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Abstract: Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery
of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its
true potential, especially when performing data analysis across multiple sample sets. While high-
resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple
quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites
in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we
present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis
of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of
this method, multiple HILIC columns and mobile phase conditions were compared, the robustness
of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality.
Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy
and precision. The use of these U-13C-metabolites as internal standards improved the goodness of
fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the
entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite
ratios to internal standards were consistently lower than 7% and less than 10% across batches that
were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to
identify biomarkers, was confirmed using a large sample set.

Keywords: biomarkers; clinical metabolomics; HILIC; hydrophilic interaction liquid chromatography;
triple quadrupole mass spectrometry; U-13C-metabolite internal standard

1. Introduction

Metabolomics can be defined as the large-scale study of small molecules (metabolites)
present in biological systems and is a relatively recent addition to the field of ‘omics’ re-
search, which includes genomics, transcriptomics, and proteomics. Metabolites are dynam-
ically regulated in response to a variety of processes that include endogenous metabolism
and signaling, metabolism of the microbiome, diet, and exposure to the environment and
drugs [1]. Consequently, metabolomics sits at the nexus of genetic and environmental
impact and offers a unique real-time readout of the physiological or pathological state
in that moment of time. However, adoption of metabolomics has been relatively slow
compared to some of the other omics. This is in part due to the limited reproducibility of
metabolite coverage and abundance [2]. Additionally, processing of metabolomics data,
especially high-resolution data, still requires specialist knowledge, limiting its integration
into clinical labs.
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Nevertheless, there is tremendous potential for metabolites to provide clinical value for
a variety of diseases [3]. Indeed, many of the top diagnostics are already based on metabolite
readouts. This includes glucose for diabetes, cholesterol and other lipids for cardiovascular
disease, and creatinine for kidney function [4,5]. Examples of how metabolomics can
provide further clinical value include the following: diagnosis of elusive inborn errors of
metabolism (IEM) [6], improved detection of insulin resistance and type 2 diabetes [7,8],
the ability to predict cardiovascular risk in patients with coronary artery disease (CAD) [9],
improved diagnosis of neurological disorders such as Parkinson’s disease [10–12], and the
improved ability to diagnose certain types of cancer and monitor treatment response [13–15].
Thus, metabolomics, on its own or used in conjunction with other omics, is uniquely posi-
tioned to make significant contributions to elucidating molecular mechanisms of disease as
well as identifying new biomarkers to accelerate drug programs, improve diagnostics, and
facilitate patient sub-setting (i.e., precision medicine).

Metabolomics has been rapidly growing mainly due to advancements in analytical
techniques, such as NMR and mass spectrometry (MS), the two main platforms for profiling
metabolites in samples [16,17]. Among the MS-based techniques, untargeted metabolomics
using high-resolution accurate mass spectrometry (HRAMS) has been widely adapted as
an analytical tool for characterizing the metabolome due to its potential to measure the
abundance of thousands of ions in a single run, including unknowns [18–21]. HRAMS
instruments have been especially powerful in studies involving the use of stable isotope
labeled nutrients to ‘trace’ metabolic activity and in exploratory studies where the focus is
on identifying metabolic differences between conditions of interest, including unknown
signals. It is important to note, however, that structural elucidation of unknowns is a highly
specialized endeavor that is complicated by the presence of myriad isotopes, adducts, in-
source fragment ions, and artifacts [22,23]. The omnipresence of these signals also typically
leads to a gross overestimation of the actual number of metabolites that are measured in a
LC-MS run. In fact, the number of metabolomic features in a sample has been reported to
exceed the count of unique metabolites by one to two orders of magnitude [22,24].

For the analysis of clinical samples, targeted metabolomics using triple quadrupole
(QqQ) MS, especially in combination with stable isotope-labeled standards, may provide
a powerful solution for several reasons. First, with continued innovations in QqQ MS
technology, scan speeds have increased to a point where the number of metabolites that can
be profiled in a single LC-MS run is comparable to HRAMS. This makes comprehensive cov-
erage of the known metabolome that can be measured by LC-ESI-MS tractable [25]. Second,
QqQ MS provides superior sensitivity and linear dynamic range, which, in combination
with stable isotope-labeled standards, provides the accuracy, precision, and consistency
in metabolome coverage, all of which are required for successful clinical metabolomics
application [18,21]. Finally, the cost-effectiveness and ruggedness of the QqQ instruments,
along with the simplified data processing pipeline, make it feasible to process very large
datasets and implement the method in clinical laboratories without expert metabolomics
experience. Recent examples of QqQ-based metabolomics include a seminal work by
López-Hernández et al., in which 180 urinary metabolites in a set of samples from both
healthy and ill newborns admitted to the NICU were measured to investigate metabolic sig-
natures related to life-threatening perinatal complication [26]. In another study, QqQ-based
metabolomics was used to analyze a total of 184 metabolites in a large European population
in order to identify potential biomarkers for cardiovascular risk assessment [27].

Here, we introduce the Olaris Global Panel (OGP), a QqQ MS-based metabolomics
method covering approximately 250 metabolites (at the time of writing) from all major
metabolic pathways. It addresses the limitations in accuracy and reproducibility hampering
wide-scale adoption in a clinical setting, while at the same time maximizing ease of use. As
outlined in this manuscript, central to the success of the method are (1) the careful selection
and optimization of the chromatographic and MS settings and (2) the use of U-13C internal
standards. The OGP achieves high precision for samples acquired across a six-month
timespan, as well as high accuracy based on linear range assessments and a comparison to



Metabolites 2024, 14, 280 3 of 18

2D-NMR, the gold standard in data accuracy. Finally, the method’s robustness and ability
to identify clinically relevant metabolite signatures is demonstrated using a clinical cohort
of urine samples.

2. Materials and Methods
2.1. Chemicals and Material

LC-MS grade acetonitrile (ACN) and methanol (MeOH) were purchased from VWR
analytical (Radnor, PA, USA). LC-MS grade water was obtained from Thermo Fisher
Scientific (Waltham, MA, USA). Metabolite standards were purchased from MetaSci, Inc.
(Toronto, ON, Canada) or Sigma Aldrich (St. Louis, MO, USA). Stable isotope labeled
(ISO1, U-13C, 98%) and unlabeled metabolite yeast extract (ISO1-UNL) were obtained from
Cambridge Isotope Laboratories, Inc. (Andover, MA, USA). Pooled commercial urine used
for making samples with different specific gravities (SG) was obtained from UTAK (UTAK,
Valencia, CA, USA). All other pooled commercial urine samples used in this study were
purchased from Innovative Research (Innovative Research Inc., Novi, MI, USA). Specific
gravity (SG) of urine samples was measured using a refractometer (Palm Abbe Digital
Refractometer, MISCO, Solon, OH, USA).

2.2. U-13C Metabolite Yeast Extraction

The dried U-13C metabolite yeast extract was solubilized in 2 mL of water: MeOH
(1:1 v/v) by vigorously shaking the Falcon tube by hand with intermittent high-speed
vortexing until the pellet was completely dissolved. The solution was then centrifuged
at 20 ◦C for 5 min at 4000 rcf. Subsequently, the supernatant was carefully transferred to
microcentrifuge tubes and kept at −80 ◦C until use.

2.3. Sample Preparation

Urinary metabolites were extracted as previously reported with some modifica-
tions [28]. In the first step, a Working Internal Standard (WIS) solution was prepared
by adding 1 volume of U-13C metabolite yeast extract, prepared in Section 2.2, to 4 volumes
of an ACN: MeOH (1:1 v/v) solution. Prior to analysis, the SGs were pre-adjusted to ~1.02
for all urine samples above this density. Next, 25 µL of urine sample was added to 75 µL
WIS solution in an microcentrifuge tube. The sample was vortexed for 60 s and centrifuged
for 10 min at 4 ◦C and 13,500 rpm. Subsequently, 80 µL of the supernatant was transferred
to a LC-MS vial and stored at −20 ◦C until analysis.

For linear response assessment, a pooled commercial urine sample (SG = 1.0097) was
diluted (2×, 5×) with water or concentrated 2, 4, and 6 times by lyophilizing 5 mL aliquots
of urine overnight and resuspending them in varying volumes of water to obtain different
SG values of 1.0187, 1.0275, and 1.0382.

2.4. Clinical Samples

To examine the performance of the OGP for the detection of clinically relevant metabo-
lite signatures, a set of 225 urine samples from patients having undergone a kidney
transplant either two weeks or a year prior were prepared and analyzed according to
Sections 2.3 and 2.5, respectively. A quality control sample (QC) was identically prepared
after pooling 10 µL aliquots of each study sample. LC-MS acquisition of the patient samples
was performed in a single batch and in a randomized order interspersed with a pooled
urine QC sample run at the beginning of the batch, after every 10 study samples and at the
end of sequence to monitor the analytical quality of the run. To confirm linear response of
the metabolites, a QC sample dilution series (1×, 2×, 4×, and 8× diluted) were run at the
beginning of the batch. Additionally, a pooled commercial urine sample (reference sample)
was prepared and run in triplicate at the beginning of each sequence to monitor instrument
performance and evaluate reproducibility both within and across batches. Finally, blanks
were run at the beginning and the end of the sequence to rule out carryover.
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2.5. Instrumentation and LC-MS Data Acquisition

Targeted mass spectrometric analysis of urinary metabolites was carried out using a
Thermo Fisher Scientific Altis MD with a Thermo Fisher Scientific Vanquish Flex UHPLC
system. All samples were analyzed in randomized order and evenly interspersed by
QC samples by injecting 2 µL of the sample on a Waters Atlantis Premier BEH Z-HILIC
VanGuard Fit column (2.1 mm × 150 mm, 1.7 µm). The flow rate was 350 µL/min with
mobile phase A water/ACN (95%: 5% v/v) containing 10 mM ammonium acetate and
mobile phase B water/ACN (5%: 95% v/v) containing 10 mM ammonium acetate. The
mobile phase gradient program started at 5% A, held constant for 1 min, linearly increased
to 25% A at 5 min, linearly increased to 40% A at 10 min, linearly increased to 55% A at
11.5 min, held constant until 14.5 min, and returned to starting conditions at 16 min with
acquisition stopping at 20.5 min. The column and autosampler temperatures were kept at
40 ◦C and 5 ◦C, respectively. Ionization was performed using heated electrospray ionization
(HESI) with a spray voltage of 4.5 kV for positive mode and 3.5 kV for negative mode. The
vaporizer and the ion transfer tube temperatures were set at 350 ◦C and 325 ◦C, respectively.
A sheath gas flow of 40 (arbitrary units) and a sweep gas flow of 2 (arbitrary units) were
applied for acquiring data. SRMs (Selected Reaction Monitoring) were determined using
authentic standards and metabolite identity was confirmed using a combination of 2 SRMs
for most metabolites as well as retention times obtained from the analysis of the authentic
standards. Peak integration was performed using Skyline [29] and exported as CSV in the
form of a data matrix for further analysis.

To optimize data quality, we used the TSQ Altis Method Editor (version 3.4) to assign
dwell time prioritization. Data from a pooled urine sample was first acquired using
this method, and peak intensities for each metabolite were assigned in roughly equal
proportions to five buckets, with 1 being the highest priority for the least abundant signals
that require the highest dwell time and 5 the lowest priority for the most abundant signals
requiring the least amount of dwell time. Based on this assignment, the software calculated
the optimal distribution of dwell times while maintaining >10 data points per peak.

2.6. Chromatographic Conditions

The following columns were assessed: Atlantis Premier BEH Z-HILIC (BEH-HILIC,
2.1 mm × 150 mm × 1.7 µm VanGuardTM Fit), Acquity Premier BEH Amide (BEH-amide,
2.1 mm × 150 mm × 1.7 µm), and SeQuant ZIC-HILIC (zic-HILIC, 2.1 mm × 100 mm ×
3.5 µm). The first two columns were each tested with mobile phases at pH 3, 7, and 10,
whereas the zic-HILIC column was tested at pH 3 and 7. Mobile phase A composition for
neutral pH consisted of water/ACN (95%: 5% v/v) containing 10 mM ammonium acetate,
and for mobile phase B water/ACN (5%: 95% v/v) containing 10 mM ammonium acetate
was used. For acidic and basic conditions, mobile phase A and B were modified with acetic
acid and ammonium hydroxide, respectively.

For each of 145 metabolite standards, chromatographic quality was scored based
on (1) retention (>3.8 min is good (green), 2–3.8 min is acceptable (yellow), and <2 min
unacceptable (red)); (2) peak quality (narrow and symmetric is good (green), slight tailing
or fronting is acceptable (yellow), and split or excessively broad peaks is unacceptable
(red)); and (3) MS response (strong MS response is good (green), MS signal < half of the
highest observed is acceptable (yellow), and very low signals are unacceptable (red)). Each
metabolite was assigned one color based on the lowest scoring attribute for each column
and mobile phase pH combination.

2.7. Data and Statistical Analysis

2.7.1. Analysis of the Impact of U-13C Metabolite Yeast Extract on Linearity of Response
and Normalization

Ratios of endogenous (12C) and U-13C metabolites were calculated based on the inter-
nal and surrogate standards in Supplementary Table S1. Correlations between metabolite
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raw peak intensities or ratios and relative concentration levels were determined for each
metabolite using Pearson’s correlation coefficient.

2.7.2. Assessment of Within- and Across-Batch Precision Using QC Samples

Data from aliquots of the same pooled urine sample from 3 separate datasets (3–4 sam-
ples per dataset) were collected over a six-month period. For within-batch precision, ratios
of endogenous (12C) and U-13C metabolites were calculated. For across-batch precision,
intensities of all (12C and U-13C) metabolites were first normalized to the mean of the
sample’s batch to correct for batch differences prior to calculating ratios. The percent
coefficient of variation (CV) for each metabolite ratio was calculated as follows:

CV(%) =
1
µ

√
∑(ri − µ)2

(N − 1)
× 100%

in which ri is the vector metabolite ratio value of sample i; µ is the sample mean; and N is
the sample size. The within-batch percent CV was computed for samples contained within
individual datasets.

2.7.3. Comparison with NMR Data to Evaluate Data Accuracy

A total of 225 urine samples from kidney transplant patients obtained either within
2 weeks or a year after transplant surgery were analyzed using 2D-NMR and LC-MS with
Olaris. The NMR data were collected on a Bruker AVANCE II solution-state 600 MHz
spectrometer equipped with a liquid helium-cooled Prodigy TCI Cryoprobe (H/F, C,
N) using noesypr1d and hsqcetgpsisp2.2 pulse programs and non-uniform sampling
(NUS). The acquired 2D spectral data were processed and reconstructed using iterative soft
thresholding using the NMRPipe software package (version 11.2), and 2D-NMR metabolite
features were identified using Olaris’ 2D-NMR analysis pipeline [30]. The correlation
between raw 2D-NMR and LC-MS intensities was determined using Pearson’s correlation
coefficient.

2.7.4. OGP Method Performance in a Clinical Sample Study

The Skyline data output for the kidney transplant urine was processed by a dedicated
pipeline. Signal loss correction was implemented using QC locally estimated scatterplot
smoothing (QC-LOESS) on the pooled biological urine samples to mitigate signal loss over
the course of the sequence. Three times the mean intensity in blank samples served as the
detection lower bound (DLB) after signal loss correlation, with any signal lower than the
DLB set to 0. Additionally, metabolites with more than 20% missing values were removed
from the analysis.

After data processing, ratios between the endogenous metabolites and their internal
or surrogate U-13C standards were calculated. A post-acquisition normalization procedure
was implemented to remove biological variation. Biological variation was estimated by
calculating the median of all metabolite ratios of a sample. All metabolite ratios in that
sample were then normalized by dividing them by the following median:

αi = median(ri)

ri =
ri
ai

where αi is the biological variation estimated from all the metabolite ratios ( ri); ri are the
normalized metabolite ratios. Finally, standard deviation (SD) scaling and log transforma-
tion standardized the distribution of metabolite data.
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A Kruskal–Wallis (KW) non-parametric one-way analysis of variance (ANOVA) and
fold change (FC) was utilized to identify differential metabolites between experimental
groups. FC was calculated as the ratio between medians of two groups:

FC =

∼
r a
∼
r b

where
∼
r a and

∼
r b are median metabolite ratios of 2 groups. p-values from the KW test were

adjusted for false discovery rate (FDR) for multiple hypothesis testing correction. A differ-
ential metabolite was defined as any metabolite having an FDR-adjusted p-value < 0.05 and
an FC exceeding the 1.5 cutoff (FC values greater than 1.5 or less than 0.67 were considered
indicative of increased or decreased levels, respectively).

All data processing and statistical analyses were performed using R (version 4.2.3).

3. Results
3.1. Optimization of Liquid Chromatography and Mass Spectrometry Parameters to Facilitate
High-Quality Data Generation for Hundreds of Metabolites

The purpose of the OGP is to generate accurate and reproducible data for polar
metabolites that are routinely present in human plasma and urine. To generate a target list,
we filtered the Human Metabolomics Database (www.hmdb.ca, accessed on 10 September
2022) for endogenous metabolites that have been detected and quantified in either or both
matrices and removed the molecules classified as lipids [31]. This resulted in a list of
approximately 1200 metabolites. To minimize sample consumption, sample acquisition,
and processing time, the next objective was to find a universal LC-MS method for the
analysis of as many of these metabolites as possible. Due to the polar nature of the
metabolites, we exclusively focused on HILIC columns. In total, 145 metabolite standards
were acquired with a chemical diversity representative of the list of 1200; 48 were amino
acid(-like) molecules, 44 were organic acids, and the remaining 53 were nucleotides and
sugars. Chromatographic performance of three HILIC columns and three mobile phase
pH conditions (two for one column) was systematically assessed using mixtures of these
standards. Specifically, the SeQuant ZIC-HILIC (zic-HILIC), the Atlantis Premier BEH
Z-HILIC (BEH-HILIC), and the Acquity BEH Amide (BEH-amide) columns were tested
using mobile phases at pH 3, 7, and 10 (the SeQuant column was only tested at pH 3 and 7,
see Section 2 for details on columns and mobile phase composition). For each metabolite,
chromatographic quality was scored based on retention, peak quality, and MS response.
To present this data in a visually intuitive manner, each metabolite was assigned one
color based on the lowest scoring attribute (retention, peak quality, MS response) for each
column and mobile phase pH combination and the collective data integrated in a heatmap
(Figure 1A). From this analysis, it was apparent the Atlantis Premier BEH Z-HILIC at pH 7
provided the best overall performance, in line with previous reports [32,33].

Following the selection of the column and mobile phases, additional standards were
acquired, tuned, and analyzed by LC-MS to obtain SRM parameters and retention time, and
the gradient optimized to maximize separation. At time of publication, the OGP contains
SRMs for 236 endogenous metabolites covering all major metabolic pathways with more
to be added in the future. Chromatographic quality was high with most peaks having
<10 s peak widths and the ability to resolve isomer pairs, such as leucine-isoleucine and
2,3-dihydroxybenzoic acid-2,5-dihydroxybenzoic acid at baseline (Figure 1B). To evaluate
the chromatographic stability of our final method, a pooled urine sample was injected
200 times and the retention times of the first and last sample were compared. Virtually
no drift in retention times was observed, as illustrated by citrulline as a representative
metabolite (Figure 1C).

www.hmdb.ca
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Figure 1. Optimizing chromatographic and MS conditions to facilitate at-scale metabolite measure-
ments: (A) Comparison of separation performance for multiple columns and mobile phase conditions
(pH). See main text and Section 2 for details. (B) Examples of baseline separation of isomers in a
pooled urine sample. (C) Retention times remain stable for at least 200 LC-MS injections of pooled
urine, as exemplified by citrulline. (D) Dwell time optimization to improve metabolomics data quality.
MS instrument cycle time is affected by the peak width, number of desired datapoints for each peak,
the set retention time window, and the number of scheduled SRMs per measurement cycle. More
SRMs per measurement cycle means less dwell time per SRM, affecting data quality (left panel).
Prioritizing dwell times based on metabolite signal abundance increases dwell time for low abundant
metabolites to improve S/N, while minimizing time spent on high-intensity metabolites.
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Our method uses 2 SRMs for each metabolite to maximize confidence in annotation. As
we also incorporate U-13C labeled metabolites as internal standards (see next Section 3.2),
the total number of SRMs over the course of the approximately 13 min of separation exceeds
600. The reliable performance of the chromatographic approach permits the use of relatively
tight, 1 min retention time windows in which the method scans for a particular metabolite.
This drastically reduces the number of concurrent SRMs during each measurement cycle
and, consequently, the time that can be spent on each transition increases (dwell time).
Nonetheless, the number of concurrent SRMs remains high, peaking at around 6 min into
the separation, with over 100 SRMs during a measurement cycle (Figure S1A). During
this period, the dwell time per SRM dips well below 1 ms, impacting the quality of the
data collected (Figure 1D, left panel). To optimize data quality, we used the ability of the
instrument software to assign dwell time prioritization. Data from a pooled urine sample
were first acquired by the method, and peak intensities for each metabolite were assigned in
roughly equal proportions to five buckets, with one being the highest priority for the least
abundant signals that require the highest dwell time and five the lowest priority for the
most abundant signals requiring the least amount of dwell time. Based on this assignment,
the software calculated the optimal distribution of dwell times while maintaining >10 data
points per peak (Figure 1D, right panel). This significantly improves the data quality for
low abundant signals, as illustrated by U-13C-guanosine (Figure S1B).

3.2. Impact of U-13C Metabolite Yeast Extract on Linearity of Response and Normalization

A major consideration when establishing an accurate LC-MS method is the fact that
the MS response is affected by a variety of factors in addition to analyte abundance. For
instance, the response can vary significantly day-to-day depending on when and how the
system was last cleaned and calibrated, what samples were run immediately prior to the
current analysis, and the state of column. Additionally, even within a single batch, varia-
tions in pre-analytical (sample preparation) and analytical (ion suppression/enhancement
due to matrix effects, decrease in sensitivity as the sequence progresses) factors impact
data quality. Fortunately, these collective sources of error can be conveniently addressed
by using internal standards. Stable isotope-labeled (13C, 15N, 2H) internal standards are
particularly well-suited, as their chemical behavior is near-identical to their unlabeled,
endogenous counterpart but can be distinguished by MS. If internal standards are spiked
in immediately prior to sample preparation, they can be used to account for both the
pre-analytical and analytical sources of error discussed above (Figure 2A).

While the use of labeled internal standards improves data quality, a key issue in
metabolomics is the intractability of sourcing these standards for hundreds of metabolites,
as they are expensive and making internal standard mixtures is cumbersome. A more
feasible alternative is the use of commercially available U-13C metabolite yeast extract [34].
To generate this labeled metabolite extract, yeast cells are cultured in U-13C-glucose in
highly controlled conditions and for a sufficiently long duration to ensure complete labeling
of metabolites. Metabolite extracts from these yeast cells can then be spiked into each
sample as a single source of internal standards.
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Figure 2. U-13C metabolite yeast extract improves linearity of response: (A) Spiking U-13C metabo-
lite yeast extract into each sample prior to sample preparation and LC-MS analysis corrects for
pre-analytical and analytical sources of variation and improves overall data quality. (B) LC-MS
chromatogram of U-13C metabolite yeast extract. (C) Example chromatogram of an endogenous
metabolite (alanine) from a pooled urine sample and the U-13C labeled standard from the spike yeast
extract. (D) U-13C isotopologues of chemically similar metabolites can act as ‘surrogate’ standards
for those metabolites lacking their own internal standard. Data is from a pooled urine sample.
(E) Schematic illustrating how pooled urine was diluted and concentrated multiple times to mimic
the range of specific gravity (SG, concentration of urinary solutes including metabolites) observed in
the clinic. (F) Examples of how the ratio to internal standard (green) improves linearity of response
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compared to the absolute metabolite signal (red). Data points are averages of 3 replicate measurements
and error bars are s.d. (G) Degree of correlation to a linear calibration curve of metabolite ratios to
internal or surrogate standards vs absolute metabolite intensities (raw data) for all OGP metabolites.

To determine which yeast metabolites can be detected by the OGP, we first analyzed
an unlabeled metabolite yeast extract. This resulted in the detection of 78 metabolites, with
MS signal intensities ranging from close to the detection limit to very abundant. SRMs
for the U-13C metabolites were then calculated using the structural information provided
for the fragments by mzCloud (https://www.mzcloud.org/, accessed on 5 April 2023)
and through manual structural elucidation of fragments for those metabolites that were
not in the mzCloud database or lacked structural information. These U-13C SRMs were
then added to the OGP and the presence of U-13C metabolites was confirmed by running
the U-13C metabolite yeast extract (Figure 2B). These metabolites eluted in the 2–12 min
range, which is also the time window where most endogenous metabolites elute and
represented metabolites from all major metabolite classes (Figure S2A). As expected, spiking
a pooled urine sample with the U-13C metabolite yeast extract facilitates the detection of
both the endogenous (12C) and U-13C isotopologues of metabolites, as exemplified by
alanine (Figure 2C). Of note, this and subsequent experiments revealed that, when the
U-13C metabolite yeast extract is spiked into biological samples, the lower abundant U-
13C metabolite signals tend to become lost due to ion suppression, with approximately
50 metabolites remaining with sufficient quality to be used as internal standards in most of
our experiments. To expand the scope of use of these internal standards, we also considered
using the U-13C isotopologues of chemically similar molecules as ‘surrogate standards’
for those metabolites without their own internal standard. For instance, there was no
U-13C labeled isotopologue for 5-aminopentanoic acid in the yeast extract. However, there
was one for γ-aminobutyric acid, which is chemically quite similar and has a comparable
retention time (Figure 2D). Because of their structural similarity, these metabolites are
likely to be affected similarly by matrix effects and we therefore reasoned that U-13C γ-
aminobutyric would make for a suitable surrogate standard for 5-aminopentanoic acid. In
a similar manner, surrogate standards were identified for all metabolites without a yeast
extract internal standard based on structural similarity (Table S1).

The successful identification of biomarkers in a clinical sample stands or falls with
the measurement accuracy of metabolite intensities, especially when fold changes between
groups of interest are relatively subtle. Unfortunately, biomarker research is complicated
by ion suppression/enhancement due to matrix effects. This is especially true for urine,
where large sample-to-sample variations in sample concentration are the norm. To evaluate
the impact of U-13C metabolite yeast spike-ins on data accuracy by improving linearity
of response for clinical urine samples, we designed an experiment where pooled urine
was diluted (2×, 5×) and concentrated (2×, 4×, 6×) multiple times (Figure 2E). The
resulting concentration range simulates the range of specific gravities (SG, a measure of
urine density) that is routinely observed for clinical urine samples, with SG = 1.0018 on
the lowest end and SG = 1.0382 on the highest end of the spectrum. Urine samples at
each concentration level were spiked with the same amount of U-13C metabolite extract as
described in the Section 2 section. While a linear increase in metabolite signal intensity is
expected as the metabolite concentrations increase from the least to the most concentrated
sample, this was not observed for the absolute MS signal, especially at the higher end
of the concentration range where ion suppression due to matrix effects is strongest, as
illustrated by metabolites representing the major chemical classes (Figures 2F and S2B, note
that arginine showed particularly non-linear behavior). However, when MS signals were
expressed as a ratio to their respective internal standards, linearity was maintained across
the entire 30-fold concentration range with >0.994 correlation (r2) for the examples shown.
An evaluation across all the metabolites in the OGP revealed a much higher correlation
to a linear calibration curve for metabolite ratios to their internal or a surrogate standard
compared to absolute MS signals (raw data, Figure 2G). As expected, when comparing

https://www.mzcloud.org/
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metabolite ratios to internal standards and metabolite ratios to surrogates, ratios to internal
standards demonstrated the highest correlation (Figure S2C). This demonstrates that the
use of internal standards greatly improves measurement accuracy, improving the odds of
identifying new biomarkers.

3.3. Assessment of Within- and Across-Batch Precision Using QC Samples

An important objective of the OGP is to provide highly precise and reproducible data,
as this facilitates reliable comparison and mining of large datasets acquired over multiple
batches. To evaluate both within- and across-batch coefficients of variation (CV), data from
a pooled urine sample were collected in triplicate during the acquisition of each of three
datasets collected over the span of six months. For all metabolites in the OGP, ratios to
their internal standards or surrogate standards were calculated and directly compared.
This demonstrated that the median within-batch CV for metabolite ratios to their internal
standard was approximately 5% for all three datasets, and for metabolites without their
own internal standard, the median CV of ratios to surrogates was 7–8% (Figure 3A). Next,
the across-batch CV was calculated for the pooled sample acquired across the three datasets
over a six-month period. The median CV was less than 10% for all metabolite ratios, with
the median for the ratios to internal standards being 5% and the ratios to surrogates 11%
(Figure 3B). Apart from Nightingale, which is an NMR-based platform with significantly
lower metabolite coverage, the across-batch precision of the OGP outcompetes Biocrates
(14%), HMT (12%), and Metabolon (18%) (Table S2) [2].
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Figure 3. High within- and across-batch precision for metabolite ratios: (A) Within-batch CVs for
all metabolite ratios to internal (red) or surrogate (teal) standards in a pooled urine sample for
3 individual datasets. CV is calculated based on 3–4 replicated measurements. (B) Across-batch CV
for all metabolite ratios to internal or surrogate standards for the same pooled urine sample acquired
in each of the 3 separate datasets acquired in a six-month period.

3.4. Comparison with NMR Data to Evaluate Data Accuracy

After confirming the linear response and precision of the OGP, we next sought to
interrogate its accuracy in a biological sample set. As NMR is universally considered
to be the gold standard in data accuracy, we exploited the fact that we use both NMR
and LC-MS and therefore can directly compare the performance using samples measured
on both platforms. Correlation analysis was performed on data collected from a large
(>200) set of clinical urine samples with both 2D-NMR and the OGP [30]. This analysis
was performed for metabolites that were measured on both platforms and for which the
features on the NMR were unique and confirmed for the metabolite of interest. For each
metabolite, the absolute signal intensities across all the samples as acquired by NMR and
LC-MS were correlated, as illustrated by L-threonine (Figure 4A). As these measurements
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are a direct correlation of the distribution of signal intensities across the same set of samples
measured by both platforms, and not a biological comparison, neither set of data was
normalized in any way. Twenty metabolites met the above criteria and overlapped in the
NMR and LC-MS datasets. For all of these, the correlation ranged from high (r2 = 0.75)
to very high (r2 = 0.98) (Figure 4B). This strong agreement between the two platforms for
these overlapping metabolites demonstrates the high accuracy of the OGP.
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lation analysis of 2D-NMR and OGP LC-MS absolute signal abundances is performed across a set of
>200 urine study samples. Neither the NMR nor the LC-MS data was adjusted or normalized in any
way. (B) Correlation between NRM and LC-MS for metabolites that overlap between both platforms.

3.5. OGP Method Performance in a Clinical Sample Study

We next evaluated the performance of the OGP to detect clinically relevant metabolite
signatures within a set of clinical samples. LC-MS analysis was performed on urine samples
from patients who had received a kidney transplant with the objective of finding significant
urine metabolite changes associated with time post-transplant. In total, 225 urine samples,
obtained either within two weeks or a year after transplant surgery, were spiked with U-
13C metabolite yeast extract and sample preparation was performed as described. LC-MS
acquisition was performed in a single batch in randomized order interspersed with a pooled
urine QC sample run after every 10 study samples. Comparison of the retention times of
representative early, mid, and late eluting metabolites in the first versus the last QC sample
run showed negligible drift of less than 6 s (Figure 5A), reaffirming the robustness of our
HILIC-based method. Evaluation of summed metabolite MS signals for the samples in the
order they were acquired showed significant variability from study sample to study sample
(Figure 5B). This is caused by differences in sample concentration or specific gravity, which
dictate overall metabolite abundance and points to the need to perform normalization
prior to data analysis. Importantly, the repeated pooled QC sample runs showed consistent
MS responses across the batch. A deeper, per metabolite, MS signal evaluation over the
course of the batch revealed some signal loss for most metabolites (Figure 5C). This is
a common occurrence and can be easily corrected as demonstrated by comparing the
QC runs and this is why QCs should be included in each study. To determine if there
was a metabolite signature differentiating transplant patients across time, the dataset
was normalized. Importantly, median normalization was performed on the metabolite
ratios to internal/surrogate standards rather than on absolute endogenous metabolite
signals. This has the fundamental advantage that metabolite signals are adjusted for signal
suppression/enhancement as the internal standards and endogenous molecules will be
similarly affected, and we found this method to improve the accuracy of normalization
(Figure S3). Post-normalization comparison of urine samples collected within two weeks or
a year post-transplant surgery revealed multiple metabolites that reached our fold-change
and statistics threshold (Figure 5D). Thus, our LC-MS method enables detection of clinically
relevant metabolite signatures.
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Figure 5. OGP performance for a batch of study samples: (A) Assessment of retention time fidelity
across the batch comparing the first and last pooled QC samples, for representative early (phenylpyru-
vic acid), mid (citrulline), and late (lysine) eluting metabolites. (B) Robustness of sample MS signal
intensities (shown is total sum intensities of all metabolites per sample) shown in the order the
samples were run. The pooled QC injections are highlighted in red. (C) Histogram of distribution
of metabolite MS signal changes comparing the first and the last pooled QC injection, for the raw
data (blue) and signal corrected data (green, see Section 2 for details). (D) Volcano plot showing
differences in metabolite intensity ratios for urine samples collected within two weeks versus one
year post kidney transplant.
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4. Discussion

We live in an exciting era where it is possible to profile patient samples with unprece-
dented granularity using a variety of omics modalities (i.e., multi-omics). Moreover, the
advent of new computational approaches, such as artificial intelligence (AI), provides new
ways to detect patterns in the obtained data, segment patients, and generate biological
hypotheses in ways that augment human knowledge. With some of the top diagnostics
being metabolite-based, the clinical importance of metabolite measurements is beyond
contention. As such, metabolomics is poised to make a significant contribution to the
developments in multi-omics and precision medicine. At the same time however, technical
challenges in metabolomics limit widespread adoption by the research community. Chief
among these are (1) a lack of reproducibility in metabolite coverage and abundances across
large sample sets, complicating interpretation and integration with other omics sets [2],
and (2) a need for increased speed and ease of data acquisition and processing to match
the scale at which other omics modalities can be performed. The lack of reproducibility is
especially problematic as the output from computational modeling and AI will only be as
good as the quality of the data provided.

Numerous efforts have been instigated to address some of the issues underlying the
poor reproducibility, including standardized annotation [31], reporting [35,36], and tools
for depositing data [37,38]. The OGP described in this paper directly addresses the limited
reproducibility by using U-13C internal standards. When spiked into samples as an immedi-
ate first step, internal standards can be used to correct for the cumulative error introduced
by sample preparation and LC-MS acquisition, including ion suppression/enhancement
occurring due to matrix effects, which can vary significantly between clinical samples. A
key consideration for the use of internal standards for metabolomics applications is how
to deal with the sheer number of metabolites. Building mixtures of stable isotope labeled
internal standards is expensive and labor intensive. Instead, commercially available U-13C
metabolite yeast extract provides a convenient alternative. We identified around 50 U-13C
labeled metabolites that can be used as internal standards for metabolites in the OGP,
covering a variety of chemical classes (Figure S2A) and enabling an impressive median
precision of 5% across datasets acquired in a six-month time span for ratios to internal
standards and 10% when including ratios to surrogate standards. As our panel continues to
evolve and grow, we will add more SRMs from U-13C metabolites from the yeast and will
explore the addition of stable isotope labeled standards to further improve the method’s
reproducibility. The internal standards can also be used as ‘surrogate’ standards for the
metabolites in our panel, for which a 13C-isotopologue is not present in the yeast metabolite
extract, significantly improving linearity of response (Figure 2F,G) and accuracy of normal-
ization (Figure S3). We consider the OGP to be ‘standardized’ in that each metabolite is
expressed as a ratio to either its own internal standard or a surrogate standard. While it
is possible to estimate metabolite concentrations based on our data, we find ratios to be
sufficient for accurate comparison across batches over the course of many months/years.
Fully quantitative metabolomics methods have also been published [39] and are available
as kits and services by organizations like Biocrates and TMIC. The obvious advantage of
quantitative methods is that sample metabolite concentrations can be compared to any
other sample irrespective of the exact quantitation approach used. Major considerations,
however, are that these methods are more involved as they typically require derivatization
and more experimental steps to determine concentrations, and that including new metabo-
lites is usually non-trivial. The OGP on the other hand, is fast as it requires minimal sample
prep, and flexible as new metabolites can be readily added. The choice in methodology
should be guided by the research objectives.

Combining QqQ MS with U-13C internal standards provides data with exquisite
accuracy and range of linear dynamic response. It also addresses the second key issue
mentioned above, i.e., the need for increased speed and ease of use; the data that are
being generated can be easily integrated and annotated, as each metabolite has its own
assigned SRMs and a known retention time. This makes the data processing straightforward
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compared to untargeted metabolomics efforts using high-resolution data and is amenable
to automation and implementation across labs with varying degrees of metabolomics
expertise. Naturally, a disadvantage of using QqQ MS is that only the panel of metabolites
for which SRMs have been included are being measured. As such, unknown metabolites
cannot be detected. As with any experiment involving measurements, the choice of method
depends on the context of use: in purely discovery/exploratory metabolomics studies,
untargeted methods can be more appropriate. In scenarios where the chances of identifying
unknowns are relatively low, and where ultra-high-quality measurements across large
sample sets is essential, as is the case for clinical samples, QqQ MS is the technology
of choice.

To ensure annotation fidelity, it is important to be mindful of interferences from other
metabolites, i.e., when a signal in a metabolite’s SRM is caused by another metabolite.
These are typically caused by in-source fragments from other metabolites, isomers, and
isobars. Of note, except for isobars, these interferences also occur in high-resolution MS
instruments. Luckily, many interfering metabolite combinations are known [40]. Cross-
comparison of these published interferences with our own method, however, made us
realize that interfering metabolites, by their very nature, must co-elute and therefore are
highly dependent on the chromatographic conditions. We found that a good way to address
this is to perform a correlation analysis of the abundances of all metabolite combinations
across a set of study samples; for metabolite pairs with (near) perfect correlation the signal
of one may actually derive from the other metabolite, requiring further scrutiny.

Our separation is based on HILIC chromatography. Following a comparison of mul-
tiple HILIC types and columns, and mobile phases with low, mid, and high pH, we
identified ZIC-HILIC in combination with neutral pH mobile phases to provide the best
overall performance across all major metabolite classes. This is in line with previously
reported findings [32,33]. HILIC chromatography has a reputation for suffering from
lower resolution relative to reverse-phase (RP) chromatography and for being less robust
and reproducible. However, it has improved considerably over the years to the point
where peak widths are now rivaling those obtained with RP separations and where both
peak shape deterioration and retention time shift are virtually non-existent during a run
and minimal between columns. Our method does include a considerable column wash
and re-equilibration step (approximately a third of the run time per sample). However,
this is easily remedied by introducing a column switching setup, where samples are in-
jected interchangeably onto one of two columns while the other is regenerating from the
previous run.

In summary, the OGP is a highly accurate and reproducible LC-MS metabolomics
method. In this paper, the focus is on urine, as a primary interest in our laboratory is
in monitoring kidney function. It is also for this reason that the OGP comprises several
metabolite biomarkers of kidney function. These include amino acids and derivatives,
such as asymmetric and symmetric dimethylarginine, phenylalanine, tyrosine, and known
uremic toxins, such as indoxyl sulfate, all of which are differently metabolized and/or
cleared when kidney function is compromised [41–44]. However, we have also successfully
applied it to other matrices, such as plasma. The approach described here directly addresses
three key limitations in clinical metabolomics that prevent a more widespread adoption
alongside other omics in precision medicine applications, namely a lack of reproducibility
in MS-based methods, ease of use, and portability to non-expert laboratories. The ability
to rapidly generate and process highly accurate and reproducible metabolomics data will
lower the burden for more widespread use in clinical applications and precision medicine.

5. Conclusions

Mass spectrometry (MS)-based metabolomics has the potential to impact clinical deci-
sion making. However, current methods are hampered by limited accuracy and precision.
We developed the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method leveraging
U-13C metabolite yeast extract, for the comprehensive analysis of ~250 metabolites from all
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major metabolic pathways in clinical samples. This method achieved high (r2 > 0.90) good-
ness of fit to linear calibration curves for most metabolites across the clinical concentration
range of urine samples and showed high correlation with NMR data from the same samples.
Median within-batch CVs for all metabolite to internal standard ratios were consistently
lower than 7% and less than 10% across batches that were acquired six months apart.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14050280/s1. Figure S1: Optimizing chromatographic
and MS conditions to facilitate at scale metabolite measurements. Figure S2: U-13C metabolite yeast
extract improves linearity of response. Figure S3: OGP performance for a batch of study samples.
Table S1: List of panel metabolites and their internal/surrogate standards. Table S2: Overview of
metabolomics vendors, their technology and across-batch CV.
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