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Abstract: In recent years, microservices, as an emerging technology in software development, have
been favored by developers due to their lightweight and low-coupling features, and have been rapidly
applied to the Internet of Things (IoT) and Internet of Vehicles (IoV), etc. Microservices deployed in
each unit of the IoV use wireless links to transmit data, which exposes a larger attack surface, and it
is precisely because of these features that the secure and efficient placement of microservices in the
environment poses a serious challenge. Improving the security of all nodes in an IoV can significantly
increase the service provider’s operational costs and can create security resource redundancy issues.
As the application of reinforcement learning matures, it is enabling faster convergence of algorithms
by designing agents, and it performs well in large-scale data environments. Inspired by this, this
paper firstly models the placement network and placement behavior abstractly and sets security
constraints. The environment information is fully extracted, and an asynchronous reinforcement-
learning-based algorithm is designed to improve the effect of microservice placement and reduce the
security redundancy based on ensuring the security requirements of microservices. The experimental
results show that the algorithm proposed in this paper has good results in terms of the fit of the
security index with user requirements and request acceptance rate.

Keywords: microservices; reinforcement learning; security constraints; user requirement fit; request
acceptance rate

1. Introduction

The Internet of Vehicles (IoV) is a very promising technology [1], and in recent years,
with the rapid development of the Internet and the IoV, the number of vehicle users has
been growing, and the generation and processing of large amounts of data have become
common phenomena [2]. Meanwhile, as the cost of a network channel’s bandwidth and
computing resources decreases, internet applications are becoming larger and larger, with
too much coupling existing between functions and features for system changes and later
maintenance [3,4]. Unlike traditional networks, bandwidth and computing resources are
generally scarce in IoV environments, and the use of individual applications may face
quality of service problems such as high latency and network congestion. Microservices are
one solution to this problem because they have the feature of splitting a large application
into multiple small and independent services [5,6], each running in an independent process.
Microservices communicate with other services through open service interfaces to jointly
fulfill the functions of the application [7]. Several studies have shown that microservice
technology can be ported to the IoV by combining containerized microservice technology
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with the Kubernetes orchestration tool [8–10], as well as by designing orchestration algo-
rithms to manage the whole process. By applying microservice technology within the IoV,
the performance in terms of network flexibility and scalability can be improved.

Although microservice management can be implemented in the IoV, the large scale of
microservices creates a complex chain of microservice calls as the number of microservices
grows exponentially. The vehicle may not be able to handle the task when it reaches the
IoV due to its limited computational resources [11]. In addition, network communication
between microservices exposes a larger attack surface because communication between
vehicles and between vehicles and fixed base stations on the road, servers, and other
facilities uses wireless communication [12]. In the communication process, the number
of data transfers increases, and the increased number of data transfers not only increases
communication overheads but also poses challenges to the security of user data. Protecting
personal privacy and sensitive information in this process has become a topic of great
concern [13]. Existing security placement solutions are not as effective as traditional
security defense techniques such as intrusion detection in the face of large, dynamically
deployed microservices, and are more difficult to implement [14,15]. In addition, users
have different needs concerning security levels; for example, the transmission of citizens’
personal information and governmental data requires a high level of communication
security, whereas behaviors such as the prediction of traffic flow in the city do not require a
high level of security.

Figure 1 shows the network environment where microservices are placed in the In-
ternet of Vehicles (IoV) as an example on the left side, and the result of the microservices’
deployment on the right side. Figure 1 shows that information between vehicles and with
fixed actors such as roadside base stations is transmitted via wireless signals, which makes
it much easier for an attacker to intercept these data using specialized devices or software
than wired communications that use physical links for data transmission, thereby stealing
sensitive information or interfering with the normal operations of microservices [16]. In
addition, when it comes to information-sensitive applications such as navigation, vehicles
collect a large amount of important information such as roadside and geographic coordi-
nates while driving, and if this service is placed in a node that does not meet the security
standards, it will increase the likelihood of sensitive information leakage and attacks. De-
signing a deployment algorithm that meets the security expectations of microservices can
greatly improve the security performance of the entire network. This allows the operator’s
entire service to provide services to users at a high level of security, and the user’s security
requirements are guaranteed at the same time, resulting in greater user satisfaction and pro-
moting the development of a network society [17,18]. However, higher security necessitates
greater costs, and with a large number of network nodes, these costs need to be borne by net-
work operators and users, so it is not practical to upgrade every node where microservices
can be placed to a highly reliable and secure node. Each microservice has different security
requirements. For example, assume there are two services involving two high-security
to-be-placed nodes and one low-security to-be-placed node, and the two microservices are
the police linkage service and the road information reporting service. Compared to the
police linkage service, the road information reporting service does not have high security re-
quirements. Thus, the most suitable placement scenario is to place the police linkage service
in the high-security node and the road condition information service in the low-security
node. This requires reducing the likelihood of attacks on microservices and improving the
security of the entire network, taking into account the constraints of the CPU and other
resources of the nodes as well as the QoS. There are several deployment options. This study
has chosen B, C, G, and F as the nodes where each of the four microservices are placed, and
the red link is the actual deployment link. In Figure 1, the network topology used contains
eight nodes and nine links, which is a relatively simplified network. However, in real-world
network environments, the number of network nodes, the complexity of the links, and
the volume of requests for microservices are usually far beyond these numbers. Currently,
numerous scholars, such as He et al. [19–24], use traditional mathematical methods or
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heuristic algorithms to deal with the placement of microservices. Although these methods
are effective in some cases, they tend to consume a lot of computational resources when
dealing with large-scale, complex networks and may lead to obtaining only locally optimal
solutions. In addition, other scholars, such as Li et al. [25–28], have begun to explore the
use of deep learning techniques, but these studies tend to ignore post-deployment security
issues. Considering the current practical challenges of microservice deployment, the trend
of increasing network size in the future [29], and the research value of microservice-related
problems, it is particularly important to develop an algorithm that considers both security
and efficiency when handling microservice deployment [30]. This algorithm should not
only provide solutions to existing problems but should also be able to adapt to future
developments in the network environment to ensure long-term viability and effectiveness.
This will ensure that operators can provide services to their subscribers at a highly secure
level of performance, while at the same time fulfilling the subscribers’ requirements for
security, thereby enhancing subscriber satisfaction. This enhancement not only strengthens
subscriber trust but also contributes to the overall development of a network society.
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Figure 1. Microservice placement environment and basic placement methods.

The main contributions of this paper are as follows:

• This study proposes a microservice placement strategy based on differential secu-
rity requirements, targeting environments like the IoV that heavily rely on wireless
communication and are susceptible to network attacks. This study models the mi-
croservice placement process as a graph-embedding process. This study combines the
node placement process with an asynchronous reinforcement learning algorithm by
setting up an agent to make the algorithm converge quickly and to make it perform
well in a network environment with a large number of microservices to be placed.

• Unlike traditional placement methods, the proposed algorithm dynamically handles
the security parameters of each microservice placement node. The security index is set
for the placement node to cope with the users’ differentiated security requirements,
ensuring that each microservice is placed in a node that meets its security requirements
as much as possible to reduce the likelihood of cyber-attacks.
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• In addition, this study also conducts simulation experiments based on the real network
environment, and the algorithm proposed in this paper shows good results in the
request acceptance rate and security demand satisfaction index in comparison with
other algorithms.

The overall structure of this paper is as follows. The work related to the secure
placement of microservices is presented from two perspectives in Section 2. Immediately
after that, the proposed asynchrony-based differential microservice placement algorithm is
described in detail in Section 3. Section 4 describes the environment setup for simulation
experiments and analyzes the results in detail. Finally, in Section 5, this study is concluded
and possible future research directions for microservice security placement are analyzed.

2. Related Work

This section introduces and analyzes research advances in recent years in the areas of
microservice security and microservice placement, respectively.

2.1. Microservices Security

In the study by Gopal [31] and Hossain et al. [32], it is proposed that although
microservices, as a lightweight architecture that can fully utilize the capabilities of edge
nodes, can effectively address challenges such as poor scalability of monolithic programs,
the complex invocation relationships that exist between microservices expose a larger
attack surface. The placement, scheduling, and auto-scaling of microservices may have
security threats, so it is crucial to develop lightweight cryptographic mechanisms or secure
placement algorithms. Jin et al. [33] proposed a framework that can sense changes in the
cloud environment and dynamically optimize for changes in mobile target defense. Jin
et al. [33] formalized various attack scenarios to build a multidimensional attack model.
The effectiveness of container technology and mobile target defense in a microservices
architecture is accurately evaluated. Rishi et al. [34] attempt to detect attacks launched
towards microservices and propose a Docker-based lightweight architecture that can reduce
traffic overhead by deploying the solution at the edge for earlier detection and mitigation of
attacks. Zdun et al. [35] proposed a model-based approach to determine compliance with
safety standards by predicting whether the environment conforms to predefined metrics.
Experimental results show the accuracy of this method. In contrast to setting security
policies, Xu et al. [36] propose the idea of setting security components separately. They
deployed an additional security gateway that supports authentication and authorization in
the original gateway. The experimental results also show that the communication latency
of microservices provided based on the secure gateway is lower. Ibrahim et al. [37] devise
a set of security rules to constrain network function placement behavior using a mixed-
integer linear programming optimization model, but the paper focuses more on latency
minimization. Overall, there is relatively little existing research on the security aspects of
microservice placement and a lack of algorithms for microservice placement based on users’
differentiated security requirements.

2.2. Microservice Placement

For this type of node placement problem, the classical approach proposed by
Cheng et al. [38] uses a Markov model to rank the network nodes according to their
resources and topological properties. Experimental results also show that the method
proposed by Cheng et al. yields some improvement in the evaluation metrics of long-term
yield and acceptance rate. Similarly, Selimi et al. [39] design a low-complexity heuristic
algorithm to solve the microservice placement problem. The information required for
the microservice placement decision is derived from the node availability and network
bandwidth dimensions of the network information. Experimental results show that the
microservice placement algorithm proposed by Selimi et al. provides a significant improve-
ment over the random placement method in terms of both customer response time and
packet loss rate. However, the present placement method does not consider security in
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specific usage scenarios and other factors that affect placement. In contrast, Gu et al. [40]
first proved that the microservice placement problem is an NP-hard problem, modeled
the microservice placement problem in the form of integer linear programming, and then
solved the microservice deployment problem by combining intra-service and inter-server
sharing. Experiments show that the approach proposed by Gu et al. provides a large
improvement in edge throughput rate. He et al. [19] define the service placement problem
in microservice systems with complex dependencies and multiple instances as a fractional
polynomial problem and transform it into a quadratic ratio and fractional problem to be
solved by a greedy algorithm. The experimental results also show the computational speed
advantage of the algorithm proposed by He et al. [19] Moreover, Li et al. [41] also use
heuristic algorithms to establish a microservice layout optimization model to minimize the
average transmission latency and load balancing and use genetic algorithms to effectively
achieve low latency and load balancing. Liu et al. propose a multifactor evolutionary
algorithm for the container placement problem in the microservices framework, setting
multiple optimization objectives to cope with the container placement problem for a wide
range of applications of different sizes in the heterogeneous clustering environment, solving
the container placement problem in heterogeneous clustered environments. Su et al. [42]
address the problem of microservice placement in satellite networks in a space–air–ground
integrated network and propose an approach that uses an attention mechanism to efficiently
capture attributes, such as computational resources, that affect microservice placement.
Simulation experiments show that the proposed method of Su et al. performs well in terms
of gain–overhead ratio and placement request acceptance rate.

In general, existing solutions to the node placement problem are mainly classified
into several categories such as using traditional algorithms, heuristic algorithms, and deep
learning methods. However, there is not much research on the microservice placement
problem considering security. This paper is inspired by the above research and proposes a
microservice placement strategy with differentiated security requirements.

3. Algorithm Description

In this section, the modeling scheme of the problem is first presented, and reason-
able constraints and performance evaluation metrics are designed according to the net-
work. The proposed algorithm is presented in detail immediately after based on the
problem modeling.

3.1. Problem Definition

In this study, the set MSR is used to represent the set of service requests, and its
expression is shown in Equation (1).

MSR = {Gms
1 , Gms

2 , · · · , Gms
x }, (1)

where this study abstracts all microservices that complete a full service into a directed
weighted graph G, as shown in Equation (2).

Gms = {Nms, Lms}, (2)

where Nms represents the set of all microservices that complete this service and Lms repre-
sents the set of open links invoked between microservices.

For each microservice node (nms ∈ Nms), there is a CostCPU(nms) representing the
CPU resources that need to be consumed to run this microservice. Similarly, for each link
lms, there is a CostBW(lms) representing the bandwidth resources that need to be consumed
by the two microservices to call through the open interface. Furthermore, this study defines
the abstraction of the entity nodes where the microservices are placed as an undirected
weighted graph Genv, as shown in Equation (3).

Genv = {Nenv, Lenv}, (3)
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where Nenv represents the collection of physical nodes where the microservice is deployed
and Lenv represents the collection of communication link between the physical nodes. For
any nenv ∈ Nenv, there exists Remain(nenv), representing the remaining to compute and
storage resources of that node; Typeenv

n , representing the set of types of microservices
that this node supports for deployment, and Sec(nenv), representing the security level of
the node. Similarly, for a link linking physical nodes, there is Band(lenv), representing
the remaining bandwidth of the link. Security requirements for the IoV include, but are
not limited to, security requirements for remote wireless update packet authentication,
geo-referenced security requirements when providing location information services, and
data security requirements in data analytics services. Due to the number of services and
the variety of security requirements in the IoV, it is not easy to quantify. Therefore, this
study quantifies the security requirements of different microservices in the IoV in terms of
security levels.

In a real network environment, every node is not exactly the same in terms of security
due to hardware and technology differences. In other words, they have different levels
of security. For example, high-security nodes usually integrate stronger firewall features
or can support multiple encryption protocols such as WPA3, which can effectively block
malicious traffic and potential threats. Deploying microservices in higher-security nodes
can effectively reduce the likelihood of malicious attacks on microservices, thus reducing
the probability of the entire application being affected. This study establishes a positive
correlation between security index and security performance, where the higher the security
index, the better the security. Similarly, microservices have different security-level needs.
Microservices that have less impact on national and personal interests (e.g., commodity
information management services) require lower placement node security levels than
sensitive services (e.g., payment services).

Given that microservice requests eventually need to be deployed on physical nodes in
the environment, the relationship between Gms

i and Genv can be formalized as Equation (4).

Gms
i 7→ Genv, ∀Gms

i ∈ MSR, (4)

The deployment process is considered to be completed when each of the microservices
contained in the service request and their corresponding links are successfully deployed
in the physical network. In the early stages of microservice deployment, due to the
relative abundance of available resources in the physical network, each service request
arriving in the network has a variety of potential deployment locations to choose from
when deploying the microservice and its links. Each deployment option will have an
impact on the subsequent deployment process. This study uses two binary variables,
Equations (5) and (6), to express whether the microservices and links in the request Gms

i
are successfully deployed to the corresponding physical nodes or links, respectively.

Φi
j =

{
1, nms

i successfully deployed to nenv
j

0, nms
i unsuccessfully deployed to nenv

j
(5)

where nms
i represents the i-th microservice in this service request and nenv

j represents the
j-th physical node in the physical network topology. A binary variable of 1 means that
nms

i has been successfully deployed to node nenv
j , and conversely, a variable of 0 means the

microservice nms
i has not been deployed to nenv

j . Similarly, the binary variable Ψ shown in
Equation (6) follows this rule.

Ψpq
rs =

{
1, lms

pq successfully deployed to lenv
rs

0, lms
pq unsuccessfully deployed to lenv

rs
(6)
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where lms
pq represents the link between microservice nms

p and nms
q and lenv

rs represents the
link between physical node nenv

r and nenv
s . The formulae for calculating the remaining

computing and storage resources are shown in Equations (7) and (8).

Band(lenv) = Obw(lenv)−
|MSR|

∑
i=1,j=1,lms⇑lenv

Cost
(

lms
ij

)
, (7)

where Obw(lenv) represents the bandwidth at the idle time when no microservices are
placed on the physical link lenv and |MSR| represents the number of microservice requests.

Remain(nenv) = Ocpu(nenv)−
|MSR|

∑
i=1,nms⇑nenv

Cost(nms
i ), (8)

where Ocpu(nenv) represents the total amount of computational and storage resources in
the physical node when no microservices are deployed.

The constraints shown in Equations (9)–(13) also need to be satisfied during microser-
vice placement. Firstly, to ensure the proper operation of the microservices, the remaining
computational resources of the server must be greater than the computational resources
required by the microservices, which is expressed as shown in Equation (9).

Remain
(

nenv
p

)
− CostCPU

(
nms

q

)
≥ 0,

nenv
p ∈ Nenv, nms

q ∈ Nms, i f Φp
q = 1

(9)

Similarly, the remaining bandwidth of the communication links between servers
must also meet the bandwidth consumed by the calls between microservices. Otherwise,
network delays and packet loss will occur, which will affect the normal operation of the
whole service. The expression is shown in Equation (10).

Band(lenv
rs )− CostBW

(
lms
ij

)
≥ 0,

lenv
rs ∈ Lenv, lms

ij ∈ Lms, i f Ψij
rs = 1

(10)

In addition, the security index of each microservice placement request should be
at least greater than or equal to the actual user requirement for the security index. The
expression is shown in Equation (11).

∑
nms⇑nenv

Sec(nenv
i ) ≥ Secuser (11)

Security-related information is self-contained attribute information in the network
nodes, similar to other resource attributes such as CPU and bandwidth, which can be
obtained directly from the network. Finally, each microservice can only complete its
lifecycle in one physical node, and this expression is shown in Equation (12).

|Nenv |

∑
j=1

Φi
j = 1 (12)

In contrast to nodes, the transmission of data emanating from a microservice over a
physical link can take multiple hops to reach the destination node, and this expression is
shown in Equation (13).

|Lenv |

∑
i=1

Ψpq
lenv
i

≥ 1 (13)

Finally, consider the rapid development of container technologies such as Docker
and container orchestration technologies such as Kubernetes. In the future, microservice
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architectures will not be affected by inherent placement requirements and will achieve
smoother deployment and usage, so the inherent placement requirements for certain
microservices are not constrained.

3.2. Evaluation Indicators

The placement acceptance rate of microservice requests is the most basic metric for
evaluating the quality of placement services. The placement acceptance rate is directly
proportional to the performance of the placement algorithm. Under a certain number of
elements in the MSR of the microservice placement request set, if the placement accep-
tance rate is high, it means that the more applications are successfully deployed in the
physical network, the stronger the stability of the whole microservice architecture, and the
better the user experience. The expression for the placement acceptance rate is shown in
Equation (14).

Raccept =
|MSRaccepted|
|MSRarrived | × 100%, (14)

where |MSRaccepted| is the total number of microservice placement requests arriving at the
network and |MSRaccepted| represents the number of microservices that were successfully
placed. Under the premise of ensuring the acceptance rate, the security index of the whole
link is made to meet the user’s needs as far as possible. The security index after the final
placement is completed will neither fall short of the user’s security needs nor cause the
risk of privacy leakage. At the same time, it will not be substantially higher than the
user’s security needs, causing unnecessary waste of security resources. Equation (15) is the
calculation method for the evaluation index of user fit.

Rsrfr =
Secuser

∑nms⇑nenv Sec(nenv
i )

× 100% (15)

where Secuser is the security requirement and ∑nms⇑nenv Sec(nenv
i ) is the sum of the security

levels of the nodes occupied by the actual microservices prevented. As mentioned earlier,
this paper tries to place services in nodes that meet their security requirements as much
as possible, reducing the redundancy of security resources while safeguarding their basic
security needs. To measure this effect, this paper proposes the evaluation metric of security
fit. A higher security fit R means less waste of security resources and better results of
the algorithm.

3.3. Algorithm Design

To achieve the optimization goals mentioned above, and to adapt to complex and
dynamic microservice placement environments and constraints, as well as to reduce human
intervention in placement, this study proposes an algorithm based on asynchronous rein-
forcement learning (RL) for secure microservice placement. This study uses Actor–Critic
as the basic framework, but unlike the traditional Actor–Critic model, the asynchronous
security algorithm proposed in this paper improves convergence by introducing multiple
parallel intelligences. Each agent possesses its own parameters and policies, allowing them
to interact and learn in diverse network environments. After a certain number of learning
iterations, the gradient of the loss function in each agent is calculated and updated in
the central neural network. The whole architecture is similar to a tree of public ancestors.
Because each intelligence learns individually in its own environment, the empirical data
collected are relatively independent and do not affect each other, thus increasing the diver-
sity and richness of the samples. After updating to the established rounds, the model of
the central network is the final model this study uses for making the selection of nodes for
microservice placement.

The detailed architecture of the method is shown in Figure 2. The Actor and Critic
are the two key parts of the algorithm. In the algorithm, the Actor is mainly used for the
selection of microservice placement actions, and the Critic is used to evaluate the value
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generated by the microservice placement and provide feedback to the Actor to help it
improve the placement strategy. In carrying out the above process, three core concepts
are involved: state space, action space, and reward. Here, the precise definition of the
state space is the key to implementing an effective reinforcement learning algorithm. This
is because the Actor must select the appropriate action based on the current state and
learn the optimal behavioral strategy in the process. In addition, the network environment
changes (e.g., node computational resource availability) after the microservice deployment
task is completed, which requires the algorithm to be able to perform state updates in
real time. At the same time, the reward mechanism needs to give feedback to the Actor
based on the change in state. The complexity of the network environment further increases
the difficulty of obtaining the state of the network environment. In particular, the size
of the state space directly determines the complexity of the problem, as the intelligence
cannot understand the network environment directly. If the information extracted from the
environment contains too much irrelevant data, it will reduce the efficiency of the algorithm.
To solve this problem, this study extracts key information from the environment that affects
the effectiveness of microservice deployment to form a feature matrix. Specifically, this
study selects the following network features from the network environment to construct
the feature matrix.

A
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Figure 2. Microservice security placement network architecture.

• Available resources of nodes: If the amount of available resources of a physical node
does not reach the resources consumed by a microservice’s deployment, it cannot
be deployed, so it is evident that the amount of available resources of a node is
directly related to the success rate of the microservice deployment. Given this, this
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study includes available node resources as a key feature extracted from the network
environment. Its calculation is shown in Equation (8).

• Bandwidth resources of links: The greater the available bandwidth resources of a
link, the more data will be allowed to be transmitted simultaneously. If the available
bandwidth of a link to which a physical node is connected is greater, the likelihood of
a successful deployment of a microservice is greater. This study uses AvBW(nenv) to
denote this feature, which is computed as shown in Equation (16).

AvBW(nenv) = ∑
lenv∈Lnenv

Band(lenv) (16)

• Connectivity of nodes: The more connected a physical node is to other nodes, the
more optional the communication links between deployed microservices are, and
the higher the probability is of implementing microservice placement using a multi-
hop format. This study uses the degree De(nenv) of a physical node to denote the
connectivity of a node.

• Security level of nodes: Deploying microservices in physical nodes that meet the
security level is the only way to reduce the possibility of attacks and thefts of the
sensitive information they carry, so the security level of the physical node is an
important factor that affects the secure placement of microservices. This study denotes
security level by Sec(nenv).

Based on this, the feature information of each physical node is aggregated into a
feature matrix, as shown in Equation (17). During training, the intelligences simply extract
this feature matrix directly from the network environment.

M =


Fnenv

1
Fnenv

2
...

Fnenv
|Nenv |

 =


Remain(nenv

1 ) AvBW(nenv
1 ) De(nenv

1 ) Sec(nenv
1 )

Remain(nenv
2 ) AvBW(nenv

2 ) De(nenv
2 ) Sec(nenv

2 )
...

...
...

...
Remain(nenv

|Nenv |) AvBW(nenv
|Nenv |) De(nenv

|Nenv |) Sec(nenv
|Nenv |)

 (17)

This study uses a dominance function to measure the superiority of each placement
action relative to the average to help estimate the error of the value function and to aid
in updating the parameters of the value function. The Q function is used to represent the
expected value of the cumulative future rewards that intelligence will receive for executing
its strategy, and it is expressed in Equation (18).

Q(st, at) =
σ−1

∑
i=0

γirt+i + γσV(st+σ) = rt + γV(st+1), (18)

where st represents the state at step t and at represents the placement action chosen at state
st. σ represents the offset of the time step used to calculate the cumulative reward, starting
at the current time step t. The cumulative reward calculation takes into account the rewards
at the next σ time steps. To achieve low latency updates and to improve the stability of
the algorithm, σ takes the value of 1. γ is a discount factor between [0, 1] that weighs the
importance of current and future rewards. The placement behavior of microservices is
a holistic one and needs to be considered in the long run, so the discount factor in this
paper takes the value of 0.9. rt+i denotes the reward obtained at t + i time steps. V(st+σ)
denotes the expected value of the cumulative reward obtained in the future under the
implementation of the microservice placement policy. This formula is subtracted from the
value function V(st) in the current state, which is determined in Equation (19), to obtain a
dominance function that can measure the degree of superiority or inferiority of the action.

A(st, at) = Q(st, at)− V(st) (19)
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Finally, the dominance function and the entropy H(π(st)) used to encourage explo-
ration and increase the randomness of the strategy together form Equation (20) to enable
strategy updating.

θ = ∇θ′ log π(at | st)A(st, at) + β∇θ′ H(π(st)) (20)

where ∇θ′ log π(at | st) is the strategy gradient, which is used to indicate how the pa-
rameters should be adjusted to increase the probability of taking a favorable action. ∇θ′

is a gradient operator. The policy network uses a multilayer perceptron. An MLP is a
feed-forward neural network that contains a series of linear transformations and nonlinear
activation functions, components that are admittedly differentiable. A(st, at) is the dom-
inance function mentioned in Equation (19), which instructs which nodes will increase
the probability of which microservices will be placed. β∇θ′ H(π(st)) is the entropy reg-
ularization term, and H(π(st)) is the entropy of the policy in state st, which is used to
encourage the policy to remain exploratory and prevent premature convergence to a locally
optimal strategy.

The training pseudo-code for the algorithm is shown in Algorithm 1. The inputs
to the algorithm include the microservice placement request, the physical network on
which the microservice is placed, and the training parameters. Among them, the training
parameters include a maximum number of training rounds of 100, a discount factor of
0.9, an update frequency of 10, a policy network learning rate of 0.005, and an evaluation
network learning rate of 0.001. The two evaluation indicators introduced in Section 3.2 are
used as a reward function to assist in training. At the end of the training, the output model
contains weighted parameters that allow the network state to be mapped to a probability
distribution of microservice placement actions. This study uses these model parameters to
determine the probability of microservices’ placements in each node and uses the Dijkstra
algorithm to complete the placement of call links between microservices.

Algorithm 1: Training
1: Input: training parameters, physical network, MSR;
2: Output: network model;
3: Initialization of optimizers, global networks, worker networks, training parameters;
4: while (epochcurrent < epochmax) do
5: reset epoch_reward;
6: while True do
7: Select the placement action;
8: Calculating the statenext, rewardnow;
9: epoch_reward += rewardnow;

10: Update work node parameters;
11: if Arriving to update global agent rounds then
12: Synchronizing global network parameters;
13: end if
14: if Placement complete then
15: Save the best model under the current round;
16: end if
17: epochcurrent ++;
18: statenow = statenext;
19: end while
20: end while
21: return model;

4. Experiments

Experiments were run on a computer with an Intel i7-11800H processor and 16GB of
RAM on an NVIDIA RTX3060 graphics card with one 6G video memory. The algorithms
were run in a Miniconda environment, and the code was written in Python 3.8. In order to
reflect the effectiveness of the algorithm proposed in this paper, the simulation experiments
are chosen to be carried out in the data from a real environment. This study uses the
network topology data provided by SNDlib [43] for the experiments. SNDlib is a database
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for telecommunication network design created by the Warsaw University of Technology in
2005, which aims to provide researchers with data about real telecommunication networks
to facilitate the optimization and operation of telecommunication networks and their
operations. The Germany50 [43] dataset this study used is one of the real classical network
topologies provided by SNDlib. The instance contains 50 nodes and 88 edges. Since it
does not contain data on security per se, this study only uses its topology. The range of
experimental parameter settings was generated based on the real parameters as well as
the joint parameter settings of the studies [38,44,45]. This study sets the computational
resources and link bandwidths of each physical node to conform to a normal distribution
in the interval [50, 100] with 1000 service microservice placement requests. Moreover, this
study sets the microservice placement request arrival frequency to 5 per 100 time units.
Each placement request contains microservices that obey a uniform distribution within
[2, 6]. In addition, regarding the setting of security parameters and security requirements,
this study sets the security index of each physical node to be uniformly distributed between
[10, 20]. Specific experimental and training parameters are demonstrated in Table 1.

Table 1. Parameter settings.

Types Description Value

Training parameters

training rounds 100
discount factor 0.9

update frequency 10
policy network learning rate 0.005

evaluation network learning rate 0.001
offset of the time step 0

Experimental parameters

number of nodes 50
number of edges 88
compute resource [50, 100]

link bandwidth [50, 100]
number of microservices

included in a single
microservice request

[2, 6]

security level [10, 20]
security requirements of

microservices [5, 20]

request arrival frequency 5
service microservice
placement requests 1000

This study documents in Figure 3 the changes in the request acceptance rate and
the fit of the security requirements of the algorithm during the training process. In the
pre-training phase, the algorithm is in an exploratory phase and underperforms on the two
evaluation indicators because it has not learned a good microservice placement strategy. As
the training proceeds, the algorithm improves its performance on the evaluation indicators
based on the feedback of the reward changes. As the training proceeds, the changes
in the evaluation indicators gradually slow down, and the algorithm gradually reaches
a converged state. Thus, Figure 3 demonstrates that the performance of the algorithm
proposed in this paper can be significantly improved with more training iterations and also
demonstrates the convergence of the algorithm.
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Figure 3. The changes in request acceptance rate and fit of security requirements during the
training process.

Since the microservice placement process studied in this paper can be abstracted as
a network embedding problem, three state-of-the-art algorithms in the field of network
embedding, namely NodeRank, PSM, and CS-RL-VNE, are chosen as the comparison
methods in order to prove the effectiveness of the proposed algorithms in this paper. The
basic principle of the comparison algorithm is described as follows:

1. PSM [44]: This is a classical embedding algorithm and there is a large body of literature
using it as a baseline algorithm. The basic idea of this algorithm is to construct a
subset of deployable nodes for each of the microservices to be deployed using the
greedy conceptm and then, for the available subset, select the node with the greatest
available resources as the deployment node.

2. NodeRank [38]: The NodeRank method calculates the physical node rank based on
Markov random wandering. This method uses the amount of resources of a node
as a measure of its deployment priority, ranks the nodes based on the resource and
topological attributes of the network nodes, and deploys the microservices in the
nodes with the largest amount of remaining resources.

3. CSS-RL-VNE [45]: CSS-RL-VNE uses traditional RL methods as a means to improve
the algorithm’s performance. The important attribute features of the underlying
network are extracted for training by involving the policy network; the deployment
possibilities are ranked based on the training results, and the physical node with the
highest probability of successful deployment is selected as the deployment node.

In addition, to ensure the fairness of the experiments, all the algorithms are run
in network environments with the same parameters, and for link deployment between
microservices, this study uniformly uses the breadth-first search algorithm. Figures 4 and 5
show the performances of the proposed algorithm on two key metrics: placement request
acceptance rate and user security requirement fit, respectively.

As can be seen in Figure 4, algorithm generally outperforms the other two classical
placement algorithms in terms of request acceptance rate. This is because this work
includes consideration of microservice placement request acceptance rates in the reward
during reinforcement learning training, and asynchronous-based reinforcement learning
can interact extensively with the environment and learn towards a higher reward. In
addition, to accommodate the other three comparison algorithms, this study only calculates
the fit of successful placement requests.
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Figure 5. Comparison of fit to security requirements.

As can be seen in the right-hand side of Figure 5, the proposed algorithm also performs
better than the other three algorithms in terms of the fit to the user’s security needs,
thanks to the security considerations this study has included in the algorithm. Among the
comparison algorithms, PSM and NodeRank show very low levels of fit because they do
not take security into account. The reason why the CSS-RL-VNE algorithm performs better
than PSM and NodeRank is because it takes security into account. However, compared
to the ASMP algorithm proposed in this paper, it does not consider the fit to the user’s
security requirements, which leads to excess performance even if the minimum security
requirement is met. For example, if a microservice only needs to be deployed into a
node with security level 3 to satisfy its minimum security requirement, the CSS-RL-VNE
algorithm may place it into a physical node with security level 8 to satisfy its security
requirement. In this process, there is an excess of resources. Unlike the CSS-RL-VNE
algorithm, the proposed algorithm is designed with fit to user security requirement in
mind. The algorithm proposed in this paper achieves a security requirement fit of 0.85
in the Gemmery50 network topology. This means that on the basis of satisfying the basic
security requirements of the microservices, the chosen security level does not exceed the
microservices’ needs too much and thus reduces the redundancy of security resources. As
shown in the experimental results, there are two main reasons why the algorithm does not
fully achieve a 100% fit to user security requirements. First, since the primary goal is to
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ensure the normal deployment and operation of the application, the algorithm will first
meet the basic security requirements and resource requirements to ensure placement with
the greatest success rate and then will consider the degree of fit to security requirements,
which inevitably will in the microservices being deployed in a node that exceeds the
security requirements. Secondly, the distribution of security levels in the Gemmery50
nodes is not regular, and it is difficult to make the sum of the number of nodes in each
security level exactly equal to the security requirements of the applications. Moreover,
normal development may involve business expansion and security level upgrading, so
leaving an appropriate security margin can reduce the costs of future maintenance.

Comprehensive experimental results show that the proposed algorithm has 5.9% and
8.97% better performance over the latest algorithms in terms of request acceptance rate
and fit to user’s security requirements, respectively, and that it ensures security without
wasting security resources.

5. Conclusions

Compared to traditional monolithic applications, microservice architecture still faces
many challenges, although it can be used to split complex applications into small and
autonomous sub-modules, providing greater flexibility and scalability for business-level
expansion. On the one hand, the splitting of services and the increase in network size
causes an increase in placement complexity. On the other hand, after splitting the services,
the number of data transfers and the exposure time increases, bringing about great security
risks. Ensuring high security for all nodes requires greater cost overheads. This paper
reduces the operational costs and reduces the redundancy of security resources for service
providers using an ingenious approach. This study designs an asynchronous reinforcement
learning algorithm for differentiated security requirements, which uses the parallel training
of multiple intelligences that interact with the microservice placement environment in
parallel, and introduces a policy network for the selection of placement nodes, which
ensures the acceptance rate of the placement requests and reduces the redundancy of
the security resources based on the basic security requirements of the microservices. The
experimental results show the effectiveness of this proposed algorithm.

In future studies, researchers should try to consider different scenarios and larger-scale
network environments. In addition, future research could also consider starting from the
intruder’s point of view, and constructing a multi-layered and all-round security protection
system for aspects such as the transport layer encryption, authentication, and security
mechanism of the API Gateway covered by the microservice security protocols. Finally,
subsequent research can also consider the security of the link into the algorithm as well.
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