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Abstract: Metabolomics has gained much attention due to its potential to reveal molecular disease
mechanisms and present viable biomarkers. This work uses a panel of untargeted serum metabolomes
from 602 children from the COPSAC2010 mother–child cohort. The annotated part of the metabolome
consists of 517 chemical compounds curated using automated procedures. We created a filtering
method for the quantified metabolites using predicted quantitative structure–bioactivity relationships
for the Tox21 database on nuclear receptors and stress response in cell lines. The metabolites
measured in the children’s serums are predicted to affect specific targeted models, known for their
significance in inflammation, immune function, and health outcomes. The targets from Tox21 have
been used as targets with quantitative structure–activity relationships (QSARs). They were trained
for ~7000 structures, saved as models, and then applied to the annotated metabolites to predict their
potential bioactivities. The models were selected based on strict accuracy criteria surpassing random
effects. After application, 52 metabolites showed potential bioactivity based on structural similarity
with known active compounds from the Tox21 set. The filtered compounds were subsequently
used and weighted by their bioactive potential to show an association with early childhood hs-
CRP levels at six months in a linear model supporting a physiological adverse effect on systemic
low-grade inflammation.

Keywords: metabolomics; QSAR; inflammation; cortisol; cortisone; vitamin A; CRP

1. Introduction

Metabolomics aims to capture a broad range of small molecules, either quantitatively
by measuring their concentration or qualitatively by identifying their presence and struc-
ture, which are essential intermediates and end products of metabolism in organisms. One
can analyze pathological processes underlying a disease or physiological state of interest
using rich metabolomics data, e.g., obtaining biomarkers [1] or predicting responses to
therapy [2,3]. Furthermore, one can use the metabolome for phenotyping organisms or
diseases [4]. With such methods, one can also delve into a mechanistic information layer for
understanding modes of action regarding exposures such as diet, exercise, and pollutants
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on disease progression [5]. Metabolomic instruments provide rapid, cost-effective, and sen-
sitive results from many possible biological samples. Yet, with an appropriate analysis, the
data they produce are meaningful. It is essential to interpret these data to build biochemical
pathways and comprehend their interactions in healthy and diseased conditions [6]. Liquid
chromatography–mass spectrometry (LC-MS), one of the most commonly used approaches
for metabolomics studies, can achieve a high number of annotations [7], which was also
essential to this study.

1.1. hs-CRP as a Target for Physiological Conditions

Another significant predictor of health is the assessment of levels of C-reactive protein
with high-sensitivity methods (hs-CRP), which is generally considered a marker of systemic
low-grade inflammation. Elevated hs-CRP has been shown in early-onset diseases and has
been associated with an increased prevalence of overweight and obesity in children [8,9].
Further, studies have shown that elevated hs-CRP is a biomarker of childhood asthma [10]
and allergy [11] but is also associated with Attention deficit hyperactivity disorder (ADHD)
development [12]. Hence, hs-CRP is a valuable tool for understanding childhood obesity
risk, asthma, allergy, and overall health status. Elevated hs-CRP is hence interpreted as a
physiological state of systemic low-grade inflammation in this study. The expectation is,
therefore, that inflammation is related to metabolic processes and should hence be reflected
in the metabolome by, e.g., other biomarkers like the previously presented GlycA [13].

1.2. Signals in the Metabolome

The leading assumption in this work is that one can use chemical information of endoge-
nous or exogenous metabolites to relate them to their biological activity and consequently
with physiological conditions. This can be processed using quantitative structure–activity
relationships (QSARs). QSARs are based on mapping a feature space (X), calculated from
chemical structures, on a target chemical or biological activity (y) [14,15]. Hence, given a
chemical structure, one should be able to understand the compound’s biological activity, a
concept relevant in drug discovery and toxicology. In reverse, after developing a QSAR,
one can predict biological activity for a biological target (e.g., an enzyme or receptor) for
a new chemical structure, given some chemical similarity to previously utilized chemical
space. To achieve this with metabolites, one must know their structures. Herein, the biolog-
ical activities of interest are the activation or inhibition of specific biochemical pathways
from the Tox21 listed targets [16,17]. The selected Tox21 data set for modeling includes
12 bioactivity endpoints, 5 related to stress response (SR) and 7 to nuclear receptor (NR)
panels. NRs are a class of transcription factors involved in regulating gene expression.
Once the models are trained, and the relationship of chemical structure and bioactivity is
set, they can be used to assess bioactivities of other chemical structures, i.e., metabolites.

1.3. Aim of This Work

This work aims to filter metabolites from many compounds to inspect associations with
potential biological activities and hence with physiological conditions. Filtering is based
on structural similarities of metabolites to known bioactive compounds against the Tox21
targets, which can be potentially bioactive in unspecified pathways. Hence, dysregulated,
endogenous compounds could be associated with physiological states. Even though there is
not much research on the endobiotic effects and associations, there are indications for such.
Elevated cortisol concentrations have been associated with psychiatric diseases [18,19]. Other
metabolites like phenylalanine are known toxicants in conditions such as phenylketonuria [20].
Research also suggests that toxic intermediates in metabolomic pathways [21] can contain
reactive functional groups and be leveraged, e.g., for cancer therapy. A set of QSAR models
is developed in this work against the Tox21 biological target and used to predict potential
outcomes for each of the quantified metabolites. The expected outcomes are then used as filters
to select potentially bioactive compounds that could trigger the given Tox21 pathways given
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their chemical structure. The filtered metabolites were evaluated based on their abundance
and bioactivity against levels of hs-CRP in the children at six months of age.

2. Materials and Methods
2.1. Cohort, Metabolomics Profiling, and hs-CRP Assessment
2.1.1. Cohort

The COPSAC2010 cohort comprises a non-selected group of mother–child pairs, in-
cluding 738 pregnant women and their 700 children. The women were recruited between
gestational weeks 22 and 26 during their first pregnancy examinations. Of the 738 preg-
nant women (with an average age of 32.3 ± 4.3 years at the time of their child’s birth),
700 children were enrolled in the study. Since then, the children have been visiting the clinic
regularly. Gestational age was determined using routine pregnancy care ultrasonography.
The COPSAC2010 study participants included infants delivered pre-term and post-term
(30–42 weeks). During the third trimester, the women took part in a double-blind, random-
ized controlled trial with a factorial design, receiving either high-dose (2800 IU/day) or
standard-dose (400 IU/day) [22] vitamin D and either 2.4 g n-3 long-chain polyunsaturated
fatty acid (LCPUFA, 55% (w/w) 20:5 (n-3) eicosapentaenoic acid (EPA) and 37% (w/w)
22:6 (n-3) docosahexaenoic acid (DHA)) or placebo (72% (w/w) n-9 oleic acid and 12%
(w/w) n-9 linoleic acid) [23]. Women with endocrine, heart, or kidney diseases or a daily
vitamin D intake above 600 IU/day were excluded. Children with a gestational age of less
than 32 weeks were also excluded. The trial received approval from the National Com-
mittee on Health Research Ethics (H-B-2008-093) and the Danish Data Protection Agency
(2015-41-3696). Both parents provided oral and written informed consent before enrolment.
The full protocol for the recruitment, information on withdrawals from the study, and a
flowchart of the study were previously presented in the Supplementary Materials (Protocol
and Supplementary Appendix) of this group’s previous work [23]. Figure 1 depicts the
metabolomic part of this study.Metabolites 2024, 14, x FOR PEER REVIEW 4 of 17 
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2.1.2. Blood Collection and Metabolite Quantification

Blood samples were taken from children at the age of six months. Blood was collected
in an ethylenediaminetetraacetic acid (EDTA) tube and left at room temperature for 30 min
before being centrifuged for 10 min at 4000 rpm. The supernatant was collected and stored
at −80 ◦C for future analysis [24]. The methods for sample preparation, UHPLC-MS/MS
analysis, and quality control are comprehensively described in reference [25]. In this study,
an untargeted metabolomic analysis of plasma from mothers and their children was con-
ducted at Metabolon, Inc. using a Waters ACQUITY UHPLC (Milford, MA, USA) and a
ThermoFisher Scientific (Waltham, MA, USA) QExactive™ Hybrid Quadrupole-Orbitrap™
mass spectrometer with a heated electrospray ionization source, operating at a resolution
of 35,000 mass units. The processed samples underwent analysis on four specialized plat-
forms tailored for different classes of compounds: UHPLC-ESI(+)MS/MS for hydrophilic
compounds, UHPLC-ESI(+)MS/MS for hydrophobic compounds, reverse-phase UHPLC-
ESI(−)MS/MS optimized for basic conditions, and HILIC/UHPLC-ESI(−)MS/MS. The
identification of metabolites was based on retention time or index range, a mass accu-
racy within ±10 ppm, and MS/MS spectra. Compound identification was based on the
following criteria: (1) compounds labeled with “*” have identification level 2; (2) com-
pounds labeled with “**” have level 3 (since no standards or matching spectra are available);
(3) compounds named with “X-” are unknown and therefore have level 4; and (4) if no label
is applied, the identification level is 1 [26]. The analyses were conducted in Metabolon,
Inc. in Morrisville, NC, USA. Additional details on the analysis were previously published
in [27].

2.1.3. Assessment of hs-CRP Levels

Children at the age of six months had blood drawn from a cubital vein into an EDTA
tube. The samples were centrifuged to separate plasma and cells and stored at −80 ◦C until
analysis. After the samples were thawed, the hs-CRP levels were measured using a high-
sensitivity electrochemiluminescence-based assay from Meso Scale Discovery. Duplicate
measurements were taken and analyzed using the Sector Image 2400 A from Meso Scale
Discovery in Gaithersburg, MD. The lower limit of detection for CRP was 0.007 ng/mL [28].

2.2. Data Preparation and Model Building
2.2.1. Data Preparation for Metabolites

The metabolites with more than 33% missing values (67% values per feature present)
were removed from the analysis, referring to our previous works to keep methodological
consistency. Some literature sources recommend imputing features above 70% [29], which
is close to the threshold in this work. The variables that passed this threshold, i.e., with less
than 33% missing values, were then imputed with 1/10 of the minimum concentration per
metabolite (under the assumption to correspond to the detection limit). The metabolites
were then scaled to 0–1 (min–max scaling). A further cleaning step was the removal of
low-variance metabolites, i.e., the lowest 10% of metabolites by variance [30]. The last
step was removing highly correlated metabolites with above 90% Pearson correlation.
Finally, 517 compounds were successfully converted to simplified molecular-input line-
entry system (SMILES) encodings of molecules, resulting in a final data set for the analysis.

2.2.2. Bioactivity Assessment Pipeline

The model training and application pipeline is presented in Figure 2. The pipeline
starts with data extraction and preparation for building QSAR models (blue and yellow
rectangles in the figures), described in Sections 2.2.2 and 2.2.3. Once the data are prepared,
models are built using Random Forests and hyperparameter optimization (Section 2.2.4) on
features generated from chemical structures. These models can predict bioactivity against
biological targets such as the 12 given in Section 2.2.2. Once the models are generated and
validated, the final step is to predict bioactivities for the 12 targets per quantified metabolite
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and patient. The predictions then enter further statistical analysis to reveal an association
with hs-CRP levels.
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2.2.3. Bioactivity Data

The chosen bioactivities for this task stem from the Tox21 compound library [16,17]
provided by the U.S. Environmental Protection Agency (EPA). The Tox21 program, which
was also part of the Tox21 challenge [16], is also where data can be downloaded from; this
includes data on the androgen receptor (AR), estrogen receptor (ER), progesterone receptor
(PR), aromatase receptor, peroxisome proliferator-activated receptor gamma (PPAR), and
the aryl hydrocarbon receptor (AhR). The compounds in the library were tested against
their ability to interact with various SR pathways, including antioxidant-responsive ele-
ments (ARE), p53 tumor proteins, mitochondrial membrane potential (MMP), proteins
involved in DNA damage repair (ATAD5), and heat shock factor response elements (HSE).
Numerous studies have been conducted on this data set, and the outcomes have been
reported in various reports [31–34]. Hence, it represents a baseline data set for building
bioactivity QSARs since it is imbalanced, chemically diverse, and one of the more significant
publicly available data sets (~10 k compounds). Because of the challenges presented by this
data set, it has been extensively studied in cheminformatics research in machine learning
methods [31,34], class balancing methods [33,35], the testing of different chemical represen-
tations [36], and multitasking/deep learning [34]. The raw data were pre-processed, as they
contain duplicate structures that consider the active or organic part of the molecules. This
was also reported earlier [33]. Molecules with invalid structural identifiers were removed,
and those that were valid were converted to their canonical SMILES [37]. Duplicates
were either removed by IDs or SMILES. Our methodology employed a comprehensive
standardization protocol to ensure the uniformity and accuracy of chemical structure
representations before the computational analysis. The structure preparation pipeline
inspired by procedures [33,38] and implemented in the ChemAxon Standardizer (v18.28.0,
ChemAxon, Budapest, Hungary) tool is represented in a defined manner in the <Standard-
izerConfiguration> XML schema (https://zenodo.org/records/10888738, accessed on 25
April 2024).The protocol consists of following steps: (1) Removal of Explicit Hydrogens;
(2) Dearomatization; (3) Conversion of Pi-metal Bonds; (4) Disconnection of Metal Atoms;
(5) Stripping of Salts; (6) Fragment Removal; (7) Transformation of Diazonium Groups;
(8) Neutralization; (9) Wedge Clean; (10) Mesomerization and Tautomerization; (11) Arom-
atization; (12) 2D Cleaning. Once the structures were ready, the molecular descriptors
Morgan fingerprints (FPR) [39], MACC keys, and 200 molecular descriptors were calcu-
lated for the 8314 structures using the RDKit library [40]. To reduce possible bit collision
in the fingerprints [41,42], the fingerprint vectors were set to 5120 bits and a radius of 2.
The Python scripts used for this work were previously published [43]. The data sets are
available in the Supplementary Materials (https://zenodo.org/records/10888738, accessed
on 25 April 2024). In the final prepared data sets, the SR-HSE activator (PubChem AID:

https://zenodo.org/records/10888738
https://zenodo.org/records/10888738
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743228) assay recorded 6402 observations with 340 positives, while the NR-AR agonist
assay observed 7060 instances, identifying 306 positives. The SR-ARE agonist (AID: 743219)
assay demonstrated a higher activity with 945 positives out of 5758 observations. The
NR-Aromatase antagonist (AID: 743139) and NR-ER-LBD (AID: 743077) assays reported
304 and 343 positives from 5652 and 6817 observations, respectively. Notably, the NR-AhR
agonist (AID: 743122) assay detected 756 positives among 6459 observations, and the SR-
MMP disruptor (AID: 720637) assay found 903 positives in 5715 cases. The NR-ER agonist
assay revealed 806 positives from 6056 observations, and the NR-PPAR-gamma assay
agonist (AID: 743140) had 197 positives out of 6355. The SR-p53 agonist (AID: 720552) assay
identified 423 positives among 6643 observations, the SR-ATAD5 inducer (AID: 720516)
assay found 275 positives in 6926 cases, and the NR-AR-LBD agonist (AID: 743053) assay
reported 234 positives from 6617 observations.

2.2.4. Machine Learning Models

Machine learning models were trained using Python (www.python.org, v3.9.1.) and
its library sci-kit-learn [44] based on previous works [36,43]. Due to class imbalance in
the Tox21 set, model penalization and optimization techniques were used to improve
classification quality. Before model training, the data with the 12 bioactivity endpoints
were split into two random subsets of 80% and 20% per endpoint individually. The penalty
in scoring during hyperparameter optimization was based on the Matthews Correlation
Coefficient (MCC) [45,46] defined by Equation (1), where TP (True Positive), TN (True
Negative), FN (False Negative), and FP (False Positive) are the elements of the confusion
matrix (https://en.wikipedia.org/wiki/Confusion_matrix, accessed on 25 April 2024).
Another important metric used in this work is Balanced Accuracy, shown in Equation (2).
A critical assessment of metrics for imbalanced classification QSAR models was given in
previous works [46,47].

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(1)

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(2)

Bayesian hyperparameter optimization (BO) was used for hyperparameter optimiza-
tion [46,48] through a 10-fold cross-validation (CV) and penalizing the procedure by the
MCC then iterating it 20 times and returning a set of “optimal” parameters. Hence, the
MCC CV value was calculated as an average of outer folds during CV. Once the CV op-
timized model was generated, the model was applied on the train set each time, and for
each metric, a “Train” value was generated. One of the essential model parameters was
“class weight”, which contributed to classifying this imbalanced data set. During model
training on the train set, feature selection using permutation importance was applied in the
following steps in previous work [46]. The final model’s test set was evaluated for each
target, resulting in each metric in a “Test value”.

2.3. Association Testing and Toxic Unit Approach

To evaluate the association with physiological conditions, the toxic unit (TU) approach
was utilized [49]. TU is defined as the ratio of chemical compound concentration (ci)
and the selected exposure-based toxicity value (e.g., LC50). Herein, a new approach is
derived, namely the bioactive potential (BiP) in Equation (3). BiP is hence a product of the
metabolite’s concentration (i) (relative peak area) and the probability of it being active (0–1)
against a target (t). The higher the concentration and the likelihood of being bioactive, the
more potent we assume the compound to be against the given targets.

BiPi,t = ci × pt (3)

www.python.org
https://en.wikipedia.org/wiki/Confusion_matrix
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For each child (c) in the cohort, BiP was calculated per metabolite and target and then
summed and log-transformed sBIP using Equation (4), where t is the number of targets,
yielding one value per child.

sBiPc,i = log10

(
T

∑
t=1

BiPi,t

)
(4)

The associations were inspected by means of linear regression using the pingouin
library for Python [50].

3. Results
3.1. QSAR Model Results

Eight out of twelve models yielded results above random classification (MCC CV
and MCC Test > 0.3), namely for the following targets: SR-ATAD5, NR-AR-LBD, NR-AR,
NR-ER-LBD, NR-ER, SR-ARE, NR-AhR, and SR-MMP (marked with an asterisk in Table 1).
The threshold of 0.30 is an arbitrary choice to be in the MCC “fair agreement” regime
(>0.20). Further, it reduces the risk of having imbalanced classifiers [46] while retaining
a reasonable number of models. These models were then selected for further processing.
While the algorithm trained for both fingerprints and descriptor sets separately, each time,
the descriptors yielded better results in this setting over fingerprints with 13–38 descriptors
per model (Table 1). The complete results of the models are given in the Supplementary
Materials [51].

Table 1. Model results for the 12 targets from the Tox21 data set. Models with an asterisk (*) were
kept for further processing based on our selection criteria of the MCC CV and MCC Test being > 0.30.
The abbreviation BACC is Balanced Accuracy. N(1)/N(0,1) is the imbalance ratio of the positive and
total compounds per target.

Endpoint MCC
Train

BACC
Train

MCC
CV MCC Test BACC

Test
Num. of
Feat. N(1)/N(0,1)

SR-HSE 0.47 0.82 0.27 0.23 0.69 38 340/6402

* NR-AR 0.63 0.95 0.58 0.7 0.97 31 306/7060

* SR-ARE 0.77 0.94 0.35 0.34 0.76 38 945/5758

NR-Aromatase 0.6 0.88 0.2 0.15 0.63 38 304/5652

* NR-ER-LBD 0.62 0.89 0.47 0.56 0.84 38 343/6817

* NR-AhR 0.73 0.9 0.51 0.45 0.78 38 756/6459

* SR-MMP 0.83 0.91 0.59 0.58 0.79 38 903/5715

* NR-ER 0.64 0.91 0.41 0.41 0.83 38 806/6056

NR-PPAR-gamma 0.59 0.92 0.17 0.09 0.6 13 197/6355

SR-p53 0.41 0.63 0.25 0.24 0.58 38 423/6643

* SR-ATAD5 0.52 0.76 0.3 0.31 0.66 38 275/6926

* NR-AR-LBD 0.61 0.81 0.58 0.55 0.82 38 234/6617

Based on the MCC results, one can observe (Figure 3) that each model’s CV and test
set assessments are well aligned and do not overfit. Our previous study on the Tox21 data
set showed that these model results are aligned with models known in the literature [44],
as observable in the Supplementary Materials of the cited work [44].
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Figure 3. MCC CV and test set results for the classification models in Table 1.

3.2. Predicting Metabolite Target Activity

The selected eight models were saved to persistent storage and applied to yield
bioactivity for the 517 annotated metabolites. This resulted in a table of 517 metabolites x
eight columns, namely SR-ATAD5, NR-AR-LBD, NR-AR, NR-ER-LBD, NR-ER, SR-ARE,
NR-AhR, and SR-MMP. A snippet of the results is given in Table 2 to ease understanding of
the model results. The results in the table are presented as probabilities instead of binary
results (bioactive or not), where the convention is that a probability above 0.5 (p > 0.5) is
considered bioactive. One can observe from the table that the probabilities show a broad
range across targets. Those marked with an asterisk would be deemed bioactive towards
the target since their values are above 0.5.

Table 2. A snippet of probabilities for the first five metabolites being active towards the eight
models (columns).

SR-ATAD5 NR-AR-LBD NR-AR NR-ER-LBD NR-ER SR-ARE NR-AhR SR-MMP

cortisol 0.12 * 0.97 * 0.95 0.07 0.35 0.2 0 0.13
cortisone 0.13 * 0.96 * 0.82 0.04 0.36 0.24 0.02 0.19
androsterone
sulfate 0.12 * 0.88 * 0.67 0.43 * 0.59 0.48 0.02 0.33
dehydroepiandro-
sterone sulfate 0.13 * 0.92 * 0.66 0.46 * 0.67 * 0.54 0.01 0.29
16a-hydroxy dhea
3-sulfate 0.14 * 0.93 * 0.63 0.37 * 0.57 0.42 0.02 0.44

A mask was applied to filter out all “nonactive” results with values below 0.5 in the
full results. In total, 51 metabolites showed at least one probability in one model being
active above 0.5. A complete list of active metabolites is given in Table 3.

3.3. Association with hs-CRP

For each child (c) in the cohort, BiP was calculated per metabolite and target and then
summed and log-transformed sBIP using Equation (2). Once a table was obtained with sBiP
per child and metabolite, the potentially bioactive part of the metabolome was associated
with levels of hs-CRP. The table was scaled priorly, and metabolites were decorrelated,
reducing their number from 51 to 40. The hs-CRP levels were logarithmed, and missing
values were imputed by median values. The associations were then evaluated in a linear
regression. Metabolites amongst the 40 metabolites with an association with hs-CRP filtered
for a regression coefficient (estimate) with a p-value below 0.001, chosen due to a high
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number of predictors to avoid false discovery, are shown in Table 4. The results show
negative significant coefficients for cortisone, retinol, and 3beta-hydroxy-5-cholestenoate,
while the cortisol and glycocholenate sulfate resulted in positive coefficients.

Table 3. A list of active metabolites given the pre-trained models.

Active Metabolites Active Metabolites Active Metabolites

taurochenodeoxycholic acid 3-sulfate taurochenodeoxycholate chenodeoxycholate
4-cholesten-3-one ursodeoxycholate 2-aminophenol sulfate
gamma-CEHC pregnenediol sulfate taurohyocholate
5alpha-pregnan-3beta,20alpha-diol
disulfate 16a-hydroxy DHEA 3-sulfate 5alpha-androstan-3beta,17alpha-diol

disulfate
cortisone lithocholate sulfate taurocholate
taurocholenate sulfate pregnenetriol sulfate tauroursodeoxycholate
cholesterol taurodeoxycholate glycoursodeoxycholate
alpha-tocopherol 4-hydroxychlorothalonil N6-methyladenosine
glycodeoxycholate hyocholate glycocholate
pregnenolone sulfate campesterol 3beta-hydroxy-5-cholestenoate
taurolithocholate 3-sulfate glycochenodeoxycholate androsterone glucuronide
glycochenodeoxycholate 3-sulfate isoursodeoxycholate glycolithocholate
glycolithocholate sulfate tauro-beta-muricholate gamma-tocopherol/beta-tocopherol
androsterone sulfate cortisol 7-HOCA
glycohyocholate solanidine beta-cryptoxanthin
caffeine dehydroepiandrosterone sulfate piperine
retinol (Vitamin A) cholate glycocholenate sulfate
taurochenodeoxycholic acid 3-sulfate deoxycholate

Table 4. Results of the association testing using linear regression against hs-CRP.

Metabolite Super_Pathway Sub_Pathway coef. p-Value

cortisone Lipid Corticosteroids −0.91 0.000
retinol (Vitamin A) Cofactors and Vitamins Vitamin A Metabolism −1.39 0.000
cortisol Lipid Corticosteroids 1.026 0.000

3beta-Hydroxy-5-cholestenoate Lipid Sterol (or primary bile acid
biosynthesis) −0.64 0.000

glycocholenate sulfate Lipid Secondary Bile Acid Metabolism 0.581 0.002
intercept 2.976 0.000

4. Discussion

hs-CRP is a well-known biomarker in clinical medicine and diagnostics, serving as
a powerful tool for assessing low-grade or chronic systemic inflammation [52,53]. We
have previously shown that systemic low-grade inflammation assessed by hs-CRP levels
in pregnant mothers and their children are correlated independently of anthropomet-
rics and environmental exposures [28]. Elevated levels of hs-CRP are associated with
an increased risk of cardiovascular disease [54], inflammatory bowel disease (IBD) [55],
depression [56], ADHD [12], decreased lung function in childhood [57], allergic sensitiza-
tion [11], the composition of the early-life airway microbiota [58], and the risk of childhood
asthma [59]. Metabolites serve as the ultimate effectors of cellular processes and represent
the penultimate step in the progression to the phenotype. This underscores the importance
of investigating the association between CRP and metabolites to understand better how
systemic low-grade inflammation is reflected in the metabolome.

In our research, we developed a series of QSAR models targeting the Tox21 cellular
endpoints. These models were employed to forecast potential outcomes against such
targets for each of the quantified metabolites within the COPSAC2010 cohort. The selection
of these specific metabolites was based on their abundance and bioactivity in relation to
high-sensitivity C-reactive protein (hs-CRP) levels in children at six months of age. First and
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foremost, the model we developed has achieved reasonable generalization, as indicated
by the prediction results. The Balanced Accuracy of our models for the selected eight
endpoints consistently exceeded 0.6 in both the training and test sets, and the Matthews
Correlation Coefficients (MCC) consistently exceeded 0.3. These metrics demonstrate
the robustness of our models for making accurate predictions in the following sections.
Comparing the results here with those of others in the literature is difficult since the
data might have been processed differently, and the train test set can be different, too. A
comparison with [60], who performed thorough modeling of the same set, results in the
following observations. For the SR-ATAD5 assay, our model achieved an MCC score of
0.31, improving the literature values of 0.272 and 0.395 under different criteria. In the
case of NR-AR, our model significantly outperformed the literature-reported scores for
the related assay with our score of 0.7 compared to 0.481 and 0.357. The SR-ARE assay
saw our model achieving a 0.34 MCC score, which is competitive with the literature values
of 0.317 and 0.461. For NR-Aromatase, our model’s score of 0.15 was compared against
the reported literature scores of 0.186 and 0.429. Our NR-ER-LBD model’s performance,
with an MCC score of 0.56, was robust against the literature scores of 0.457 and 0.362.
Similarly, for NR-AhR, our model achieved a 0.45 MCC score, slightly below the literature
value of 0.513 and closely matching the second criterion score of 0.359. The SR-MMP assay
model demonstrated a strong performance with an MCC score of 0.58, comparing favorably
against the literature scores of 0.501 and 0.475. In the NR-ER assay, our model’s 0.41 MCC
score was evaluated against literature scores of 0.235 and 0.555. For the NR-PPAR-Gamma
assay, our model scored 0.09, which was weaker than the literature scores of 0.238 and
0.457. The SR-p53 assay model yielded a 0.24 MCC score compared to the literature scores
of 0.356 and 0.458. Our NR-AR-LBD model’s MCC score of 0.55 was robust compared to
the literature scores of 0.481 and 0.357. The results appear in similar ranges while not using
the same test set and processing steps. A similar comparison of our previous models with
the literature was presented in the Supplements of [46], yielding similar conclusions.

Using the developed models in this work, we identified 40 out of the 517 metabolites
in our cohort that showed bioactivity in at least one of the eight models. We tested the
BiP of these 40 metabolites in a linear model against the levels of hs-CRP in children at six
months of age. We identified five metabolites of particular interest, each demonstrating
regression coefficients (estimates) with a p-value below 0.001.

Among these five metabolites, cortisone and cortisol both belong to corticosteroid
hormones, and cortisone is released by the adrenal gland in response to stress [61]. We
observed a positive association between cortisol and hs-CRP and a negative association
between CRP and cortisone. One of cortisone’s effects on the body is the suppression of
the immune system due to a decrease in the function of the lymphatic system [62], which
is consistent with our findings. It was proven in Shimba’s study [63] that corticosteroids
are potent inhibitors of inflammatory corneal lymphangiogenesis, with significant dif-
ferences between various corticosteroids in terms of their antilymphangiogenic potency.
The primary mechanism seems to be through the suppression of macrophage infiltration,
proinflammatory cytokine expression, and inhibition of the proliferation of lymphatic
endothelial cells. A study by Rueggeberg et al. observed that 2-year increases in diur-
nal cortisol secretion were significantly associated with higher levels of CRP at a 6-year
follow-up [64]. These findings may be difficult to reconcile because cortisol generally
has anti-inflammatory properties. However, sustained exposure to high cortisol levels
may render innate immune cells partially resistant to glucocorticoid inhibition, allowing
inflammation to escape normal regulatory controls [65,66]. This could explain the apparent
positive correlation between high CRP and cortisol.

The coefficients of cortisol and cortisone show an opposite direction (1.026 vs. −0.91),
both being significant. The balance between serum cortisol and cortisone is a known phe-
nomenon, and hence often a ratio is used (cortisol/cortisone), with cortisol being the more
active one. Examples of altered rations compared to normal can occur during acute-phase
responses [67], in obesity-related issues [68], and in tuberculosis [69]. The relationship in this
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work may be subject to various factors, including chronic stress, individual differences, and the
balance between pro-inflammatory and anti-inflammatory processes in the body. A positive
association between cortisol and CRP and a negative association between cortisone and CRP
can be explained by the complex and dynamic nature of the body’s stress and inflammatory
responses. In some situations, cortisol can have pro-inflammatory effects under chronic
stress [70]. Chronic stress can lead to dysregulation of the hypothalamic–pituitary–adrenal
axis, resulting in prolonged elevated cortisol levels [68]. These protracted high cortisol
levels can induce inflammation and stimulate the production of inflammatory mediators
like CRP. A positive association between cortisol and CRP can be observed in this scenario.

Retinol (Vitamin A) exhibited the most robust negative association with hs-CRP among
these five notable metabolites in our predictive analysis. In the study by Dios et al. [67], it was
investigated that 6–8-year-old children in the highest hs-CRP group (hs-CRP ≥ 0.60 mg/dL)
displayed significantly lower levels of retinol compared to those in the lower hs-CRP groups.
It is hypothesized that retinol binding to retinol-binding protein (RBP) plays a role in the
association between retinol and CRP in children. From a biological perspective, retinol is
transported in the blood while bound to RBP, and its concentration is tightly regulated by
RBP [68]. Additionally, a correlation between RBP4 and CRP levels has been described in
school-aged obese children [71]. Our findings align with previous research and further
confirmed the strong correlation between retinol and CRP in a larger, controlled cohort
of 6-month-old children. 3Beta-hydroxy-5-cholestenoate (3-BH5C) belongs to the class of
monohydroxy bile acids, alcohols, and derivatives. This compound is a component of the
primary bile acid biosynthesis pathway and has been recognized as a metabolite capable of
predicting gut microbiome Shannon diversity [72]. Shannon diversity serves as a potential
marker for overall microbiome health. Our results identified a robust negative association
between 3-BH5C and CRP. To the best of our knowledge, this is the first time a negative
correlation between 3-BH5C and CRP has been observed, suggesting that the microbiome
health of children, as indicated by the marker 3-BH5C, may be linked to inflammation.
A prior study conducted in the Northern Finland Birth Cohort 1966 (NFBC1966) and the
TwinsUK cohort demonstrated that higher CRP levels were associated with lower alpha
diversity of gut microbiome measures [73]. This provides further support for the credibility
of our findings.

Another bile acid metabolite, glycocholenate sulfate, classified as a conjugated bile
acid (CBA), has been identified as a significant biomarker for CVD risk in a cohort that
included 1919 African American participants in the Atherosclerosis Risk study [74]. CBA
profiles are increasingly recognized as crucial signaling molecules intricately involved in
mammalian cholesterol and lipid metabolism, glucose homeostasis, thermogenesis, inflam-
mation, and intestinal function [75]. Our study further confirmed that CBA, represented by
glycocholenate sulfate, is strongly associated with CRP levels in children at six months.

Limitations and Future Perspective

There are several limitations to consider when interpreting the results. First, the
metabolite concentrations were measured semi-quantitatively, which may introduce mea-
surement errors. Secondly, the bioactivity model-based approach used in this study may
introduce error propagation and be limited by noise [76] since (a) bioactivity data have
a measurement error and (b) the models come with limited accuracy. Furthermore, it is
essential to note that the ligand–receptor interactions are complex and may not be fully
captured by the model-based approach, a known limitation of QSARs [77]. While efforts
were made to incorporate as much information as possible into the models, the true nature
of these interactions may be more nuanced than what was captured in this study. There is
also no consensus on how to clean data for modeling; hence, the data-cleaning process used
in this study may have needed to be more rigorous and lost some information, which is
further driven by the unannotated metabolites. Another limitation comes from compounds
being excluded in the data processing; however, their effects might be more complex and
have a synergy.
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A concept worth mentioning is causality, which cannot be assessed using such meth-
ods. The exact drivers of metabolic pathways are a question of causality and still need to
be completely revealed. Future work should address some of these limitations.

Even though this work is closer to methodological approaches than clinical application,
with further validation, it might find its way to the clinics. The hope of metabolomics is,
among other things, to support biomarker identification. Such a filtration approach, which
can also be perceived as a metabolite selection method, can speed up the identification of
biomarkers. Future research might reveal that biomarkers are rather linear and non-linear
combinations of metabolites instead of single metabolites. This is also the power of machine
learning, which helps generate such combinations in a data-driven manner.

We are also aware that regardless of the children being observed in the clinic and a lot
of information being available (see https://copsac.com/home/copsac-cohorts/copsac2
010-cohort/, accessed 25 April 2024) that this is only a glimpse of the underlying biology
and environmental factors in such processes. In addition to this, both the metabolome and
hs-CRP are snapshots and are affected by other processes. More research work is hence
needed to understand their variability, as well as single biomarkers and combinations of
biomarkers related to physiological conditions.

5. Conclusions

We developed a series of QSAR models targeting the Tox21 biological endpoint and
used them to predict potential outcomes for each quantified metabolite within the COP-
SAC2010 cohort. Our analysis unveiled five metabolites of particular interest due to their
robust association with hs-CRP levels. We observed the significant influence of CRP on
corticosteroid hormones, bile acid metabolites, and vitamin A. The association with corti-
costeroid hormones is supported by the literature and hence shows this data-driven and
chemistry-informed approach to be meaningful, as it leads to known findings without the
addition of prior medical knowledge. Our conclusions regarding bile acid metabolites are
novel to our understanding. Still, they are supported by the known findings regarding
the relationship between microbiome-driven gut health and the level of CRP. Even though
causality has not been researched in this paper, we show that there is a relationship between
metabolites and CRP. This has the potential to help to understand biological pathways
but also for use in clinical settings where supplementation with, e.g., vitamin A and the
improvement of gut health might play a role in early childhood.

Supplementary Materials: The modeling data and auxiliary files are published in (https://zenodo.
org/records/10888738, accessed on 25 April 2024).
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