − RB · gazellet) (3)

where gazellet+1 and gazellet represent the positions at the (t + 1)th and t-th iterations,
respectively. s denotes the speed of gazelle movement during free grazing, R is a random
number between 0 and 1, Elite represents the matrix of the alpha gazelle, and RB is the
vector of Brownian motion, as given by Equations (4) and (5):

f (x; µ; σ) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
=

1√
2π

exp
(
− x2

2

)
(4)

where µ and σ are constants, µ = 0 is the mean value, and σ2 = 1 is the unit variance.

RB =


f1,1 f1,2 · · · f1,d−1 f1,d
f2,1 f2,2 · · · f2,d−1 f2,d
...

... fi,j
...

...
fn,1 fn,2 · · · fn,d−1 fn,d

 (5)

2.2. Exploitation Phase

In this phase, the algorithm simulates the fleeing behavior of gazelles upon detecting
predators, with each phase adopting movements in opposite directions based on the parity
of the iteration count. Equation (6) for Levy flight motion is provided in [39]:

f ′(α) =
0.05x

|y|
1
α

(6)

where α = 1.5, x = Normal(0, σ2
x), y = Normal(0, σ2

y ), σy = 1, σx is given by:

σx =

Γ(1 + α) sin(πα
2 )

Γ
(
(1+α)

2

)
α2

(α−1)
2


1
α

(7)

Upon spotting a predator, gazelles immediately initiate escape, simulating the gazelle’s
fleeing behavior using a Lévy flight. The escape model is provided by:

gazellet+1 = gazellet + S · µ · R · RL · (Elitet − RL · gazellet) (8)
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where S represents the maximum speed achievable by the gazelle during the escape process,
and RL is a vector of random numbers based on the Lévy flight, as given by:

RL =


f ′1,1 f ′1,2 · · · f ′1,d−1 f ′1,d
f ′2,1 f ′2,2 · · · f ′2,d−1 f ′1,d
...

... x′i,j
...

...
f ′n,1 f ′n,2 · · · f ′n,d−1 f ′n,d

 (9)

While tracking gazelles, predators move in the same direction. Therefore, during the
gazelle’s escape process, the predators also exhibit exploratory behavior in the search space.
However, predators are slower in the initial phase of the pursuit, and a Brownian motion
is used to simulate the chasing process, followed by the adoption of a Lévy flight in the
later stages to model the predator’s behavior. The mathematical model for the predator’s
pursuit of gazelles is provided by:

gazellet+1 = gazellet + S · µ · CF · RB · (Elitet − RL · gazellet) (10)

where CF represents the cumulative effect of predators, as shown in:

CF =

(
1 − t

T

) 2t
T

(11)

The survival rate of gazelles in the face of predators is 0.66, which implies that preda-
tors have a 34% chance of successful hunting. Using predator success rates (PSRs) to
represent the success rate of predators, a mathematical model of the gazelle escape process
is established, as shown in:

gazellet+1 =

{
gazellet + CF[LB + R · (UB − LB)] · U i f r ≤ PSRs
gazellet + [PSRs · (1 − r) + r] · (gazeller1 − gazeller2) else

(12)

where r1 and r2 are random indices of the gazelle population. U is a binary matrix repre-
senting the logical value obtained by comparing random numbers in the range of [0, 1]

with 0.34, such as U =

{
0 , i f r < 0.34
1 , otherwise

.

3. MPSOGOA

The GOA possesses the advantage of finding effective solutions for most optimization
problems. However, it is characterized by the drawback of low convergence accuracy
and slow convergence speed. This paper addresses this issue from three perspectives:
introducing a chaotic strategy to enhance the quality of initial solutions; implementing
population-wide perturbation to improve the convergence speed in the early iterations
and the convergence accuracy in the later iterations; and integrating PSO to emphasize the
significance of individual gazelle experiences, effectively balancing the exploration and
exploitation aspects of the algorithm.

3.1. Chaos Strategy

Chaotic motion is non-repetitive and has characteristics of randomness and ergodicity.
In recent years, chaotic mapping has been used by many scholars [45–49] for optimization
algorithms, and has achieved good results in improving population diversity. The initial
population of the GOA when solving optimization problems is randomly generated data.
The initial gazelle population generated using this method is uncertain, and individual
gazelles cannot traverse the feasible region. The diversity and uniformity of the initial
population will affect the optimization ability of the algorithm. Chaotic mapping has a
higher search speed than random search, can prevent falling into local optimality when
solving optimization problems, and improves the global search ability of the algorithm.



Electronics 2024, 13, 1580 6 of 33

Reasonable use of chaos theory in the population initialization stage can evenly distribute
population individuals within the feasible region, thereby achieving the purpose of improv-
ing population diversity and uniformity. Currently, many literatures use Logistic mapping,
but the traversal of Logistic mapping is uneven, resulting in unsatisfactory convergence
speed of the algorithm.

In this paper, Piecewise is used to map the initialized position of individual gazelles.
Piecewise mapping produces uniform initial values within [0, 1] and performs better than
Logistic mapping in terms of uniformity. Therefore, the Piecewise chaotic sequence can be
introduced into the GOA, and the characteristics of the chaotic sequence can be used to
effectively improve the ability of the GOA to search for the optimal solution. Its expression
is given by Equation (13):

x(t + 1) =



x(t)
p , 0 ≤ x(t) < p

x(t)−p
0.5−p , p ≤ x(t) < 0.5

1−p−x(t)
0.5−p , 0.5 ≤ x(t) < 1 − p

1−x(t)
p , 1 − p ≤ x(t) < 1

(13)

The number of iterations is set to 1000, and the distribution histogram and scatter
plot of the generated PLCM and Logistic mapping are shown in Figure 1. It can be seen
from the diagram that the initial gazelle population based on PLCM chaotic map is more
evenly distributed, avoiding the situation of focusing on a certain point, and avoiding
the distribution characteristics of large at both ends and small in the middle presented by
Logistic map.

3.2. Global Perturbation of the Population

The gazelle matrix represents the positions of individual gazelles, and the optimization
of the positions of individual gazelles can be achieved by perturbing the gazelle matrix.
By perturbing the gazelle matrix, we can effectively optimize the positions of individual
gazelles, thereby enhancing the convergence speed of the algorithm in the initial iterations.
Furthermore, this perturbation also increases the capability of the algorithm to escape from
local optima in the later iterations, making the algorithm more adept at global searches.
In the GOA, the perturbation of the gazelle matrix is typically achieved by randomly
selecting and updating the positions of individual gazelles. This randomness helps break
the possibility of the algorithm getting trapped in local optima, enabling the algorithm
to search for better solutions in a larger search space. The mathematical model for the
population-wide perturbation is provided by Equations (14) and (15):

new_gazellet+1 =

{
gazellet + r · (RANDOM − P · gazellet) i f FRANDOM < Fgazellet

gazellet + r · (gazellet − RANDOM) else
(14)

gazellet+1 =

{
new_gazellet+1 i f Fnewt < Fgazellet

gazellet else
(15)

where gazellet represents the positions at the t-th iterations, Fgazellet is its corresponding
fitness value, new_gazellet+1 represents the temporary position of the (t + 1)-th iterations,
Fnewt is its corresponding fitness value, r is a random number within the range [0, 1], P is a
coefficient factor of 1 or 2, RANDOM denotes the position of a randomly selected gazelle
individual in the population, and FRANDOM is its corresponding fitness value.
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3.3. Combined with PSO
3.3.1. PSO

The PSO algorithm [50] is a population-based stochastic search algorithm that mimics
the social behavior of birds during foraging. It seeks the optimal solution in the solution
space using two attributes: velocity and position. Throughout the iterative process of the
algorithm, each particle in the population represents a candidate solution. The best position
(pbest) of each particle, as well as the global best position (gbest) of the population, are
recorded to find the optimal solution for the optimization problem.

Suppose the PSO algorithm is applied to an optimization problem in a d-dimensional
search space. The updated equations for the j-th dimension velocity component vi,j and the
position component xi,j of the i-th particle xi = (xi,1, xi,2, ... , xi,d) in the t + 1th iteration of
the population are given by:{

vt+1 = ω · vt + c1rand1(pbestt − xt) + c2rand2(gbest − xt)
xt+1 = xt + vt+1

(16)

where ω represents the inertia weight, c1 and c2 are acceleration factors, and rand1 and
rand2 are uniformly distributed random numbers in the range [0, 1].
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3.3.2. Combination of PSO and GOA

Combining the two optimization algorithms has become a mainstream trend, and
many scholars have shown that this approach can achieve remarkable results. This fusion
not only strengthens the overall performance of the algorithm, but also cleverly makes up
for the limitations of a single algorithm and realizes the complementarity and enhancement
of advantages. The combination of GOA and PSO algorithm provides a new effective
method to deal with complex optimization problems. In the PSO algorithm, the position
update of particles mainly depends on the historical best position information of individuals
and groups. The GOA simulates the behavior of gazelles in nature when they escape from
predators. The core formula of gazelle position renewal includes Equations (3), (8) and (10),
all of which indicate that gazelle position renewal depends mainly on the guidance and
influence of the best gazelle individual. If the best gazelle individual chooses the wrong
escape route, it will lead the population to extinction. In the optimization problem, the
choice of the best gazelle individual and its escape route are mapped to the search process
of the optimal solution in the algorithm, then the choice of the wrong escape route by the
best gazelle individual is equivalent to the algorithm falling into the local optimal solution
or misleading solution in the search process. In this case, the whole population (that is,
the search space of the algorithm) may be affected by this wrong solution, resulting in
the whole search process deviating from the direction of the global optimal solution, and
ultimately getting unsatisfactory optimization results. If the concept of individual escape
experience is introduced into the GOA, even if the best gazelle individual accidentally
falls into the local optimal solution, other gazelle individuals can still escape from the
local solution by relying on their individual escape experience. The combined method
can be modeled using Equation (17), and the positions and velocities of particles can also
be updated,

vt+1 = ω · vt + c1rand1(pbest − gazellet) + c2rand2(gbest − gazellet)
gazellet+1 = gazellet + vt+1
ω = ωmin + (ωmax − ωmin) · (T − t)/T

(17)

where ωmin is the minimum inertia weight and ωmax is the maximum inertia weight.
After combining PSO with GOA in the optimization process, it can not only learn from

the wisdom of top gazelles, but can also make full use of the experience accumulated by
individual gazelles in the escape process, which makes the whole population better jump
out of the local optimal trap in the search process and enhances the search ability of the
algorithm in the complex and changeable problem space. This fusion makes the excellent
solution propagate and utilize in the population more quickly, accelerating the convergence
speed of the whole population.

3.4. Pseudocode of the Proposed Algorithm

The pseudocode of the MPSOGOA outlines the process of the search optimization
scheme as shown in Algorithm 1. The chaotic strategy improves the quality of the initial
solutions, while the population-wide perturbation enhances the convergence speed and
accuracy of the algorithm. Integration with PSO amplifies the role of individual experiences
during the optimization process, preventing premature convergence of the algorithm. After
meeting the termination conditions, the algorithm outputs the identified optimal solution.
The combined action of the three strategies ensures both a high level of precision and
an improved convergence speed of the optimization results, thereby guaranteeing that
MPSOGOA can always find the optimal solution.
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Algorithm 1 Pseudocode of MPSOGOA

Initialize algorithm parameters s, µ, S, PSRs, C1, C2.
Use Piecewise mapping to initialize the population.
While (iter < max_iter)

Evaluate the fitness value of the gazelle. Construct pbest, gbest, and Elite.
For each gazelle in the population:

Generate a new gazelle matrix based on Equation (14).
Update the gazelle matrix according to Equation (15).

End For
For each gazelle in the population:

For each dimension:
If (mod (iter, 2) = 0) then

µ = −1
Else

µ = 1
End If
If (r > 0.5) then

Execute exploration activities on the gazelle matrix according to Equation (3).
Else

If iter < size(gazelle,1)/2 then
Perform Brownian motion on the gazelle matrix according to Equation (10).

Else
Execute Lévy flight on the gazelle matrix according to Equation (8).

End If
End If

End For
End For

Execute particle swarm movement on the gazelle matrix based on Equation (26).
Evaluate the fitness value of the gazelle.
Update pbest, gbest, and Elite.
Execute escape movement on the gazelle matrix according to Equation (12).
Iter = iter + 1
End While
Return the optimal value from the population.

According to the flowchart in Figure 2, the MPSOGOA process involves primarily
initializing the population, evaluating the fitness of the gazelle, and updating candidate
solutions. The complexity of MPSOGOA is determined by the maximum iteration count
(iter_max), the population size (P), and the problem’s dimension (D). From the algorithm
flowchart, it is evident that the algorithm complexity is composed of two parts, denoted as
O(iter_max × D) + O(F). Among these, F represents the time consumed by the algorithm in
evaluating various functions. Thus, the complete analysis of algorithm complexity is as
follows: O(MPSOGOA) = O(iter_max × P × D) + O(CFE × P). The complexity analysis of
MPSOGOA can be simplified to: O(MPSOGOA) = O(iter_max × P × D + CFE × P).
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4. Experimental Design

This section presents an analysis of the simulation results of the MPSOGOA. The per-
formance of the proposed MPSOGOA is evaluated using 35 test functions and 4 practical
engineering design problems. The results of MPSOGOA in test functions and practical
engineering applications are compared with the following algorithms: MPSOGOA, GOA,
grey wolf optimizer (GWO) [51], sine cosine algorithm (SCA) [52], arithmetic optimiza-
tion algorithm (AOA) [53], PSO [50], differential evolution (DE) [54], chimp optimization
algorithm (Chimp) [55], biogeography-based optimization (BBO) [56], and golden jackal
optimization (GJO) [57]. All experiments were conducted on a computer running on a
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64-bit Windows 7 operating system equipped with a Core i5 CPU operating at a frequency
of 2.50 GHz and 4.0 GB of RAM. The Matlab version used was R2021b. To minimize the
impact of randomness on the algorithm, all algorithms were independently run 30 times
for each test function, with the population size (P) set to 50 and the maximum iteration
count (iter_max) set to 1000 generations. The parameter settings for all algorithms in the
experiment are shown in Table 1.

Table 1. Algorithm parameter settings for comparison.

Algorithm Parameter Parameter Value

GOA PSRs 0.34
S 0.88

GWO a [0, 2]
r1f r2 [0, 1]

SCA a 2
AOA α 5

µ 0.05
PSO C1, C2 2

Wmax 0.9
Wmin 0.2

DE Lower bound of scale factor 0.2
Upper bound of scale factor 0.8

BBO nKeep 0.2
Pmutation 0.9

To comprehensively evaluate the effectiveness of the algorithm, the following statistical
evaluation indicators are utilized: best value, worst value, mean value, standard deviation
(SD), and median value.

4.1. Test Function

Tables 2 and 3 record the 35 test functions used to evaluate the performance of the
MPSOGOA. The first 20 problems are classic test functions in optimization problems.
Table 2 provides the test functions, their positions, and the corresponding optimal values.
F1–F5 are continuous unimodal functions. F6 represents a discontinuous step function,
while F7 denotes a quartic noise function. F8–F13 are multimodal functions, and F14–F20
are fixed-dimension multimodal functions. Table 3 presents 15 problems, including a
selection of test functions from the CEC2014 and CEC2017 competitions. F21 and F22 are
unimodal functions, F23–F31 and F35 are simple multimodal functions, and F34 represents
a hybrid function. Unimodal functions typically have a single global optimum and are
often used to test the exploratory capabilities of metaheuristic algorithms. Multimodal
functions have multiple local optima, making them more complex than unimodal func-
tions. Therefore, they are frequently employed to test whether optimization techniques
possess good exploratory capabilities. The number of multimodal functions exponentially
increases with the design variables, balancing exploration and exploitation to enhance the
algorithm’s search efficiency and prevent it from getting trapped in local optima. These
test functions are used to infer the potential for the algorithm to find optimal solutions in
real-world problems.
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Table 2. Classic test function.

ID Function Dim Range Global

F1 f (x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2 f (x) =
n
∑

i=0
|xi |+

n
∏
i=0

|xi | 30 [−10, 10] 0

F3 f (x) =
d
∑

i=1

(
i

∑
j=1

xj

)2
30 [−100, 100] 0

F4 f (x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5 f (x) =
n−1
∑

i=1

[
100(xi − xi+1)

2 + (1 − xi)
2
]

30 [−30, 30] 0

F6 f (x) =
n
∑

i=1
([xi − 0.5])2 30 [−100, 100] 0

F7 f (x) =
n
∑

i=1
ix4

1 + rand[0, 1) 30 [−128, 128] 0

F8 f (x) =
n
∑

i=1
−xi sin(

√
|xi |) 30 [−500, 500] 418.9829 Dim

F9 f (x) = 10 +
n
∑

i=1
(x2

i − 10 cos(2πxi)) 30 [−5.12, 5.12] 0

F10 f (x) = −a exp

(
−0.02

√
n−1

n
∑

i=1
x2

i

)
− exp

(
n−1

n
∑

i=1
cos(2πxi)

)
+ a + e, a = 20 30 [−32, 32] 0

F11 f (X) = 1 + 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
30 [−600, 600] 0

F12 f (x) = π
n {10 sin(πyi)}+

n
∑

i=1
(yi − 1)2

[
1 + 10 sin2(πyi+1) +

n
∑

i=1
u(xi , 10, 100, 4)

]
,

yi − 1 + xi+1
4 , u(xi , a, k, m)

 K(xi − a)m i f xi > a
0 −a ≤ xi ≥ a
K(−xi − a)m −a ≤ xi

30 [−50, 50] 0

F13

f (x) =

0.1
(

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]

)
+

n
∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50] 0

F14 f (x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xj−aij)

6

)−1
2 [−65, 65] 1

F15 f (x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

F16 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316
F17 f (x) =

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F18 f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [−2, 2] 3

F19 f (x) = −∑4
i=1 c1 exp(−∑3

j=1 aij(xj − pij)
2
) 3 [1, 3] −3.86

F20 f (x) = −∑4
i=1 c1 exp(−∑3

j=1 aij(xj − pij)
2
) 6 [0, 1] −3.32

Table 3. CEC2014 and CEC2017 combined test functions.

ID Function Fi

F21 Rotated High Conditioned Elliptic Function (CEC 2014 F1) 100
F22 Shifted and Rotated Bent Cigar Function (CEC 2017 F1) 100
F23 Shifted and Rotated Rosenbrock’s Function (CEC 2017 F3) 300
F24 Shifted and Rotated Rastrigin’s Function (CEC 2017 F4) 400
F25 Shifted and Rotated Expanded Scaffer’s F6 Function (CEC 2017 F5) 500
F26 Shifted and Rotated Weierstrass Function (CEC 2014 F6) 600
F27 Shifted and Rotated Lunacek Bi_ Rastrigin Function (CEC 2017 F6) 600
F28 Shifted and Rotated Non-Continuous Rastrigin’sFunction (CEC 2017 F7) 700
F29 Shifted Rastrigin’s Function (CEC 2014 F8) 800
F30 Shifted and Rotated Levy Function (CEC 2017 F8) 800
F31 Shifted and Rotated Schwefel’s Function (CEC 2017 F9) 900
F32 Shifted Schwefel’s Function (CEC 2014 F10) 1000
F33 Shifted and Rotated Schwefel’s Function (CEC 2014 F11) 1100
F34 Hybrid Function 2 (n = 3) (CEC 2017 F11) 1100
F35 Shifted and Rotated Expanded Scaffers F6 Function (CEC 2014 F16) 1600
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4.2. Practical Engineering Applications

By testing the performance of optimization techniques on real-world engineering
problems and designing corresponding parameter values, the overall design cost is min-
imized. This study focuses on the welding beam design problem, compression spring
design problem, and pressure vessel design problem in mechanical engineering. Most engi-
neering design problems in practical applications are governed by equality and inequality
constraints, which are managed in the design objective function using penalty functions.
The application of MPSOGOA to mechanical engineering design problems is compared
with results obtained from nine other metaheuristic algorithms.

4.2.1. Welded Beam

Welded beam design is a problem of minimizing optimization, often utilized to assess
the capability of optimization techniques in addressing practical issues. The welded beam
design involves the manufacturing of a welded beam with the minimum cost under multi-
ple constraints. The proposed MPSOGOA, along with 10 other metaheuristic algorithms,
is applied to the welded beam design problem to minimize the cost of manufacturing the
welded beam. Figure 3 provides an illustration of the welded beam. The decision variables
that constrain the minimization of the cost of the welded beam design include the length
(l), height (h), thickness (b), and weld thickness (h) of the steel bars. The constraints for
the welded beam design encompass shear force (τ), bending stress (θ), column buckling
load (Pc), beam deflection (δ), and lateral constraints, represented by WBD constraints. The
objective function and penalty function for this problem is as follows:

min f (x1, x2, x3, x4) = 1.1047x2
1x2 + 0.04811x3x4(14 + x2) (18)

x1
x2
x3
x4

 =


h
l
t
b

 (19)
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Figure 3. Schematic diagram of welded beam design.

The bounds of the variables are as follows:
0.1 ≤ x1 ≤ 2.0
0.1 ≤ x2 ≤ 10.0
0.1 ≤ x3 ≤ 10.0
0.1 ≤ x4 ≤ 2.0

(20)
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The constraints are as follows:

g1(
⇀
x ) = τ(

⇀
x )− τmax ≤ 0

g2(
⇀
x ) = σ(

⇀
x )− σmax ≤ 0

g3(
⇀
x ) = δ(

⇀
x )− δmax ≤ 0

g4(
⇀
x ) = x1 − x4 ≤ 0

g5(
⇀
x ) = P − Pc(

⇀
x ) ≤ 0

g6(
⇀
x ) = 0.125 − x1 ≤ 0

g7(
⇀
x ) = 1.10471x2

1x2 + 0.04811x3x4(14 + x2)− 5 ≤ 0

(21)

The intermediate variables of the constraints are as follows:

τ(
⇀
x ) =

√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′ )2

τ′ = P√
2x1x2

τ′′ = MR
J

M = P(L + 0.5x2)

R =
√

0.25(x2
2 + (x1 + x3)

2)

J = 2(x1x2
√

2( x2
2

12 + (x1+x2)
2

4 ))

σ(
⇀
x ) = 6PL

x4x2
3

δ(
⇀
x ) = 6PL3

Ex2
3x4

Pc =
4.013E

L2

√
x2

3x6
4

36 (1 − x3
2L

√
E

4G )

(22)

where σmax = 3 × 104 psi, P = 6 × 103 lb, L = 14 in, δmax = 0.25 in, E = 30 × 106 psi,
τmax = 13600 psi, and G = 1.2 × 107 psi.

4.2.2. Compression Spring Design Issues

The objective of spring design is to minimize the total weight of the tension/compression
spring. As depicted in Figure 4, this spring design problem is controlled by three parame-
ters: the wire diameter (d), mean coil diameter (D), and number of active coils in the spring
(P). The design function and constraint function for the spring design problem are given in
Equations (24) and (25),

l =

 l1
l2
l3

 =

 d
D
P

 (23)
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Figure 4. Schematic diagram of compression spring design problem.

The boundary conditions of the variables are as follows:
0.05 ≤ l1 ≤ 2
0.25 ≤ l2 ≤ 1.3
2 ≤ l3 ≤ 15

(24)
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Minimize f (l) = (l3 + 2)l2l2
1 (25)

The constraints of the spring design problem are as follows:

s.t.



g1(
→
l ) = 1 − l3

2 l3
71785l4

1
≤ 0

g2(
→
l ) = 4l2

2−l1l2
12566(l3l3

1−l4
1)
+ 1

5108l2
1
≤ 0

g3(
→
l ) = 1 − 140.45l1

l2
2 l3

≤ 0

g4(
→
l ) = l1+l2

1.5 − 1 ≤ 0

(26)

4.2.3. Pressure Vessel Design

The primary objective of the pressure vessel design problem is to minimize the pro-
duction cost of the pressure vessel to the greatest extent possible (Figure 5). This problem is
governed by four control parameters: the thickness of the pressure vessel (Ts), thickness of
the head (Th), internal radius of the vessel (R), and length of the vessel head (L). The design
function and constraint function for the pressure vessel design problem are provided in
Equations (29) and (30), respectively,

x =


l1
l2
l3
l4

 =


Ts
Th
R
L

 (27)
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The variation range of variables is as follows:
0 ≤ l1 ≤ 99
0 ≤ l2 ≤ 99
10 ≤ l3 ≤ 200
10 ≤ l4 ≤ 200

(28)

Minimize f (x) = 0.6224l1l3l4 + 1.7781l2l2
3 + 3.1661l2

1 l4 + 19.84l2
1 l3 (29)

The constraints of the pressure vessel design problem are as follows:

s.t.


g1(

→
l ) = −l1 + 0.0193l3 ≤ 0

g2(
→
l ) = −l2 + 0.00954l3 ≤ 0

g3(
→
l ) = −πl2

3 l4 − 4
3 πl3

3 + 1296000 ≤ 0

g4(
→
l ) = l4 − 240 ≤ 0

(30)
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5. Results and Discussion

In this section, to validate the performance of the proposed MPSOGOA, 35 test func-
tions and 3 real-world engineering optimization problems are employed for performance
testing, and comparisons are made with the original GOA and currently popular meta-
heuristic algorithms. The entire experiment is conducted in the following parts: (1) analysis
of the experimental results of classical test functions, (2) analysis of the experimental results
of the CEC2014 and CEC2017 composite test functions, (3) convergence performance of the
MPSOGOA, and (4) result analysis of the 3 engineering optimization problems.

The performance of each algorithm is measured using five performance indicators:
best value, worst value, average value, standard deviation, and median. Furthermore, the
performance of the MPSOGOA is evaluated using Friedman rank sum test and Wilcoxon
signed-rank test.

5.1. Test Function Results
5.1.1. Analysis of CEC2005 Experimental Results

Table 4 presents the experimental results of 10 algorithms on 20 benchmark functions,
including the best results obtained from 30 independent runs (Best), the worst results
(Worst), the mean values (Mean), the standard deviations (Std), the medians (Median), and
the Wilcoxon signed-rank test rankings (Rank) of each algorithm across the 20 benchmark
functions. The final ranking is determined by the Friedman rank sum ranking of each
algorithm across the 20 benchmark functions.

Unimodal functions have only one optimal value, so they are often used to test the
exploitation capability of algorithms. It can be seen from Table 4 that MPSOGOA shows
the best performance on F1–F4. When solving F1, the convergence accuracy is improved
by 180 orders of magnitude compared with GOA and 61 orders of magnitude compared
with other algorithms. The convergence accuracy is also improved in different degrees.
When solving F2, F3, and F4, the convergence accuracy is improved by more than 57
orders of magnitude and the standard deviation is improved by more than 40 orders of
magnitude compared with GOA. Compared with GOA on F5–F7, the optimum values
are improved. There is an improvement of two orders of magnitude on F6 and one order
of magnitude on F7, with a smaller standard deviation. This means that the stability is
also improved while the accuracy of convergence is improved. The above results indicate
that MPSOGOA has good exploitation capability. F8–F20 is a multimodal function and a
fixed-dimensional multimodal function, which usually has multiple extreme values and
is often used to test the exploration ability of the algorithm. In the test of multimodal
functions F8–F13, MPSOGOA performs better than other comparison algorithms on most
functions and can find the optimal solution. When solving F12 and F13, the convergence
accuracy of MPSOGOA is improved by two orders of magnitude compared with GOA.
MPSOGOA shows excellent exploration ability on multimodal functions. In the test of F14
and F15, the optimal value of MPSOGOA is similar to other algorithms, but its standard
deviation is lower. The experimental results show that MPSOGOA has good performance
in solving unimodal and multimodal functions and excellent performance in convergence
accuracy and stability.

Table 5 shows the Friedman rankings of the 10 algorithms in the benchmark test
function. MPSOGOA achieved good results in the Friedman test. The MPSOGOA proposed
in this article ranks first among the 10 optimization algorithms.
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Table 4. CEC2005 test results.

Function Value MPSOGOA GOA GWO SCA AOA PSO DE Chimp BBO GJO

F1

Best 2.7433 × 10−268 2.89154 × 10−88 8.50069 × 10−73 2.54974 × 10−8 1.0643 × 10−207 9.47085 × 10−12 51.648 1.3579 × 10−27 0.324489 1.2726 × 10−132

Worst 1.5559 × 10−214 3.40688 × 10−24 1.00555 × 10−69 0.0243454 2.9067 × 10−95 9.19223 × 10−8 261.883 2.01606 × 10−18 1.18724 5.5191 × 10−127

Average 5.1864 × 10−216 1.13563 × 10−25 1.63935 × 10−70 0.0013788 2.59489 × 10−96 3.99524 × 10−9 131.843 2.11538 × 10−19 0.619129 5.5742 × 10−128

SD 0 6.22009 × 10−25 2.59621 × 10−70 0.00450527 7.96026 × 10−96 1.66386 × 10−8 49.421 5.13648 × 10−19 0.166653 1.3812 × 10−127

Median 5.0964 × 10−252 5.30668 × 10−78 5.55451 × 10−71 8.70929 × 10−5 8.3471 × 10−131 6.60832 × 10−10 124.27 2.16579 × 10−22 0.579377 9.8842 × 10−130

F2

Best 1.5987 × 10−137 9.12414 × 10−57 9.04044 × 10−42 9.4068 × 10−09 0 6.63994 × 10−7 18.9427 8.76387 × 10−19 0.158091 6.77923 × 10−76

Worst 1.006 × 10−117 1.5473 × 10−20 4.17611 × 10−40 6.56174 × 10−5 1.3602 × 10−129 177.155 55.6008 1.66733 × 10−12 0.318038 6.08005 × 10−73

Average 3.3535 × 10−119 5.58832 × 10−22 6.87572 × 10−41 4.5299 × 10−6 4.5341 × 10−131 5.90526 41.1955 1.32586 × 10−13 0.245152 6.65278 × 10−74

SD 1.8366 × 10−118 2.82639 × 10−21 9.28251 × 10−41 1.25192 × 10−5 2.4834 × 10−130 32.3439 9.34487 3.44014 × 10−13 0.0386638 1.37309 × 10−73

Median 6.7837 × 10−133 7.41398 × 10−49 3.6684 × 10−41 4.08327 × 10−7 5.8246 × 10−210 1.47627 × 10−5 42.7029 1.31203 × 10−14 0.251466 1.30119 × 10−74

F3

Best 4.35826 × 10−69 2.63083 × 10−12 2.90856 × 10−24 27.8478 0 236.094 22,892.9 6.69748 × 10−10 34.0053 2.07975 × 10−58

Worst 4.07582 × 10−43 0.00307754 3.26631 × 10−17 10,369.5 2.50525 × 10−45 2541.13 38,833.8 0.019964 147.677 1.01149 × 10−43

Average 1.40494 × 10−44 0.00021169 2.07546 × 10−18 2522.16 8.35084 × 10−47 929.7 29,602.2 0.0010311 85.0581 3.37788 × 10−45

SD 7.4369 × 10−44 0.00062157 7.24266 × 10−18 2409.21 4.57394 × 10−46 484.589 4207.89 0.00363366 31.1403 1.84661 × 10−44

Median 7.55093 × 10−62 1.02692 × 10−7 1.63874 × 10−21 1486.21 2.2905 × 10−102 889.357 28,564 4.07225 × 10−5 77.9158 7.89966 × 10−50

F4

Best 1.9656 × 10−108 3.9303 × 10−28 9.91516 × 10−19 0.929186 1.03144 × 10−73 3.18226 43.3947 6.74566 × 10−7 0.554326 1.03235 × 10−41

Worst 1.70792 × 10−81 3.0358 × 10−9 2.82651 × 10−16 49.1954 5.65999 × 10−24 13.1182 79.2222 0.00700025 0.976223 7.45118 × 10−37

Average 5.69308 × 10−83 1.68167 × 10−10 2.73887 × 10−17 18.2135 1.88688 × 10−25 6.51546 60.02 0.00044706 0.793745 3.86938 × 10−38

SD 3.11823 × 10−82 5.9787 × 10−10 5.608 × 10−17 12.3822 1.03336 × 10−24 2.42973 7.54042 0.00130382 0.10542 1.36229 × 10−37

Median 4.1655 × 10−104 8.56731 × 10−22 7.15996 × 10−18 16.4155 1.13063 × 10−51 5.70036 60.1497 6.26622 × 10−05 0.79626 2.99064 × 10−39

F5

Best 21.4468 22.9354 24.6847 27.5936 28.6067 8.56034 11,068.2 28.0816 31.1451 25.3295
Worst 23.5746 24.4653 28.7236 1751.6 28.7969 661.168 108,590 28.9703 351.308 28.631

Average 22.7803 23.6761 26.5531 142.032 28.6941 79.4806 41,419 28.8626 93.3473 27.1006
SD 0.541546 0.335586 0.896212 323.732 0.0569614 119.223 22,907.2 0.218115 70.8855 0.720972

Median 22.8075 23.6929 26.2039 41.667 28.6924 39.4477 36,874.4 28.9403 93.4376 27.1859

F6

Best 7.89475 × 10−5 0.00241955 1.15757 × 10−5 3.59634 4.84586 4.65703 × 10−11 80.9834 2.03747 0.348594 1.25039
Worst 0.0325062 0.0391195 1.23905 4.85133 5.64324 3.29787 × 10−8 196.087 3.35535 1.01923 3.73296

Average 0.00932258 0.0157147 0.413328 4.25324 5.25632 2.17583 × 10−9 125.677 2.57539 0.628994 2.4552
SD 0.00820061 0.0113896 0.284307 0.301315 0.200676 6.15369 × 10−9 28.8418 0.367716 0.15143 0.547726

Median 0.00713486 0.0118718 0.252159 4.27234 5.29563 5.46017 × 10−10 117.846 2.61086 0.624407 2.50017

F7

Best 7.187 × 10−5 0.00053906 0.00016618 0.00297477 2.47227 × 10−7 0.0158195 0.0953463 2.13809 × 10−5 0.00138442 4.75219 × 10−6

Worst 0.00195296 0.00364285 0.00109214 0.0454201 0.00018264 0.0754005 0.382486 0.00150594 0.00617976 0.00038551
Average 0.00069391 0.00139031 0.00054627 0.0176046 2.62781 × 10−5 0.0389288 0.228453 0.00049492 0.0034084 0.00011308

SD 0.00041425 0.00079647 0.00021884 0.0105955 3.57008 × 10−5 0.0137357 0.0611222 0.00039098 0.00092943 9.95327 × 10−5

Median 0.00061555 0.00114125 0.00048483 0.0142062 1.47276 × 10−5 0.0371472 0.222044 0.00045812 0.00323732 6.96101 × 10−5

F8

Best −8138.49 −8515.22 −7424.74 −4468.92 −3828.82 −37,835.8 −5715.02 −5945.94 −10770.3 −7659.2
Worst −6975.58 −6920.39 −3296.85 −3572.19 −2443.18 −20,840.3 −4765.72 −5690.15 −7869.18 −2614.69

Average −7460.98 −7716.17 −6220.63 −3997.62 −3263.11 −29484.8 −5256.55 −5782.94 −8909.67 −4542.83
SD 263.699 343.027 815.569 244.64 360.725 3770.12 234.332 60.4447 549.364 1181.45

Median −7428.94 −7655.97 −6340.2 −3970.16 −3347.24 −28,410.3 −5220.09 −5773.53 −8934.88 −4562.16

F9

Best 0 0 0 1.16642 × 10−5 0 19.9018 209.2 0 16.1742 0
Worst 0 0 3.22571 64.4795 0 65.6672 264.147 14.851 86.7699 0

Average 0 0 0.214297 13.2237 0 38.7374 245.473 1.99373 36.9931 0
SD 0 0 0.815539 20.1794 0 11.8587 13.1711 3.31979 14.1102 0

Median 0 0 0 0.0824535 0 37.8085 246.993 1.51663 × 10−05 36.1431 0

F10

Best 8.88178 × 10−16 8.88178 × 10−16 7.99361 × 10−15 9.30212 × 10−5 8.88178 × 10−16 1.028 × 10−6 19.1489 19.9571 0.151232 4.44089 × 10−15

Worst 4.44089 × 10−15 4.44089 × 10−15 1.5099 × 10−14 20.2517 8.88178 × 10−16 1.15515 19.9097 19.9633 0.317979 7.99361 × 10−15

Average 4.20404 × 10−15 2.54611 × 10−15 1.36779 × 10−14 12.6514 8.88178 × 10−16 0.115541 19.7291 19.961 0.233117 4.55932 × 10−15

SD 9.01352 × 10−16 1.8027 × 10−15 2.39689 × 10−15 9.43353 0 0.35246 0.211468 0.00163427 0.0404489 6.48634 × 10−16

Median 4.44089 × 10−15 8.88178 × 10−16 1.5099 × 10−14 20.0425 8.88178 × 10−16 7.0606 × 10−6 19.8274 19.9614 0.2293 4.44089 × 10−15
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Table 4. Cont.

Function Value MPSOGOA GOA GWO SCA AOA PSO DE Chimp BBO GJO

F11

Best 0 0 0 9.0681 × 10−7 0 1.86905 × 10−10 1.32215 0 0.380873 0
Worst 0 0 0.0130345 0.787373 1.36796 × 10−10 0.0858724 2.83267 0.0562725 0.762887 0

Average 0 0 0.00152591 0.194643 7.8508 × 10−12 0.0149053 2.18131 0.013913 0.569153 0
SD 0 0 0.00397392 0.247833 2.90085 × 10−11 0.0209638 0.341406 0.0170819 0.0820724 0

Median 0 0 0 0.0524653 0 0.00986098 2.17147 0.00516804 0.565946 0

F12

Best 2.26979 × 10−6 0.00015077 1.02012 × 10−6 0.362999 0.822674 1.96181 × 10−10 26.1488 0.121075 0.00068518 0.0577601
Worst 0.00088075 0.00165225 0.0705621 7.71822 0.985045 0.518258 12793.2 0.827538 0.00239739 0.293

Average 0.00028298 0.00066260 0.0260683 0.977878 0.915726 0.0381841 1118.69 0.254804 0.00134462 0.162571
SD 0.00024735 0.00041791 0.014828 1.35267 0.0395165 0.103529 2670.46 0.143964 0.00034593 0.0669722

Median 0.00023877 0.00052306 0.0256778 0.587282 0.910336 3.41822 × 10−7 44.9091 0.223983 0.00129926 0.16061

F13

Best 6.44767 × 10−6 0.00193727 2.21166 × 10−5 1.98426 2.69813 1.43267 × 10−10 410.639 2.48256 0.0106384 1.13193
Worst 0.0881833 0.0505603 0.612025 22.4576 2.9791 0.0439489 165937 2.99663 0.0377297 1.80974

Average 0.0271388 0.0196544 0.256731 3.57318 2.9442 0.00402968 30,685.3 2.87568 0.0249777 1.49769
SD 0.022066 0.0151691 0.138242 3.70598 0.0624779 0.00888511 37,310.4 0.12631 0.00791171 0.168996

Median 0.0254443 0.0144074 0.278129 2.60472 2.97623 9.38257 × 10−8 17,134.5 2.894 0.0249056 1.49676

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Worst 0.998004 0.998004 10.7632 2.98211 12.6705 0.998004 0.998004 0.998025 15.5038 12.6705

Average 0.998004 0.998004 2.79612 1.52725 10.4761 0.998004 0.998004 0.998007 4.75683 3.80826
SD 0 7.1417 × 10−17 3.2852 0.89231 4.02764 0 0 4.58599 × 10−6 3.91895 3.82079

Median 0.998004 0.998004 0.998004 0.99805 12.6705 0.998004 0.998004 0.998005 3.96825 2.98211

F15

Best 0.00030748 0.00030748 0.00030748 0.00035615 0.00031508 0.00030748 0.00030748 0.00122912 0.00041479 0.00030749
Worst 0.00030748 0.00030748 0.0208487 0.00145188 0.111842 0.00107688 0.00122317 0.00131389 0.0203633 0.00122336

Average 0.00030748 0.00030748 0.00436536 0.00083847 0.0206497 0.00074842 0.00055166 0.00125336 0.00259708 0.00041668
SD 1.84314 × 10−14 6.92721 × 10−13 0.00817898 0.00037638 0.0329258 0.00030631 0.00041185 2.14723 × 10−5 0.00602555 0.00028961

Median 0.00030748 0.00030748 0.00030749 0.00076172 0.00449986 0.00086359 0.00030748 0.00124767 0.00061481 0.00030753

F16

Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03163 −1.03163 −1.03159 −1.03163 −1.03163 −1.03163 −1.03161 −1.03163 −1.03163

Average −1.03163 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163
SD 6.32085 × 10−16 6.32085 × 10−16 1.83844 × 10−9 1.01345 × 10−5 2.58411 × 10−11 6.71219 × 10−16 6.77522 × 10−16 3.90178 × 10−6 6.17114 × 10−16 3.7554 × 10−8

Median −1.03163 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

F17

Best 0.397887 0.397887 0.397887 0.397909 0.397889 0.397887 0.397887 0.397888 0.397887 0.397887
Worst 0.397887 0.397887 0.397889 0.4004 0.398753 0.397887 0.397887 0.398964 0.397887 0.397937

Average 0.397887 0.397887 0.397888 0.398542 0.398021 0.397887 0.397887 0.3981 0.397887 0.397893
SD 0 0 4.12949 × 10−7 0.00052226 0.00022284 0 0 0.00023883 4.16358 × 10−11 9.20093 × 10−6

Median 0.397887 0.397887 0.397888 0.398434 0.397934 0.397887 0.397887 0.398006 0.397887 0.39789

F18

Best 3 3 3 3 3 3 3 3 3 3
Worst 3 3 3.00001 3.00006 85.3767 3 3 3.00008 30 3.00001

Average 3 3 3 3.00001 12.9459 3 3 3.00001 5.7 3
SD 1.20918 × 10−15 1.2452 × 10−15 2.38556 × 10−6 1.25267 × 10−5 25.1878 5.83118 × 10−16 1.72587 × 10−15 1.90032 × 10−5 8.23847 1.57663 × 10−6

Median 3 3 3 3 3 3 3 3.00001 3 3

F19

Best −3.86278 −3.86278 −3.86278 −3.8624 −3.86266 −3.85208 −3.86278 −3.86237 −3.86278 −3.86278
Worst −3.86278 −3.86278 −3.85498 −3.8533 −3.8549 −3.03321 −3.86278 −3.85423 −3.86278 −3.85489

Average −3.86278 −3.86278 −3.86248 −3.85597 −3.86006 −3.66744 −3.86278 −3.85506 −3.86278 −3.85965
SD 2.71009 × 10−15 2.71009 × 10−15 0.0014217 0.00276095 0.00258625 0.174799 2.71009 × 10−15 0.0014238 2.36432 × 10−15 0.00388555

Median −3.86278 −3.86278 −3.86278 −3.85483 −3.86138 −3.69565 −3.86278 −3.85477 −3.86278 −3.86275

F20

Best 3.322 −3.322 −3.32199 −3.13096 −3.29032 −2.27284 −3.322 −3.30839 −3.322 −3.32199
Worst −3.322 −3.322 −3.08391 −1.6919 −2.89712 −0.784013 −3.2031 −1.92068 −3.2031 −3.0156

Average −3.322 −3.322 −3.24742 −2.8927 −3.16648 −1.69532 −3.20707 −2.74374 −3.2784 −3.18099
SD 1.48895 × 10−15 4.29004 × 10−12 0.0757351 0.36007 0.0731764 0.487457 0.0217068 0.370237 0.0582734 0.0828684

Median −3.322 −3.322 −3.20301 −3.01207 −3.17547 −1.68691 −3.2031 −2.79275 −3.322 −3.19719
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Table 5. Friedman ranking of CEC2005.

Algorithm Friedman Mean Rank General Mean Rank

MPSOGOA 2.525 1
GOA 3.175 2
GWO 4.75 4
SCA 8.15 10
AOA 5.6 5
PSO 5.825 6
DE 7.55 9

Chimp 6.9 8
BBO 6.1 7
GJO 4.425 3

Furthermore, we conducted the Wilcoxon signed-rank test to assess the significance of
differences between MPSOGOA and the other nine algorithms. When the p-value is less
than 0.05, it is considered that there is a significant difference between the two algorithms
for that specific function. The results of the Wilcoxon signed-rank test between MPSOGOA
and the nine contrastive algorithms are presented in Table 6. It is evident from the table that
MPSOGOA exhibits significant differences from the nine contrastive algorithms across the
majority of the functions. Overall, across the 20 benchmark test functions, the performance
of the MPSOGOA surpasses that of the nine contrastive algorithms, demonstrating strong
competitiveness in the achieved results.

Table 6. Wilcoxon signed-rank test results for CEC2005.

Function GOA GWO SCA AOA PSO DE Chimp BBO GJO

F1 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F2 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 2.43954 × 10−10 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F3 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 2.0338 × 10−9 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 7.65879 × 10−5

F4 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F5 4.57257 × 10−9 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 8.84109 × 10−7 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F6 0.0223601 1.06657 × 10−7 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F7 6.2828 × 10−6 0.185767 3.01986 × 10−11 4.07716 × 10−11 3.01986 × 10−11 3.01986 × 10−11 0.0518771 3.68973 × 10−11 7.38029 × 10−10

F8 0.000691252 1.41098 × 10−9 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 4.97517 × 10−11 3.4742 × 10−10

F9 NaN 0.0215693 1.21178 × 10−12 NaN 1.21178 × 10−12 1.21178 × 10−12 4.55563 × 10−12 1.21178 × 10−12 NaN
F10 9.55053 × 10−5 6.53336 × 10−13 2.36384 × 10−12 7.15185 × 10−13 2.36384 × 10−12 2.36384 × 10−12 2.36384 × 10−12 2.36384 × 10−12 0.0885796
F11 NaN 0.0419262 1.21178 × 10−12 0.0419262 1.21178 × 10−12 1.21178 × 10−12 8.86583 × 10−7 1.21178 × 10−12 NaN
F12 5.97056 × 10−5 5.57265 × 10−10 3.01986 × 10−11 3.01986 × 10−11 0.0232434 3.01986 × 10−11 3.01986 × 10−11 4.50432 × 10−11 3.01986 × 10−11

F13 0.245814 5.57265 × 10−10 3.01986 × 10−11 3.01986 × 10−11 4.68563 × 10−8 3.01986 × 10−11 3.01986 × 10−11 0.923442 3.01986 × 10−11

F14 0.0814042 1.21178 × 10−12 1.21178 × 10−12 1.20094 × 10−12 NaN NaN 1.21178 × 10−12 4.4986 × 10−12 1.21178 × 10−12

F15 1.19287 × 10−6 3.01608 × 10−11 3.01608 × 10−11 3.01608 × 10−11 3.01608 × 10−11 0.00192305 3.01608 × 10−11 3.01608 × 10−11 3.01608 × 10−11

F16 1 7.57407 × 10−12 7.57407 × 10−12 7.57407 × 10−12 0.0246374 0.00546603 7.57407 × 10−12 5.21998 × 10−9 7.57407 × 10−12

F17 NaN 1.21178 × 10−12 1.21178 × 10−12 1.21178 × 10−12 NaN NaN 1.21178 × 10−12 2.93292 × 10−5 1.21178 × 10−12

F18 0.690562 2.34656 × 10−11 2.34656 × 10−11 2.34505 × 10−11 0.081759 1.63048 × 10−5 2.34656 × 10−11 2.56049 × 10−9 2.34656 × 10−11

F19 NaN 1.21178 × 10−12 1.21178 × 10−12 1.21178 × 10−12 1.21178 × 10−12 NaN 1.21178 × 10−12 2.64199 × 10−8 1.21178 × 10−12

F20 2.36567 × 10−12 2.36567 × 10−12 2.36567 × 10−12 2.36567 × 10−12 2.36567 × 10−12 3.26247 × 10−13 2.36567 × 10−12 1.37344 × 10−11 2.36567 × 10−12

5.1.2. Analysis of Experimental Results of CEC2014 and CEC2017 Combined
Test Functions

The ability of the algorithm to find the global optimal solution is evaluated by the
combined test functions in CEC2014 and CEC2017. The test results of MPSOGOA and
the other nine comparison algorithms are shown in Table 7. As can be seen from Table 7,
the improvement of MPSOGOA has achieved better optimization effects in all combined
functions. In the test of function F21, MPSOGOA becomes the only one that converges
to the global optimal solution successfully. In addition, in the tests of F23, F24, and F31,
the MPSOGOA and GOAs successfully find the global optimal solution. However, by
comparing the standard deviation, it can be found that MPSOGOA has higher stability in
the search process and can find the global optimal solution more stably. For F22, F25, F26,
F27, F29, F30, F34, and F35 functions, MPSOGOA has achieved significant improvement in
both optimization accuracy and stability compared with GOA. This series of improvements
not only enhances the robustness of the algorithm, but also further validates the advantages
of MPSOGOA in solving complex optimization problems. In summary, MPSOGOA success-
fully improves the ability of global optimal solution search by combining the advantages of
PSO and gazelle optimization. Whether faced with the challenge of a single function or
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a series of combined functions, MPSOGOA has demonstrated its superior optimization
performance and stability.

Table 7. CEC2014 and CEC2017 combined test function results.

Function Value MPSOGOA GOA GWO SCA AOA PSO DE Chimp BBO GJO

F21

Best 100 100.002 497303 2.8751 × 106 1.8327 × 107 706.164 305.288 8.0177 × 106 2420.75 406266
Worst 100.013 100.072 1.7767 × 107 1.9090 × 107 5.8279 × 108 1.1233 × 106 924.812 1.6256 × 107 625,239 1.2559 × 107

Average 100.004 100.017 6.0640 × 106 8.9227 × 106 1.4787 × 108 204,591 564.505 1.2709 × 107 58,141 6.0484 × 106

SD 0.00290333 0.0167286 4.8059 × 106 4.0258 × 106 1.4225 × 108 262,795 166.633 1.9064 × 106 118,913 3.4408 × 106

Median 100.003 100.011 4.3561 × 106 8.9623 × 106 8.8048 × 107 140,538 530.48 1.2823 × 107 16,120 6.3206 × 106

F22

Best 100.014 100.352 4954.71 4.0935 × 108 3.3875 × 109 121.639 100 1.1187 × 108 104.425 42,465.7
Worst 101.712 109.656 2.4920 × 108 1.0862 × 109 1.8657 × 1010 41,644.1 100.008 4.5520 × 109 3737.5 8.4987 × 108

Average 100.253 101.87 1.0144 × 107 6.9655 × 108 1.0337 × 1010 7004.88 100.002 1.1031 × 109 909.021 2.3983 × 108

SD 0.32865 1.7876 4.5633 × 107 1.9790 × 108 4.5134 × 1009 11,046.5 0.00185375 1.1161 × 109 985.875 2.2961 × 108

Median 100.16 101.41 37981.7 7.1394 × 108 9.3369 × 1009 2040.91 100.002 8.7509 × 108 536.839 3.2297 × 108

F23

Best 300 300 304.02 590.685 7784.51 300 300.002 865.755 300.003 369.827
Worst 300 300 10060.8 4488.05 44,057.3 300 300.14 5496.47 300.394 11,775.7

Average 300 300 2221.82 1464.07 19086.5 300 300.044 2668.99 300.075 3419.88
SD 2.10829 × 10−6 2.32747 × 10−5 2162.58 933.659 6226.11 1.25015 × 10−10 0.038889 929.853 0.0997502 3166.9

Median 300 300 1738.23 1133.22 18232 300 300.028 2430.42 300.035 2529.64

F24

Best 400 400 406.856 420.009 605.459 401.883 400.001 437.39 400.036 402.817
Worst 400.002 400.06 464.024 530.424 3059.65 407.88 400.005 866.152 406.017 517.397

Average 400 400.012 415.454 446.743 1428.42 404.726 400.002 580.915 404.132 433.261
SD 0.00039569 0.012884 16.0304 20.2286 618.579 0.875749 0.00090655 130.319 1.78863 26.7036

Median 400 400.007 407.635 444.704 1315.07 404.746 400.002 523.902 404.847 421.237

F25

Best 504.727 506.666 504.029 528.916 551.155 503.98 520.522 540.112 504.975 512.722
Worst 513.63 514.617 537.064 560.343 625.244 519.902 540.786 587.365 524.874 555.559

Average 508.511 510.379 514.963 548.622 583.175 510.771 531.554 554.881 513.234 529.777
SD 1.93091 2.04348 8.19723 6.57421 20.0004 4.03449 4.53236 9.20563 5.28014 11.9866

Median 508.738 510.071 513.347 549.388 581.339 511.472 531.372 553.097 511.939 526.234

F26

Best 600.053 600.691 600.452 604.75 608.165 600 600.015 604.828 600.102 601.404
Worst 600.557 603.544 604.933 609.084 612.301 602.197 606.581 610.065 605.684 606.633

Average 600.238 602.438 601.716 606.656 610.676 600.363 603.293 607.317 602.333 603.773
SD 0.137944 0.60068 0.950969 1.09467 1.01231 0.492687 2.18072 0.93655 1.52371 1.38629

Median 600.202 602.562 601.605 606.452 610.915 600.235 603.032 607.242 602.21 603.802

F27

Best 600.029 600.136 600.031 611.913 625.002 600 600 614.988 600 600.128
Worst 600.213 600.626 603.186 622.485 666.45 600 600.001 649.476 600.007 617.374

Average 600.099 600.314 600.865 616.557 646.758 600 600 626.284 600.002 606.311
SD 0.0439481 0.0968376 0.863563 3.1968 11.1953 4.82533 × 10−6 0.00012652 9.09013 0.00180132 5.32735

Median 600.091 600.321 600.513 615.99 646.768 600 600 624.155 600.001 604.569

F28

Best 717.354 715.188 711.123 744.22 789.468 706.599 734.649 745.94 714.339 727.013
Worst 730.508 729.692 749.49 794.554 846.893 729.782 753.924 837.24 730.971 771.148

Average 722.498 723.365 727.096 771.986 818.838 719.003 745.343 801.477 721.941 748.372
SD 3.17343 3.7817 10.0467 9.96861 13.2701 6.20277 5.28398 19.2928 4.76201 11.2874

Median 721.983 723.411 724.864 772.418 819.667 719.282 746.894 807.692 721.982 748.563

F29

Best 801.871 803.593 803.001 816.145 864.897 800 815.332 823.349 802.985 805.041
Worst 806.832 809.639 821.893 850.156 922.149 804.975 827.947 873.689 816.914 854.547

Average 804.63 806.501 809.096 839.185 887.82 802.487 822.194 840.304 807.495 824.501
SD 1.0983 1.60518 4.80148 7.44689 10.8391 1.47229 3.32467 9.6011 3.66488 13.7031

Median 804.763 806.404 807.964 839.885 886.478 801.99 821.908 838.181 806.467 820.065

F30

Best 802.303 803.97 804.998 820.51 831.099 802.985 824.307 826.267 802.985 815.053
Worst 811.626 814.144 823.188 856.539 887.042 818.904 846.226 857.065 833.829 848.545

Average 807.658 809.333 812.491 840.278 861.966 809.571 834.215 839.906 814.825 825.801
SD 2.0394 2.31246 4.98893 8.43299 14.2366 3.83144 5.42961 9.01636 7.28028 9.38006

Median 807.596 809.14 811.194 839.749 862.644 809.95 834.559 839.66 814.429 821.687

F31

Best 900 900.002 900.012 937.24 1062.16 900 900 969.749 900 900.473
Worst 900.001 900.129 965.559 1076.54 1795.06 900 900 1798.09 900 1223.07

Average 900 900.042 907.692 1013.15 1428.2 900 900 1368.72 900 968.069
SD 0.00013829 0.0349609 16.5886 33.8893 206.925 5.58548 × 10−14 6.18317 × 10−11 210.66 0.00013770 74.1475

Median 900 900.027 900.64 1018.3 1433.51 900 900 1330.54 900 962.495

F32

Best 1019.92 1050.82 1015.37 1686.93 1556.4 1006.89 1158.78 1357.15 1007.02 1234.96
Worst 1156.87 1189.75 1781.65 2398.98 2429.74 1417.13 1733.54 2556.45 1572.39 1945.8

Average 1093.57 1092.34 1285.75 2014.23 2015.77 1164.4 1355.84 2015.19 1205.3 1567.49
SD 51.4649 38.6527 163.457 183.646 239.863 117.962 139.823 263.348 136.006 216.077

Median 1089.8 1076.48 1265 1998.83 2014.74 1148.06 1328.51 2003.17 1190.88 1553.16

F33

Best 1149.86 1226.22 1123.75 1857.14 2183.58 1222.37 1758.82 1754.37 1332.32 1139.14
Worst 1624.68 1744.55 1970.53 2813.92 3097.35 2116.45 2604.7 2814.13 2716.32 2373.31

Average 1387.06 1470.59 1539.5 2401.94 2655.47 1566.41 2306.49 2378.16 1854.5 1747
SD 118.75 128.246 158.502 219.785 234.239 256.108 218.937 240.691 316.273 265.919

Median 1381.09 1473.4 1557.3 2440.76 2675.11 1548.76 2388.02 2379.04 1777.54 1712.93

F34

Best 1100.7 1101.92 1106.38 1139.93 1510.68 1100.09 1105.72 1152.88 1103.57 1104.14
Worst 1103.91 1106.45 1245.36 1299.55 23,686.5 1112.66 1112.17 1454.55 1178.05 1410.05

Average 1102.57 1103.77 1134.5 1195.36 6201.99 1105.26 1109.08 1297.52 1125.37 1167.14
SD 0.784066 1.10189 33.7692 35.319 5397.03 3.23331 1.58061 103.312 18.4302 60.1217

Median 1102.7 1103.88 1126.76 1188.5 4645.15 1105.07 1109.15 1320.93 1119.59 1148.68

F35

Best 1601.28 1601.73 1601.31 1602.7 1602.85 1601.18 1603.27 1602.34 1601.52 1601.45
Worst 1602.5 1603.14 1603.52 1603.85 1604.29 1603.13 1603.74 1603.52 1603.44 1603.47

Average 1602.12 1602.7 1602.56 1603.35 1603.7 1602.39 1603.48 1603.14 1602.73 1602.81
SD 0.29735 0.334147 0.509288 0.259755 0.33964 0.52719 0.126328 0.243251 0.423091 0.410734

Median 1602.16 1602.78 1602.54 1603.35 1603.73 1602.38 1603.44 1603.22 1602.74 1602.85

Compared to the GOA, MPSOGOA exhibits improved convergence accuracy and a
strong ability to escape local optima. Additionally, it achieves smaller standard devia-
tions, notably reducing the standard deviations in F21, F22, F24, and F31, suggesting that
MPSOGOA significantly surpasses the GOA in terms of stability.

Table 8 shows the results of the Wilcoxon signed-rank test for 15 composite functions.
The results show that there are significant differences between MPSOGOA and other
algorithms on most test functions.
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Table 8. Wilcoxon signed-rank test results of CEC2014 and CEC2017 combined test functions.

Function GOA GWO SCA AOA PSO DE Chimp BBO GJO

F21 5.59991 × 10−7 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F22 7.38029 × 10−10 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F23 1.09367 × 10−10 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 2.8502 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F24 1.77691 × 10−10 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.82016 × 10−10 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

F25 0.000654865 0.000200581 3.01986 × 10−11 3.01986 × 10−11 0.0169212 3.01986 × 10−11 3.01986 × 10−11 2.27802 × 10−5 3.33839 × 10−11

F26 3.01986 × 10−11 4.50432 × 10−11 3.01986 × 10−11 3.01986 × 10−11 0.923442 8.89099 × 10−10 3.01986 × 10−11 5.46175 × 10−9 3.01986 × 10−11

F27 8.15274 × 10−11 1.74791 × 10−5 3.01986 × 10−11 3.01986 × 10−11 1.53022 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 7.38908 × 10−11

F28 0.258051 0.0614519 3.01986 × 10−11 3.01986 × 10−11 0.0162848 3.01986 × 10−11 3.01986 × 10−11 0.589451 4.97517 × 10−11

F29 1.24932 × 10−5 6.2828 × 10−6 3.01986 × 10−11 3.01986 × 10−11 1.25245 × 10−6 3.01986 × 10−11 3.01986 × 10−11 0.000952074 1.09367 × 10−10

F30 0.00508422 8.66343 × 10−5 3.01986 × 10−11 3.01986 × 10−11 0.0405755 3.01986 × 10−11 3.01986 × 10−11 4.35308 × 10−5 3.01986 × 10−11

F31 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 7.57407 × 10−12 3.01041 × 10−11 3.01986 × 10−11 0.0823572 3.01986 × 10−1

F32 0.579294 2.02829 × 10−7 3.01986 × 10−11 3.01986 × 10−11 0.0391671 3.01986 × 10−11 3.01986 × 10−11 0.00333861 3.01986 × 10−11

F33 0.0206807 0.000124771 3.01986 × 10−11 3.01986 × 10−11 0.00728836 3.01986 × 10−11 3.01986 × 10−11 4.57257 × 10−9 5.0922 × 10−8

F34 5.97056 × 10−5 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 4.35308 × 10−5 3.01986 × 10−11 3.01986 × 10−11 3.33839 × 10−11 3.01986 × 10−11

F35 3.64589 × 10−8 3.15727 × 10−5 3.01986 × 10−11 3.01986 × 10−11 0.017649 3.01986 × 10−11 6.06576 × 10−11 6.01039 × 10−8 7.11859 × 10−9

The rankings of the Friedman test are given in Table 9. MPSOGOA first among the 10
algorithms, proving that MPSOGOA’s optimization ability exceeds other algorithms. This
shows that MPSOGOA has good optimization capabilities and can solve most optimiza-
tion problems.

Table 9. Friedman ranking of CEC2014 and CEC2017 combination functions.

Algorithm Friedman Mean Rank General Mean Rank

MPSOGOA 1.7 1
GOA 3 3
GWO 5.13333 6
SCA 8 8
AOA 10 10
PSO 2.86667 2
DE 4.8 5

Chimp 8.66667 9
BBO 4.1 4
GJO 6.73333 7

5.1.3. Convergence Speed

Figure 6 compares the convergence curves of MPSOGOA with the original GOA
and eight other optimization algorithms on the classical test functions. The behavior of
optimization algorithms that converge to the optimal solution early in the optimization
process can lead to the inability of the algorithm to find the final global optimal solution. It
can be observed that MPSOGOA quickly converges to the optimal solution in most test
functions without being constrained by local optima. The convergence curves of F1–F4
demonstrate the accelerated convergence speed of MPSOGOA. The early convergence to
the optimal solution in F5, F9, F10, F11, F15, and F20 is attributed to the role of the chaotic
strategy and population-wide perturbation in the initial iterations. The algorithm stalls
in the later iterations of F7, and the individual experience of particles and population-
wide perturbation play a role in the later iterations, enabling the algorithm to escape local
optima and eventually find the global optimal solution. Compared to GOA, MPSOGOA
significantly converges faster to the global optimal solution in F1–F7, F9–F13, and F15.
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Figure 6. CEC2005 test function convergence diagram.

Figure 7 shows the comparison of convergence curves of MPSOGOA, GOA, and
eight other optimization algorithms in CEC2014 and CEC2017 combined test functions.
Compared with other algorithms, MPSOGOA has an advantage in convergence speed. The
convergence curve of MPSOGOA is always lower than the convergence curve of other
algorithms, and the convergence curve drops significantly faster. The convergence rate
of MPSOGOA on F21, F26, F27, F28, and F31 is obviously better than other algorithms.
In the early stage of iteration, MPSOGOA’s convergence ability is far superior to other
algorithms, and it can quickly approach the optimal solution in a short time. This is because
the algorithm adopts PLCM for population initialization in the initial stage, constructs the
initial population with relatively uniform distribution, and improves the quality of the
initial population, especially in the initial stage of functions F21 and F31, which have better
fitness values than other algorithms. In addition, MPSOGOA shows stable and fast conver-
gence on function F23 with small fluctuation due to the combination of population global
perturbation strategy and particle swarm strategy. This further confirms MPSOGOA’s
significant advantages in terms of global convergence speed and optimization accuracy.
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Figure 7. Convergence diagram of CEC2014 and CEC2017 group and test functions.
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After comprehensive analysis of MPSOGOA’s optimization accuracy and convergence
speed, the MPSOGOA has significantly improved both in terms of convergence speed and
global optimization accuracy, and shows advantages in terms of stability. Compared with
other algorithms, MPSOGOA has less fluctuation in results during multiple runs, meaning
that its output results are more reliable and stable. The improved method is effective.

5.1.4. Ablation Experiment

Ablation experiments were conducted on MPSOGOA and GOA in order to compre-
hensively validate the effectiveness of the three proposed strategies during the optimization
process. Three strategies were employed in this study to enhance the performance of GOA,
leading to the following scenarios: the use of only the PWLC mapping strategy in the
gazelle optimization algorithm (GOA1), the use of only population-wide disturbance in
the gazelle optimization algorithm (GOA2), the use of only the PSO algorithm-integrated
gazelle optimization algorithm (GOA3), the simultaneous use of PWLC mapping and
population-wide disturbance strategies in the gazelle optimization algorithm (GOA4), the
simultaneous use of PWLC mapping and PSO strategy-integrated gazelle optimization
algorithm (GOA5), and the simultaneous use of population-wide disturbance and PSO
strategy-integrated gazelle optimization algorithm (GOA6). The tests were based on clas-
sical test functions from Table 10 with a population size set at 50 and iteration count at
1000 in the experiments. Each algorithm was independently run 30 times, and calculations
were performed for the optimal value, worst value, average value, standard deviation,
and median.

It is evident that the convergence accuracy of the GOA1 algorithm from Table 10 and
Figure 8, which incorporates only the PWLC mapping strategy, the GOA2 algorithm with
only the population-wide disturbance strategy, and the GOA3 algorithm with only the
strategy integrated with PSO, surpasses that of the standard GOA across 15 test functions.
Furthermore, the convergence speed on these 15 test functions is also superior to that of the
GOA. This indicates the efficacy of each strategy in enhancing the GOA. A comparative anal-
ysis between the optimization results of GOA1, GOA2, and GOA3 with GOA4, GOA5, and
GOA6 reveals that the convergence accuracy achieved by the fusion of two improvement
strategies is generally superior to that achieved using a single improvement strategy.

Simultaneously, the convergence speed is also enhanced, underscoring the synergistic
and stable effectiveness of all improvement strategies. Their collective impact serves to
improve the solving capability of MSPGOA. It can be also observed that the convergence
accuracy of MPSOGOA from Table 10 and Figure 8, which integrate three improvement
strategies, surpasses that of GOAs employing one or two improvement strategies. Notably,
MPSOGOA exhibits the fastest convergence speed among the 15 test functions.

5.2. Engineering Problem Results
5.2.1. Welded Beam

Table 11 presents the experimental results of the welded beam design problem. The
table includes the optimal solution obtained by MPSOGOA and the other nine optimization
algorithms (GOA, GWO, SCA, AOA, PSO, DE, Chimp, BBO, and GJO) in the welded beam
design problem, along with their corresponding optimal variables, worst value, mean,
standard deviation, and median, as well as the values from the signed-rank test. It is
evident from the table that the statistical results of all performance aspects of the proposed
MPSOGOA in the welded beam design problem are optimal, indicating its strong optimiza-
tion effectiveness in solving practical engineering applications and effectively reducing
the cost of the welded beam design problem. The table indicates that MPSOGOA achieves
the optimal cost value of 1.67022 for the welded beam design, with the corresponding
optimal decision variables being steel bar length 0.198832, steel bar height 3.33737, steel bar
thickness 9.19202, and weld thickness 0.198832. Compared to the original GOA, MPSOGOA
exhibits a smaller standard deviation, signifying its superior stability. The results of the
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signed-rank test in the table indicate that the p-values for MPSOGOA and the other nine
algorithms are all less than 0.05, indicating no statistical significance.

Table 10. Ablation experiment results based on CEC2005.

Function Value MPSOGOA GOA1 GOA2 GOA3 GOA4 GOA5 GOA6 GOA

F1

Best 3.075 × 10−266 2.152 × 10−133 3.138 × 10−229 4.569 × 10−177 5.990 × 10−230 1.352 × 10−150 2.931 × 10−250 1.070 × 10−83

Worst 1.420 × 10−213 9.226 × 10−43 1.819 × 10−176 4.172 × 10−84 8.633 × 10−182 5.474 × 10−48 1.106 × 10−193 3.534 × 10−27

Average 4.734 × 10−215 3.095 × 10−44 6.063 × 10−178 1.390 × 10−85 3.15 × 10−183 1.824 × 10−49 3.690 × 10−195 1.178 × 10−28

SD 0 1.684 × 10−43 0 7.617 × 10−85 0 9.995 × 10−49 0 6.452 × 10−28

Median 4.110 × 10−256 5.247 × 10−116 7.028 × 10−215 1.204 × 10−161 1.009 × 10−221 1.328 × 10−142 8.663 × 10−236 6.043 × 10−72

F2

Best 3.097 × 10−137 1.831 × 10−79 2.573 × 10−119 2.799 × 10−87 7.213 × 10−119 2.021 × 10−87 1.374 × 10−127 2.420 × 10−54

Worst 8.387 × 10−120 6.225 × 10−34 6.162 × 10−95 1.217 × 10−34 1.759 × 10−95 2.160 × 10−37 2.404 × 10−101 3.423 × 10−15

Average 6.067 × 10−121 2.610 × 10−35 2.739 × 10−96 4.078 × 10−36 5.864 × 10−97 7.203 × 10−39 8.01 × 10−103 1.141 × 10−16

SD 2.074 × 10−120 1.163 × 10−34 1.173 × 10−95 2.222 × 10−35 3.212 × 10−96 3.94 × 10−38 4.390 × 10−102 6.251 × 10−16

Median 1.840 × 10−129 2.150 × 10−75 2.667 × 10−114 4.423 × 10−80 5.312 × 10−114 1.104 × 10−80 1.919 × 10−122 1.904 × 10−49

F3

Best 8.481 × 10−67 1.966 × 10−32 5.444 × 10−45 2.346 × 10−23 2.787 × 10−49 8.461 × 10−25 3.134 × 10−57 2.760 × 10−14

Worst 6.098 × 10−43 0.0063208 2.767 × 10−24 5.087 × 10−5 2.126 × 10−25 0.0002043 7.001 × 10−40 0.0948753
Average 2.074 × 10−44 0.0002166 9.225 × 10−26 1.695 × 10−6 7.0912 × 10−27 8.407 × 10−06 2.635 × 10−41 0.0050304

SD 1.112 × 10−43 0.0011531 5.052 × 10−25 9.287 × 10−6 3.882 × 10−26 3.759 × 10−5 1.281 × 10−40 0.0197871
Median 9.692 × 10−59 4.349 × 10−9 1.046 × 10−37 2.756 × 10−16 2.276 × 10−38 1.822 × 10−16 4.302 × 10−49 1.543 × 10−8

F4

Best 6.678 × 10−108 7.057 × 10−33 8.905 × 10−89 6.233 × 10−40 4.292 × 10−89 8.042 × 10−40 2.157 × 10−99 1.138 × 10−26

Worst 1.712 × 10−89 3.916 × 10−7 3.050 × 10−67 2.644 × 10−8 1.110 × 10−68 8.146 × 10−10 3.119 × 10−76 5.2 × 10−8

Average 5.718 × 10−91 1.394 × 10−8 1.017 × 10−68 8.827 × 10−10 3.702 × 10−70 3.205 × 10−11 1.039 × 10−77 1.826 × 10−9

SD 3.127 × 10−90 7.145 × 10−8 5.569 × 10−68 4.827 × 10−9 2.027 × 10−69 1.502 × 10−10 5.695 × 10−77 9.489 × 10−9

Median 7.126 × 10−103 1.578 × 10−20 1.885 × 10−84 1.168 × 10−35 7.537 × 10−83 9.933 × 10−34 1.822 × 10−91 2.177 × 10−20

F5

Best 20.8641 22.8216 22.6316 22.6042 21.9583 22.6008 21.4154 22.8925
Worst 23.6918 24.2126 24.321 24.0658 23.7578 24.1712 23.692 24.5825

Average 22.7685 23.7121 23.2368 23.3641 22.9723 23.4461 22.8734 23.7886
SD 0.635053 0.34315 0.389083 0.334455 0.413717 0.400416 0.561724 0.393173

Median 22.8497 23.807 23.2568 23.3893 23.0459 23.5037 22.9644 23.7909

F6

Best 4.644 × 10−5 0.0003150 0.0005136 0.0006999 0.0002319 0.0001309 0.0007715 0.0012891
Worst 0.0428836 0.0497734 0.0562091 0.0392158 0.0344983 0.0427188 0.0428622 0.0485372

Average 0.0129548 0.0156648 0.0126048 0.0105064 0.0114111 0.0112348 0.0104577 0.0180974
SD 0.0113952 0.0131013 0.0117002 0.0099258 0.0085911 0.0109503 0.0100127 0.0119936

Median 0.0095370 0.0129409 0.0095088 0.0069833 0.0093544 0.0095399 0.0076343 0.0182215

F7

Best 7.929 × 10−5 0.000251 0.0002996 0.0001754 0.0001650 0.0002388 0.0001523 0.0005179
Worst 0.0024373 0.0038045 0.0026464 0.0049646 0.0027973 0.0044172 0.0026499 0.0042818

Average 0.0006266 0.0013592 0.0010830 0.0010165 0.0011226 0.0008795 0.0008772 0.0014611
SD 0.0005003 0.0008120 0.0005875 0.0011025 0.0006332 0.0008333 0.0005545 0.0008009

Median 0.0004800 0.0012386 0.0009866 0.0005666 0.0010134 0.0005796 0.0008353 0.0013893

F8

Best −8146.04 −8365.17 −8564.12 −8148.34 −8264.39 −8093.99 −8737.25 −8132.17
Worst −6929.54 −7210.73 −7268.81 −6990.89 −7101.98 −6783.8 −7018.35 −7031.04

Average −7447.88 −7632.9 −7775.89 −7504.24 −7543.32 −7505.6 −7812.09 −7618.5
SD 308.101 269.635 361.109 228.649 255.94 316.665 386.591 321.743

Median −7483.99 −7602.55 −7725.42 −7490.31 −7497.32 −7591.64 −7731.38 −7690.26

F9

Best 0 0 0 0 0 0 0 0
Worst 0 0 0 0 0 0 0 0

Average 0 0 0 0 0 0 0 0
SD 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0

F10

Best 8.881 × 10−16 8.881 × 10−16 4.440 × 10−15 8.881 × 10−16 8.881 × 10−16 4.440 × 10−15 8.881 × 10−16 8.881 × 10−16

Worst 4.440 × 10−15 9.325 × 10−14 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15 2.930 × 10−14

Average 4.322 × 10−15 5.033 × 10−15 4.440 × 10−15 3.967 × 10−15 4.322 × 10−15 4.440 × 10−15 4.322 × 10−15 3.730 × 10−15

SD 6.486 × 10−16 1.674 × 10−14 0 1.228 × 10−15 6.486 × 10−16 0 6.486 × 10−16 5.144 × 10−15

Median 4.440 × 10−15 8.881 × 10−16 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15 4.440 × 10−15

F11

Best 0 0 0 0 0 0 0 0
Worst 0 0 0 0 0 0 0 0

Average 0 0 0 0 0 0 0 0
SD 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0

F12

Best 2.961 × 10−6 4.071 × 10−5 3.114 × 10−5 9.267 × 10−6 6.116 × 10−5 4.519 × 10−5 8.489 × 10−6 0.0001418
Worst 0.0009958 0.0009989 0.0008660 0.0012403 0.0013423 0.0010939 0.0018899 0.0026304

Average 0.0003507 0.0003680 0.0002844 0.0003891 0.0003573 0.0004416 0.0003297 0.0007276
SD 0.0002954 0.0002487 0.0002238 0.0003047 0.0002627 0.0003104 0.0004030 0.0005522

Median 0.0002536 0.0003468 0.0002312 0.0003582 0.0003202 0.0004877 0.0001838 0.0005805

F13

Best 5.369 × 10−5 0.0001331 0.002688 0.0017903 0.0007865 0.0012620 0.0018526 0.0030045
Worst 0.153973 0.058177 0.0942476 0.0650685 0.0788267 0.0381157 0.114282 0.0634467

Average 0.049772 0.0099884 0.0244842 0.015226 0.0273083 0.0144915 0.0266147 0.0213521
SD 0.038678 0.012237 0.0213996 0.0149223 0.0229325 0.0110837 0.0258222 0.015971

Median 0.036302 0.0063070 0.0205127 0.0114016 0.0209073 0.0102529 0.0186282 0.0188452

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Worst 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

Average 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
SD 0 0 5.831 × 10−17 7.141 × 10−17 5.831 × 10−17 1.009 × 10−16 7.141 × 10−17 1.090 × 10−16

Median 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

F15

Best 0.0003074 0.0003074 0.0003074 0.0003074 0.0003074 0.00030748 0.0003074 0.0003074
Worst 0.0003074 0.0003074 0.0003074 0.0003074 0.0003074 0.00030748 0.0003074 0.0003074

Average 0.0003074 0.0003074 0.0003074 0.0003074 0.0003074 0.00030748 0.0003074 0.0003074
SD 7.778 × 10−14 6.976 × 10−13 3.604 × 10−13 4.829 × 10−13 7.947 × 10−13 9.449 × 10−13 3.945 × 10−12 5.754 × 10−13

Median 0.0003074 0.0003074 0.0003074 0.0003074 0.0003074 0.00030748 0.0003074 0.0003074



Electronics 2024, 13, 1580 27 of 33

Electronics 2024, 13, x FOR PEER REVIEW 28 of 35 
 

 

the GOA. This indicates the efficacy of each strategy in enhancing the GOA. A compara-
tive analysis between the optimization results of GOA1, GOA2, and GOA3 with GOA4, 
GOA5, and GOA6 reveals that the convergence accuracy achieved by the fusion of two 
improvement strategies is generally superior to that achieved using a single improvement 
strategy. 

   
(F1) (F2) (F3) 

   
(F4) (F5) (F6) 

   
(F7) (F8) (F9) 

   
(F10) (F11) (F12) 

0 100 200 300 400 500 600 700 800 900 1000
10-300

10-250

10-200

10-150

10-100

10-50

100

1050
Benchmark Function

Iteration
0 100 200 300 400 500 600 700 800 900 1000

Iteration

10-150

10-100

10-50

100

1050
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-80

10-60

10-40

10-20

100

1020
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-120

10-100

10-80

10-60

10-40

10-20

100

1020
Benchmark Function

0 50 100 150 200 250
Iteration

100

102

104

106

108

1010
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-6

10-4

10-2

100

102

104

106
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-4

10-2

100

102

104
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

-8000

-7000

-6000

-5000

-4000

-3000

-2000

Benchmark Function

0 50 100 150 200 250
Iteration

10-15

10-10

10-5

100

105
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-15

10-10

10-5

100

105
Benchmark Function

0 50 100 150 200 250 300
Iteration

10-20

10-15

10-10

10-5

100

105
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-5

100

105

1010
Benchmark Function

Figure 8. Cont.



Electronics 2024, 13, 1580 28 of 33Electronics 2024, 13, x FOR PEER REVIEW 29 of 35 
 

 

   
(F13) (F14) (F15) 

 
Figure 8. Convergence results of ablation experiments based on CEC2005. 

Simultaneously, the convergence speed is also enhanced, underscoring the synergis-
tic and stable effectiveness of all improvement strategies. Their collective impact serves to 
improve the solving capability of MSPGOA. It can be also observed that the convergence 
accuracy of MPSOGOA from Table 10 and Figure 8, which integrate three improvement 
strategies, surpasses that of GOAs employing one or two improvement strategies. Nota-
bly, MPSOGOA exhibits the fastest convergence speed among the 15 test functions. 

5.2. Engineering Problem Results 
5.2.1. Welded Beam 

Table 11 presents the experimental results of the welded beam design problem. The 
table includes the optimal solution obtained by MPSOGOA and the other nine optimiza-
tion algorithms (GOA, GWO, SCA, AOA, PSO, DE, Chimp, BBO, and GJO) in the welded 
beam design problem, along with their corresponding optimal variables, worst value, 
mean, standard deviation, and median, as well as the values from the signed-rank test. It 
is evident from the table that the statistical results of all performance aspects of the pro-
posed MPSOGOA in the welded beam design problem are optimal, indicating its strong 
optimization effectiveness in solving practical engineering applications and effectively re-
ducing the cost of the welded beam design problem. The table indicates that MPSOGOA 
achieves the optimal cost value of 1.67022 for the welded beam design, with the corre-
sponding optimal decision variables being steel bar length 0.198832, steel bar height 
3.33737, steel bar thickness 9.19202, and weld thickness 0.198832. Compared to the original 
GOA, MPSOGOA exhibits a smaller standard deviation, signifying its superior stability. 
The results of the signed-rank test in the table indicate that the p-values for MPSOGOA 
and the other nine algorithms are all less than 0.05, indicating no statistical significance. 

Table 11. Experimental results of WBD. 

 h l t b Best Worst Average SD Median p 
MPSOGO

A 
0.198832 3.33737 9.19202 0.198832 1.67022 1.67022 1.67022 

6.9276 × 
10−7 

1.67022 N/A 

GOA 0.198832 3.33736 9.19203 0.198832 1.67022 1.67023 1.67022 
2.7146 × 

10−6 
1.67022 4.117 × 10−6 

GWO 0.198676 3.34055 9.19251 0.19886 1.6707 1.67602 1.67224 0.0013803 1.67173 3.019 × 10−11 
SCA 0.189317 3.50989 9.36715 0.198795 1.70764 1.8522 1.79678 0.0335841 1.79892 3.019 × 10−11 
AOA 0.188049 3.7992 10 0.196186 1.82839 2.68791 2.34035 0.177038 2.36669 3.019 × 10−11 

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-5

100

105

1010
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

100

101

102

103
Benchmark Function

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-4

10-3

10-2

10-1

100

101
Benchmark Function

Figure 8. Convergence results of ablation experiments based on CEC2005.

Table 11. Experimental results of WBD.

h l t b Best Worst Average SD Median p

MPSOGOA 0.198832 3.33737 9.19202 0.198832 1.67022 1.67022 1.67022 6.9276 × 10−7 1.67022 N/A
GOA 0.198832 3.33736 9.19203 0.198832 1.67022 1.67023 1.67022 2.7146 × 10−6 1.67022 4.117 × 10−6

GWO 0.198676 3.34055 9.19251 0.19886 1.6707 1.67602 1.67224 0.0013803 1.67173 3.019 × 10−11

SCA 0.189317 3.50989 9.36715 0.198795 1.70764 1.8522 1.79678 0.0335841 1.79892 3.019 × 10−11

AOA 0.188049 3.7992 10 0.196186 1.82839 2.68791 2.34035 0.177038 2.36669 3.019 × 10−11

PSO 0.169229 4.89949 9.14451 0.27382 2.43173 7.48264 5.06402 1.45427 5.01009 3.019 × 10−11

DE 0.198832 3.33737 9.19202 0.198832 1.67022 1.67022 1.67022 1.7000 × 10−16 1.67022 1.665 × 10−11

Chimp 0.196437 3.40766 9.16569 0.202305 1.69817 1.7957 1.75433 0.0222802 1.75877 3.019 × 10−11

BBO 0.25149 2.80336 8.1706 0.251664 1.85816 2.72723 2.1878 0.212509 2.19146 3.019 × 10−11

GJO 0.198812 3.33722 9.1983 0.198841 1.67128 1.69453 1.6757 0.00463749 1.67429 3.019 × 10−11

Figure 9 shows the convergence curves of each algorithm on the welded beam design
problem. These algorithms can quickly converge to the optimal solution.
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5.2.2. Compression Spring Design

Table 12 presents the experimental results for the compression spring design problem.
The table includes the optimal solution obtained by MPSOGOA and the other nine optimiza-
tion algorithms in the compression spring design problem, along with their corresponding
optimal variables, worst value, mean, standard deviation, and median, as well as the values
from the signed-rank test. It is evident from the table that MPSOGOA achieves the optimal
cost value of 0.0126652 for the compression spring design, with the corresponding optimal
decision variables being wire diameter 0.0516905, mean coil diameter 0.356752, and the
number of effective coils in the spring 11.287. MPSOGOA and DE achieve the same optimal
cost value in the compression spring design problem. Furthermore, when compared to the
original GOA, MPSOGOA outperforms GOA in all statistical data aspects. The results of
the signed-rank test in the table indicate that the p-values for MPSOGOA and the other
nine algorithms are all less than 0.05, indicating no statistical significance.

Table 12. Experimental results of CSD.

D D P Best Worst Average SD Median p

MPSOGOA 0.0516905 0.356752 11.287 0.0126652 0.0126655 0.0126653 5.92315 × 10−8 0.0126653 N/A
GOA 0.0516822 0.356551 11.2987 0.0126653 0.0126658 0.0126654 1.14583 × 10−7 0.0126654 0.000300589
GWO 0.0514958 0.352024 11.5769 0.0126741 0.0128559 0.0127191 3.08647 × 10−5 0.0127213 3.01986 × 10−11

SCA 0.0523236 0.370375 10.6095 0.012786 0.0132059 0.012966 0.000128481 0.0129485 3.01986 × 10−11

AOA 0.05 0.310434 15 0.0131934 0.0305824 0.0141362 0.00367212 0.0131974 3.0123 × 10−11

PSO 0.073141 0.76922 5.52228 0.0309544 8.64748 × 109 1.1754 × 109 2.05791 × 109 1.51764 × 108 3.01986 × 10−11

DE 0.0516891 0.356718 11.289 0.0126652 0.0126652 0.0126652 2.69513 × 10−18 0.0126652 1.5476 × 10−11

Chimp 0.05 0.317316 14.0439 0.0127274 0.014333 0.0129773 0.000365126 0.0128398 3.01986 × 10−11

BBO 0.0550947 0.444316 7.54043 0.012867 0.0178452 0.015147 0.00166555 0.0147453 3.01986 × 10−11

GJO 0.0512038 0.345014 12.0291 0.0126903 0.0129066 0.0127409 4.6908 × 10−5 0.0127318 3.01986 × 10−11

Figure 10 shows the convergence curves of each algorithm on the welded beam design
problem. Except for the PSO and Chimp algorithms, other algorithms can quickly converge
to the optimal solution.

Electronics 2024, 13, x FOR PEER REVIEW 31 of 35 
 

 

SCA 0.0523236 0.370375 10.6095 0.012786 0.0132059 0.012966 0.000128481 0.0129485 
3.01986 × 

10−11 
AOA 0.05 0.310434 15 0.0131934 0.0305824 0.0141362 0.00367212 0.0131974 3.0123 × 10−11 

PSO 0.073141 0.76922 5.52228 0.0309544 8.64748 × 109 1.1754 × 109 2.05791 × 109 1.51764 × 108 
3.01986 × 

10−11 

DE 0.0516891 0.356718 11.289 0.0126652 0.0126652 0.0126652 
2.69513 × 

10−18 
0.0126652 1.5476 × 10−11 

Chimp 0.05 0.317316 14.0439 0.0127274 0.014333 0.0129773 0.000365126 0.0128398 
3.01986 × 

10−11 

BBO 0.0550947 0.444316 7.54043 0.012867 0.0178452 0.015147 0.00166555 0.0147453 
3.01986 × 

10−11 

GJO 0.0512038 0.345014 12.0291 0.0126903 0.0129066 0.0127409 4.6908 × 10−5 0.0127318 
3.01986 × 

10−11 

Figure 10 shows the convergence curves of each algorithm on the welded beam de-
sign problem. Except for the PSO and Chimp algorithms, other algorithms can quickly 
converge to the optimal solution. 

 

Figure 10. Convergence curve of CSD. 

5.2.3. Pressure Vessel Design 
Table 13 presents the experimental results for the pressure vessel design problem. 

The table includes the optimal solution obtained by MPSOGOA and the other nine opti-
mization algorithms in the pressure vessel design problem, along with their correspond-
ing optimal variables, worst value, mean, standard deviation, and median, as well as the 
values from the signed-rank test. It is evident from the table that the statistical results of 
all performance aspects of the proposed MPSOGOA in the pressure vessel design problem 
are optimal, indicating its strong optimization effectiveness in solving practical engineer-
ing applications and effectively reducing the cost of the pressure vessel design problem. 
From the table, it can be seen that MPSOGOA achieves the optimal cost value of 5885.33 
for the pressure vessel design, with the corresponding optimal decision variables being 
pressure vessel thickness 0.778168, head thickness 0.384649, internal vessel radius 40.3196, 
and vessel head length 200. Compared to the original GOA, MPSOGOA exhibits signifi-
cant improvement in terms of standard deviation, suggesting its superior stability in the 
process of seeking the optimal solution. The results of the signed-rank test in the table 

0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-2

100

102

104

106

108

1010
Compression Spring Design

Figure 10. Convergence curve of CSD.

5.2.3. Pressure Vessel Design

Table 13 presents the experimental results for the pressure vessel design problem. The
table includes the optimal solution obtained by MPSOGOA and the other nine optimization
algorithms in the pressure vessel design problem, along with their corresponding optimal
variables, worst value, mean, standard deviation, and median, as well as the values from
the signed-rank test. It is evident from the table that the statistical results of all performance
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aspects of the proposed MPSOGOA in the pressure vessel design problem are optimal,
indicating its strong optimization effectiveness in solving practical engineering applications
and effectively reducing the cost of the pressure vessel design problem. From the table, it
can be seen that MPSOGOA achieves the optimal cost value of 5885.33 for the pressure
vessel design, with the corresponding optimal decision variables being pressure vessel
thickness 0.778168, head thickness 0.384649, internal vessel radius 40.3196, and vessel head
length 200. Compared to the original GOA, MPSOGOA exhibits significant improvement
in terms of standard deviation, suggesting its superior stability in the process of seeking
the optimal solution. The results of the signed-rank test in the table indicate that the
p-values for MPSOGOA and the other nine algorithms are all less than 0.05, indicating no
statistical significance.

Table 13. Experimental results of PVD.

Ts Th R L Best Worst Average SD Median p

MPSOGOA 0.778168 0.384649 40.3196 200 5885.33 5885.33 5885.33 0.0003421 5885.33 N/A
GOA 0.778168 0.384649 40.3196 200 5885.33 5885.34 5885.33 0.002140 5885.33 6.526 × 10−7

GWO 0.778555 0.38478 40.3205 200 5888.65 6578.33 5937.79 135.014 5897.34 3.019 × 10−11

SCA 0.90912 0.446679 46.4753 130.01 6236.74 8485.17 6854.85 559.787 6671.16 3.019 × 10−11

AOA 0.906507 0.552833 41.7535 192.458 7429.05 30,021 12,804.8 5522.99 10978.9 3.019 × 10−11

PSO 2.59675 11.605 68.0305 178.337 128,019 1.13904 × 106 484,168 275,483 383,206 3.019 × 10−11

DE 0.778168 0.384649 40.3196 200 5885.33 5885.33 5885.33 2.775 × 10−12 5885.33 1.211 × 10−12

Chimp 0.842162 0.45967 40.7929 200 6659.64 8041.96 7655.43 285.916 7718.16 3.019 × 10−11

BBO 0.817676 0.404177 42.3666 173.346 5956.45 7265.37 6477 353 6515.18 3.019 × 10−11

GJO 0.778939 0.386412 40.3355 199.897 5896.41 7308.78 6198.12 462.634 5955.64 3.019 × 10−11

Figure 11 shows the convergence curves of each algorithm on the pressure vessel
design problem. MPSOGOA, GOA, GWO, SCA, DE, Chimp, and GJO are all able to quickly
converge to the optimal solution. AOA falls into a local optimum and eventually escapes
from the local optimum, and optimally converges to the optimal value.
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6. Conclusions

In this paper, we present an enhanced version of the MPSOGOA, incorporating a
chaotic strategy to refine the quality of the initial population. A population-wide per-
turbation is strategically applied to augment the convergence speed and precision of the
algorithm. Furthermore, through synergistic integration with PSO, emphasis is placed on
leveraging individual experiences within the optimization process, culminating in a com-
prehensive enhancement of algorithmic performance. MPSOGOA demonstrates promising
outcomes across a suite of 35 test functions and 4 engineering design challenges. Notably,
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in a majority of the test functions, MPSOGOA consistently identifies optimal solutions,
displaying diminished standard deviations compared to the original GOA. This signifies a
marked improvement in stability when contrasted with GOA. Additionally, in the Friedman
test, MPSOGOA attains the foremost position among all comparative algorithms. Across
the spectrum of four engineering design problems, the performance metrics of MPSOGOA
surpass those of esteemed optimization algorithms including GOA, GWO, SCA, AOA, PSO,
DE, Chimp, BBO, and GJO. To summarize, based on the comparative analysis of algorithms
in both test functions and engineering designs, MPSOGOA emerges as a superior choice
for addressing optimization challenges.
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