
Citation: Capolupo, A.; De Maria, G.;

Monda, S.; Quaranta, A.; Serao, R.

Quantum Field Theory of Neutrino

Mixing in Spacetimes with Torsion.

Universe 2024, 10, 170. https://

doi.org/10.3390/universe10040170

Academic Editor: Gerald B. Cleaver

Received: 28 February 2024

Revised: 27 March 2024

Accepted: 29 March 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Quantum Field Theory of Neutrino Mixing in Spacetimes
with Torsion
Antonio Capolupo 1, Giuseppe De Maria 2 , Simone Monda 1, Aniello Quaranta 1 and Raoul Serao 1,*

1 Dipartimento di Fisica “E.R. Caianiello”, Universitá degli Studi di Salerno, and INFN Gruppo Collegato
di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; capolupo@sa.infn.it (A.C.);
smonda@unisa.it (S.M.); anquaranta@unisa.it (A.Q.)

2 Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti Sezione Metodi e Modelli
Matematici, Università di Genova, Via All’Opera Pia 15, 16145 Genova, Italy; giuseppedemaria97@gmail.com

* Correspondence: rserao@unisa.it

Abstract: In the framework of quantum field theory, we analyze the neutrino oscillations in the
presence of a torsion background. We consider the Einstein–Cartan theory and we study the cases
of constant torsion and of linearly time-dependent torsion. We derive new neutrino oscillation
formulae which depend on the spin orientation. Indeed, the energy splitting induced by the torsion
influences oscillation amplitudes and frequencies. This effect is maximal for values of torsion of the
same order of the neutrino masses and for very low momenta, and disappears for large values of
torsion. Moreover, neutrino oscillation is inhibited for intensities of torsion term much larger than
neutrino masses and momentum. The modifications induced by torsion on the CP-asymmetry are
also presented. Future experiments, such as PTOLEMY, which have as a goal the analysis of the
cosmological background of neutrino (which have very low momenta), can provide insights into the
effect shown here.

Keywords: quantum field theory; neutrino mixing; torsion

1. Introduction

Theories of gravity beyond General Relativity (GR) have a long and complex history [1–11].
Stimulated by the need of dealing with the shortcomings of GR, providing an explanation
for the dark components of the universe [12–26] , and possibly to set a viable framework for
the quantization of gravity, there is by now a plethora of such theories. Some, as the early
attempt to incorporate Mach’s principle by Brans and Dicke [27], involve additional fields other
than the metric [28,29]. Other theories generalize the Einstein–Hilbert action, eventually
including higher-order curvature invariants [30–32]. Quite a natural generalization of GR
emerges when one considers a non-symmetric connection, allowing for the possibility of
torsion [33–44]. Gravitational theories including torsion might be able to account for dark
matter and dark energy [45]. Torsion couples naturally to the spin density of matter,
inducing a spin-dependent splitting of the energy levels [46] and spin oscillations [47].

Neutrinos, on the other hand, have a prominent role in cosmology and astrophysics [48–63].
Their comparatively small interaction rates and the abundance in which they are produced
make neutrinos a precious source of information on the cosmos. They are possibly linked to the
original baryon asimmetry [64], to dark matter [65,66], and dark energy [67]. Neutrinos also
pose several challenges to the standard model of particles, and many aspects of neutrino
physics, including the basic mechanism behind flavor oscillations [68–88], the origin of
their mass and their fundamental nature [89–96], are yet to be clarified.

In this paper, we analyze the propagation of neutrinos on a torsion background and
study its impact on flavor oscillations. Neutrino oscillations in the presence of torsion
have been studied in the quantum mechanical framework [97,98]. We here approach the
subject from the point of view of quantum field theory and quantize the neutrino fields
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on a torsion background. In the paper, we consider neutrino as a Dirac particle, but we
expect that similar results are obtained for the Majorana particle. We focus on the simplest
generalization of GR including torsion, the Einstein–Cartan theory. We consider the cases of
constant torsion and of torsion linearly depending on time, and we assume that spacetime
curvature is absent. We show that the energy splitting induced by the torsion term leads
to spin-dependent neutrino oscillation formulae. Indeed, the spin orientation affects the
frequencies, as expected also in the QM framework, and the oscillation amplitudes which
in QFT are ruled by the Bogoliubov coefficients. This last effect is a pure consequence of
the non-trivial condensate structure induced by neutrino mixing in QFT.

The spin dependence of the oscillation formulae is maximal for intensities of torsion
comparable to the neutrino masses. On the other hand, much larger values of torsion
carry out to flavor oscillations which are identical for the two spins since they become
essentially independent of the spin. Another effect is that a torsion large enough can
effectively inhibit the flavor oscillations since, in this case, the energy differences due
to the various masses become irrelevant with respect to the common torsional energy
term. The presence of torsion is more relevant on neutrino oscillations in non-relativistic
regimes, for which the QFT effects are also more emphasized. Some phenomenological
consequences of the theoretical results presented here could then be provided, in the future,
by experiments that analyze non-relativistic neutrinos, such as PTOLEMY [88,99]. On the
contrary, such effects cannot be detected in other experiment such as DUNE since there,
relativistic neutrinos are studied. We additionally discuss the modifications induced by
torsion on the CP asymmetry, which is a byproduct of the Dirac CP-violating phase in the
mixing matrix. We also show that the CP asymmetry depends on the spin orientations in
the presence of the torsion background. Note that in the present work, we do not consider
the Fermi-like four-interaction among neutrinos which would be induced by integrating
out the (non-dynamical) torsion in Einsten–Cartan. Rather, we assume the presence of a
background torsion term without specifying its source. However, the background field
can be seen as the mean torsion field generated by the spin density of a generic fermion
field. The Fermi-like four interactions among neutrinos can have effects on the neutrino
cross-section; however, this study lies beyond the scope of our paper. Moreover, as it is
the case for generic four-fermion interactions [100], the interaction induced by torsion may
possibly lead to neutrino condensation phenomena. Indeed, the interaction generated by
the presence of torsion can be diagonalized by a Bogoliubov transformation that, in the
infinite volume limit, produces a new vacuum state belonging to a representation which is
inequivalent with respect to the original one. The new vacuum is a condensate of fermion
pairs and shares many properties with superconductivity and superfluidity. However,
the detailed analysis of condensation effects induced by torsion will be performed in
future works.

The paper is structured as follows. In Section 2, we introduce the concept of spacetime
torsion and we quantize a Dirac field on torsional background. In Section 3, we analyze
three-flavor neutrino mixing in the presence of constant and time-dependent torsion, and
in Section 4, we derive new oscillation formulae depending on the orientation of the spin.
In Section 5, new expressions of CP violation are shown. The last section is devoted to the
conclusions, while in Appendix A we report some useful formalae for the computation
and in Appendix B the analysis of currents and charges for flavor mixing in the presence
of torsion.

2. Spacetime Torsion and Dirac Field Quantization

Here, we briefly recall the notion of spacetime torsion, then we quantize the Dirac
field minimally coupled to the torsion in the framework of the Einstein–Cartan theory. We
study the cases of constant and time-dependent torsion.
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2.1. Spacetime Torsion

In general relativity, the requirements of metricity of the covariant derivative and of
symmetry uniquely determine the connection coefficients (Christoffel symbols) in terms of
the metric as follows:

Γρ
µν =

1
2

gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
= Γρ

νµ .

A more general theory, the so-called Einstein–Cartan (or Riemann–Cartan geometry),
is obtained if the assumption of symmetry is relaxed, keeping only metricity. In this case,
the connection coefficients acquire an antysimmetric part given by

Γ̃ρ
µν − Γ̃ρ

νµ = Tρ
µν ; Γ̃ρ

µν = Γρ
µν + Kρ

µν , (1)

where tensors Tρ
µν and Kρµν = 1

2
(
Tρµν + Tµνρ − Tνρµ

)
are known, respectively, as torsion

and contorsion. It is also convenient to introduce [34] trace vector Vµ = Tρ
µρ, axial vector

Tµ = ϵαβγµTαβγ and tensor qρ
µν in terms of which the torsion is expressed as

Tρµν =
1
3
(
Vµgρν − Vνgρµ

)
− 1

6
ϵρµνσTσ + qρµν ,

and the scalar curvature reads as

R̃ = R − 2∇µVµ − 4
3

VµVµ +
1
2

qρµνqρµν +
1

24
TµTµ .

Here, R is the general relativistic Ricci scalar given in terms of the metric. Notice that
the covariant derivatives in this context are the usual ones involving only the Christoffel
symbols. The vacuum action for Einstein–Cartan is given by the natural generalization of
the Einstein–Hilbert action. It is written as

SEC = − 1
κ2

∫
d4x
√
−gR̃ , (2)

with κ = 8πG
c4 . The torsion-related terms in Equation (2) form a total derivative, not

contributing to the field equations. As a consequence, the vacuum theory is equivalent to
general relativity. On the other hand, the situation changes in the presence of matter, where
a coupling of the form

STm =
∫

d4x
√
−gKρ

µνΣµν
ρ (3)

appears. The spin tensor, here denoted with Σµν
ρ , is constructed out of matter fields. We

point out that the field equations obtained by varying the total action with respect to
contorsion simply lead to algebraic constraint Kρµν ∝ Σρµν, expressing the proportionality
of torsion and spin angular momentum. In the following, we are in Dirac spinors minimally
coupled to torsion. The spin covariant derivatives, in presence of torsion, become modified
as follows [46]:

D̃µψ = Dµψ +
1
4

KABµ

[
γA, γB

]
ψ (4)

where Dµ is the general relativistic spin covariant derivative and the Lorentz indices on the
contorsion tensor result from contraction with tetrads KABµ = eρ

Aeσ
BKρσµ. Then, the spinor

action is simply given by

S̃D = SD + STD =
∫

d4√−g
[

i
2
(
ψ̄γµDµψ − Dµψ̄γµψ

)
− mψ̄ψ

]
+ 3

∫
d4x
√
−gTµSµ (5)

where SD is the Dirac action in general relativity and STD = 3
∫

d4x
√−gTµSµ is the action

term due to Dirac–torsion coupling. Moreover, Sµ = 1
2 ψ̄γµγ5ψ is the Dirac spin vector. We

remark that in all the above expressions, the spacetime dependence of the curved gamma
matrices is kept implicit, γµ = γµ(x) = eµ

A(x)γA.
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2.2. Dirac Field Quantization on Constant Torsional Background

From now on, we assume that some astrophysical source other than the Dirac field
itself generates a background torsion. As far as minimally coupled Dirac fields are con-
cerned, the information about torsion is stored in the axial vector field, Tµ(x). Since we are
specifically interested in the effects of torsion on Dirac fields, we assume that spacetime
curvature is absent (although the most general case can be treated in a similar fashion,
see, e.g., [65,101–106]), so that the covariant derivatives in (5) are replaced with standard
derivatives and the gamma matrices reduce to the flat ones. Under these assumptions, the
Dirac equation becomes

iγµ∂µψ = mψ − 3
2

Tργργ5ψ . (6)

Canonical quantization proceeds as in flat spacetime, and the Dirac field may be
expanded on any complete set of solutions of Equation (6). We see that the expansion
closely resembles that of flat spacetime when a constant torsion background is considered.
It is important to remark that lepton charge Q =

∫
d3xψ̄γ0ψ is conserved as a consequence

of the U(1) gauge invariance of Action (5).
In this subsection, we deal with the simplest possible torsion background. We consider

a constant axial torsion directed along the third spatial axis. The study of time-dependent
torsion background is carried out below. The Dirac equation for constant torsion reads

iγµ∂µψ = mψ − 3
2

T3γ3γ5ψ , (7)

and is solved [46] in momentum space by spinors

u↑
k⃗
= N+


1
0
k3

E+
k⃗
+m̃+

k1+ik2
E+

k⃗
+m̃+

 u↓
k⃗
= N−


0
1

k1−ik2
E−

k⃗
+m̃−

− k3
E−

k⃗
+m̃−

 (8)

v↑
k⃗
= N+


k3

E+
k⃗
+m̃+

k1+ik2
E+

k⃗
+m̃+

1
0

 v↓
k⃗
= N−


k1−ik2

E−
k⃗
+m̃−

− k3
E−

k⃗
+m̃−

0
1

 . (9)

All the details for the calculation of the above solutions are contained in ref. [46]
These solutions are formally the same as in flat space, except for a spin-dependent mass
term m̃± = m ± 3

2 T3. The torsion indeed has the effect of lifting the degeneracy in energy

between the two spin orientations, E±
k⃗

=
√⃗

k2 + m̃±2 . By fixing the normalization to

ur†
k⃗

ur
k⃗
= 1 = vr†

k⃗
vr

k⃗
, factors N± are determined as N± =

√
E±+m̃±

2E± .

Setting ur
k⃗
(t) = e−iErtur

k⃗
and vr

k⃗
(t) = eiErtvr

k⃗
, the Dirac field is expanded as

ψ(x⃗, t) = ∑
r

∫ d3k

(2π)
3
2

(
ur

k⃗
(t)αr

k⃗
+ vr

−⃗k
(t)βr†

−⃗k

)
ei⃗k·⃗x (10)

with the coefficients obeying the canonical anticommutation relations. Since the solutions
to Equation (6) are similar to those obtained in flat space time, to derive the neutrino
oscillation formulae in the presence of torsion, we can follow a procedure analogous to
the one presented in ref. [73] where the oscillation formulae for neutrinos in quantum
field theory in flat space are found. Here, we obtain new oscillation formulae, showing a
behavior different with respect to the ones of ref. [73]. The differences are all contained in
the Bogoliubov coefficients which characterize the amplitudes of the oscillation formulae
and which depend on spin orientation.
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2.3. Dirac Field Quantization with Time-Dependent Torsion

We now quantize the Dirac field coupled to a certain class of time-dependent of
torsional backgrounds, namely with the T̆0 spacetime constant and spatial components
T̆i(t) , i = 1, 2, 3 having an arbitrary time dependency (yet retaining constancy with
respect to the spatial variables). This class of backgrounds allows for a simple non-trivial
generalization of the constant torsion treatment presented above. For concreteness, we
treat in some more detail the case of a linearly time-dependent torsion, i.e., T̆i = αit for
some constants αi. The Dirac equation is formally equivalent to (6)(

iγµ∂µ − m
)
Ψ(x) = ηT̆ρ(t)γργ5Ψ(x)

except for the explicit dependency of the torsion on time. In order to derive the solution of
the Dirac equation with torsion, we write the spinor in the following form:

Ψ(x) = ∑
λ

∫
d3 p
(

A p⃗,λu p⃗,λ(t, x⃗) + B†
− p⃗,λv p⃗,λ(t, x⃗)

)
.

We use ansatz
u p⃗,λ(t, x) = eip·x

(
fp(t)ξλ( p̂)

gp(t)λξλ( p̂)

)
(11)

for positive energy and

v p⃗,λ(t, x) = eip·x
(

g∗p(t)ξλ( p̂)
− f ∗p (t)λξλ( p̂)

)
(12)

for negative energy. Here, ξλ( p̂) denote the helicity eigenspinors, satisfying
(⃗σ · p̂)ξλ( p̂) = λξλ( p̂) for λ = ±. Then, the solution of the Dirac equation is determined
by solving the following system:

i∂t

(
f p⃗(t)
gp⃗(t)

)
=

(
m − ηλT̆i p̂i p + ηλT̆0

p + ηλT̆0 −m − ηλT̆i p̂i

)(
f p⃗(t)
gp⃗(t)

)
≡ A (t)

(
f p⃗(t)
gp⃗(t)

)
(13)

The eigenvalues of the matrix in Equation (13) are h1,2 = ηλT̆i p̂i ±
√

m2 +
(

p + ηλT̆0
)2

and the eigenvectors are vλ
1 = C1

 m+
√

m2+(p+ηλT̆0)
2

p+ηλT̆0

1

 and vλ
2 =

C2

 m−
√

m2+(p+ηλT̆0)
2

p+ηλT̆0

1

, with normalization relations
(
vλ

1
)†vλ

1 = 1 e
(
vλ

2
)†vλ

2 = 1.

If [A (t), A (t′)] = 0 for t ̸= t′, then the system of Equation (13) can be solved by
means of a simple exponentiation:(

f p⃗(t)
gp⃗(t)

)
= exp

{
−i
∫ t

0
A (τ)dτ

}(
f p⃗(0)
gp⃗(0)

)
. (14)

It is here that the requirement of the constancy of T̆0 becomes relevant, since condition
[A (t), A (t′)] = 0 is fulfilled for T̆0 independent of time (i.e., T̆0 = α0). The solutions can
be explicitly written as f p⃗,λ(t) = exp

{
−iηλ p̂i ∫ t

0 dτT̆i(τ)
}

exp
{
−iωp,λt

}
Cp⃗,λ

gp⃗,λ(t) =
p+ηλT̆0

(ωp,λ+m)
exp

{
−iηλ p̂i ∫ t

0 dτT̆i(τ)
}

exp
{
−iωp,λt

}
Cp⃗,λ

(15)

for some constant Cp⃗,λ and ωp,λ =
√

m2 +
(

p + ηλT̆0
)2. In the specific case of T̆i = αit,

one has  f p⃗,λ(t) = exp
{
−i t2

2 ηλαi p̂i
}

exp
{
−iωp,λt

}
Cp⃗,λ

gp⃗,λ(t) =
p+ηλT̆0

(ωp,λ+m)
exp

{
−i t2

2 ηλαi p̂i
}

exp
{
−iωp,λt

}
Cp⃗,λ

. (16)
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By imposing normalization condition
∣∣∣ f p⃗,λ(t)

∣∣∣2 + ∣∣∣gp⃗,λ(t)
∣∣∣2 = 1

(2π)3 , we determine

Cp⃗,λ =
ωp,λ+m

(2π)
3
2
√
(ωp,λ+m)

2
+(p+ηλT̆0)

2 .

Therefore, the solutions are given by Equations (11) and (12), where f and g are given
in (16), and ξs are given in terms of polar angle θ, ϕ of p̂ as

ξ+1( p̂) =
(

cos(θ/2)
eiϕsin(θ/2)

)
(17)

ξ−1( p̂) =
(

−e−iϕsin(θ/2)
cos(θ/2)

)
(18)

3. Flavor Mixing with Torsion

In this section, we analyze the three-flavor neutrino mixing in the presence of torsion,
in particular we consider the cases of constant and time-dependent torsion. In the two
cases, the neutrino fields with definite masses ΨT

m ≡ (ν1, ν2, ν3) satisfy equation

iγµ∂µΨm − MdΨm = −3
2

T3γ3γ5Ψm , (19)

with Md ≡ diag(m1, m2, m3). The fields with definite masses are expanded as in Equation (10),
except for acquiring an additional label j = 1, 2, 3 distinguishing mass (ur

k⃗,j
, αr

k⃗,j
, . . . ). The

flavor fields are obtained by performing the appropriate SU(3) rotation on the mass triplet.
We choose the CKM parametrization of the PNMS matrix to link the triplet of flavor fields
ψT

f =
(
νe, νµ, ντ

)
to the fields with definite masses ΨT

m. As shown in ref. [73], the rotation to

flavor fields can be recast in terms of mixing generator Iθ as να
σ = I−1

θ (t)να
i (x)Iθ(t) , where

(σ, i) = (e, 1), (µ, 2), (τ, 3), and Iθ(t) = I23(t)I13(t)I12(t) . For reader convenience, we report
in Appendix A the explicit form of the formulae used in the computations.

We note that generator I−1
θ (t) introduced here is formally identical to generator G−1

θ (t)
presented in ref. [73], where the mixing of three families of neutrinos in flat space-time is
studied. The difference consists in the fact that while G−1

θ (t) of ref. [73] is expressed in terms
of the Dirac fields in flat space-time, I−1

θ (t) contains Dirac fields which are the solution of
the Dirac equations for fields in the presence of torsions (constant and time-dependent). As
we see below, this leads to two new sets of Bogoliubov coefficients, one for constant torsion
and one for time-depending torsion, which are dependent on the spin. At the operational
level, I−1

θ (t) shares the same properties as G−1
θ (t). However, it is essential to underline that,

despite the formal analogy, the result obtained here presents completely new behaviors,
since the new neutrino oscillation formulae, which are derived below, have amplitudes
and frequencies depending on the spin orientation. This effect, due to the torsion, is also
dependent on the form of the torsion and can in principle affect neutrinos produced in the
nuclei of spiral galaxies or in rotating black holes.

In the following, adopting the procedure used in ref. [73], and taking into account the
presence of torsion, we show the intermediate steps to derive the new oscillation formulae
and we show the different behaviors of the oscillation formulae for the adopted torsions.
We start by recalling some properties of mixing generator I−1

θ (t) shared with G−1
θ (t). I−1

θ (t)
is a map between the Hilbert space of free fields H1,2,3 and that of interacting fields He,µ,τ :
I−1
θ (t) : H1,2,3 → He,µ,τ . At finite volume, vacuum |0⟩1,2,3, relative to space H1,2,3, is

connected to vacuum |0⟩e,µ,τ , relative to space He,µ,τ , in the following way: |0(t)⟩e,µ,τ =

I−1
θ (t)|0⟩1,2,3 , where |0⟩e,µ,τ is the vacuum for the flavor fields. The explicit form of I−1

θ (t)
is reported in Appendix A. The action of the mixing generator defines the plane wave
expansion of the flavor fields,

νσ(x) = ∑
r

∫ d3k

(2π)
3
2

[
ur

k⃗,i
αr

k⃗,νσ
(t) + vr

−⃗k,i
βr†
−⃗k,νσ

(t)
]

exp{i⃗k · x⃗} σ = 1, 2, 3
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where the flavor annihilators are given by

αr
k⃗,νσ

(t) ≡ I−1
θ (t)αr

k⃗,i
Iθ(t)

βr†
−⃗k,νσ

(t) ≡ I−1
θ (t)βr†

−⃗k,i
(t)Iθ(t)

(20)

By definition, they annihilate flavor vacuum αr
k⃗,νσ

|0⟩ f = 0 = βr
−⃗k,νσ

|0⟩ f and, the above
transformations being canonical, they satisfy the equal time canonical anticommutation
relations. The explicit relations of the the flavor annihilators, for k⃗ = (0, 0,

∣∣∣⃗k∣∣∣), are

αr
k⃗,νe

(t) = c12c13αr
k⃗,1

+ s12c13

((
Γrr

12;⃗k
(t)
)∗

αr
k⃗,2

+ εr
(

Σrr
12;⃗k

(t)
)

βr†
−⃗k,2

)
+ e−iδs13

((
Γrr

13;⃗k
(t)
)∗

αr
k⃗,3

+ εr
(

Σrr
13;⃗k

(t)
)

βr†
−⃗k,3

)
,

αr
k⃗,νµ

(t) =
(

c12c23 − eiδs12s23s13

)
α⃗k,2 −

(
s12c23 + eiδc12s23s13

)
×

×
((

Γrr
12;⃗k

(t)
)

αr
k⃗,1

− εr
(

Σrr
12;⃗k

(t)
)

βr†
−⃗k,1

)
+ s23c13

((
Γrr

23;⃗k
(t)
)∗

αr
k⃗,3

+ εr
(

Σrr
23;⃗k

(t)
)

βr†
−⃗k,3

)
,

αr
k⃗,ντ

(t) = c23c13αr
k⃗,3

−
(

c12s23 + eiδs12c23s13

)((
Γrr

23;⃗k
(t)
)

αr
k⃗,2

− εr
(

Σrr
23;⃗k

(t)
)

βr†
−⃗k,2

)
+

+
(

s12s23 − eiδc12c23s13

)((
Γrr

13;⃗k
(t)
)

αr
k⃗,1

− εr
(

Σrr
13;⃗k

(t)
)

βr†
−⃗k,1

)
,

βr
−⃗k,νe

(t) = c12c13β−⃗k,1(t) + s12c13

((
Γrr

12;⃗k
(t)
)∗

βr
−⃗k,2

− εr
(

Σrr
12;⃗k

(t)
)

αr†
k⃗,2

)
+

+ eiδs13

((
Γrr

13;⃗k
(t)
)∗

βr
−⃗k,3

− εr
(

Σrr
13;⃗k

(t)
)

αr†
k⃗,3

)
,

βr
−⃗k,νµ

(t) =
(

c12c23 − e−iδs12s23s13

)
βr
−⃗k,2

−
(

s12c23 + e−iδc12s23s13

)
×

×
((

Γrr
12;⃗k

(t)
)

βr
−⃗k,1

+ εr
(

Σrr
12;⃗k

(t)
)

αr†
k⃗,1

)
+ s23c13

((
Γrr

23;⃗k
(t)
)∗

βr
−⃗k,3

− εr
(

Σrr
23;⃗k

(t)
)

αr†
k⃗,3

)
,

βr
−⃗k,ντ

(t) = c23c13βr
−⃗k,3

−
(

c12s23 + e−iδs12c23s13

)((
Γrr

23;⃗k
(t)
)

βr
−⃗k,2

+ εr
(

Σrr
23;⃗k

(t)
)

αr†
k⃗,2

)
+

+
(

s12s23 − e−iδc12c23s13

)((
Γrr

13;⃗k
(t)
)

βr
−⃗k,1

+ εr
(

Σrr
13;⃗k

(t)
)

αr†
k⃗,1

)
.

Bogoliubov coefficients Γrr
ij;⃗k

and Σrr
ij;⃗k

, appearing in the expressions of the flavor anni-

hilators, are given by the inner product of the solutions of Dirac equations with different
masses. In order to distinguish the case of constant torsion from that of time-dependent
torsion, we use notation Γrr

ij;⃗k
= Ξrr

ij;⃗k
and Σrr

ij;⃗k
= χrr

ij;⃗k
for constant torsion and Γrr

ij;⃗k
= Πrr

ij;⃗k
and Σrr

ij;⃗k
= Υrr

ij;⃗k
for time-dependent torsion. The explicit form of the Bogoliubov coefficients

in the two cases analyzed are reported below.

3.1. Bogoliubov Coefficients with Constant Torsion

For constant torsion, the modules of the Bogoliubov coefficients are given by∣∣∣∣Ξr,s
i,j;⃗k

∣∣∣∣ ≡ ur†
k⃗,i

us
k⃗,j

= vs†
−⃗k,i

vr
−⃗k,j

,
∣∣∣∣χr,s

i,j;⃗k

∣∣∣∣ ≡ εrur†
k⃗,1

vs
−⃗k,2

= −εrur†
k⃗,2

vs
−⃗k,1

.

Notice that, in reference frame k⃗ = (0, 0,
∣∣∣⃗k∣∣∣), Ξr,s

i,j;⃗k
and χr,s

i,j;⃗k
vanish for r ̸= s. Explicitly,

we have

Ξ±±
ij;⃗k

= N±
i N±

j

1 + k2(
E±

k⃗,i
+m̃±

i

)(
E±

k⃗,j
+m̃±

j

)
 = cos(ξ±±

ij;⃗k
) ,

χ±±
ij;⃗k

= N±
i N+

j

[
k3

E±
k⃗,j
+m̃±

j
− k3

E±
k⃗,i
+m̃±

i

]
= sin(ξ±±

ij;⃗k
) ,



Universe 2024, 10, 170 8 of 20

with the spin-dependent masses and the normalization coefficients given explicitly by

m̃±
i ≡ mi ± 3

2 T3 and N±
i =

√
E±

k⃗,i
+m̃±

i√
2E±

k⃗,i

, respectively. The sign factor is defined as ε± = ∓1.

Additionally, (E±
k⃗,i
)2 = k⃗2 + (m̃±

i )
2 and ξ±±

ij;⃗k
= arctan


∣∣∣∣V±±

ij;⃗k

∣∣∣∣∣∣∣∣U±±
ij;⃗k

∣∣∣∣
. The canonicity of the

Bogoliubov transformations is ensured by relations ∑r

(∣∣∣∣Ξ±r
ij;⃗k

∣∣∣∣2 + ∣∣∣∣χ±r
ij;⃗k

∣∣∣∣2
)

= 1 where

i, j = 1, 2, 3 and j > i. Moreover, the time dependence of Ξ±r
ij;⃗k

and χ±r
ij;⃗k

is expressed by

Ξrs
ij;⃗k

(t) =
∣∣∣Ξrs

ij;⃗k

∣∣∣ei
(

Es
k⃗,j
−Er

k⃗,i

)
t

, χrs
ij;⃗k

(t) =
∣∣∣χrs

ij;⃗k

∣∣∣ei
(

Es
k⃗,j
+Er

k⃗,i

)
t
.

3.2. Bogoliubov Coefficients with Time-Dependent Torsion

In this case, the Bogoliubov coefficients are denoted with Πrs
ij;⃗k

(t) =
(

ur
k⃗,i

, us
k⃗,j

)
t

and

Υrs
ij;⃗k

(t) =
(

ur
k⃗,i

, vs
k⃗,j

)
t
. The mixed coefficients are zero, and explicitly, we have

Π++
ij;⃗p (t) = (2π)3 exp

{
−i
(

ω
j
p,+ − ωi

p,+

)
t
}(

C+
p⃗,i

)∗(
C+

p⃗,j

)1 +

∣∣p + ηT̆0
∣∣2(

ωi
p,+ + mi

)(
ω

j
p,+ + mj

)
 , (21)

Π−−
ij;⃗p (t) = (2π)3 exp

{
−i
(

ω
j
p,− − ωi

p,−

)
t
}(

C−
p⃗,i

)∗(
C−

p⃗,j

)1 +

∣∣p − ηT̆0
∣∣2(

ωi
p,− + mi

)(
ω

j
p,− + mj

)
 ,

Υ++
ij;⃗p (t) = (2π)3 exp

{
+it2ηαi p̂i

}
exp

{
+i
(

ω
j
p,+ + ωi

p,+

)
t
}(

C+
p⃗,i

)∗(
C+

p⃗,j

)∗(
p + ηT̆0

) 1

ω
j
p,+ + mj

− 1
ωi

p,+ + mi

 , (22)

Υ−−
ij;⃗p (t) = (2π)3 exp

{
+it2ηαi p̂i

}
exp

{
+i
(

ω
j
p,+ + ωi

p,+

)
t
}(

C+
p⃗,i

)∗(
C+

p⃗,j

)∗(
p − ηT̆0

) 1

ω
j
p,+ + mj

− 1
ωi

p,+ + mi

 ,

where i, j = 1, 2, 3 and j > i.1 The canonicity of the Bogoliubov transformations is satisfied

by the following relations: ∑r

(∣∣∣∣Π±r
ij;⃗k

∣∣∣∣2 + ∣∣∣∣Υ±r
ij;⃗k

∣∣∣∣2
)

= 1 .

4. Neutrino Oscillations with Background Torsion

In this section, we derive the neutrino oscillation formulae in the presence of torsion
and we study, in particular, the two cases of constant and linear time-dependent torsion. By
analyzing flavor currents and charges in a way similar to what was presented in ref. [73],
and as shown in Appendix A, we can define the flavor charges in the presence of torsion
as :: Qνσ ::= ∑r

∫
d3k
(

αr†
k⃗,νσ

(t)αr
k⃗,νσ

(t)− βr†
k⃗,νσ

(t)βr
k⃗,νσ

(t)
)

, with σ = e, µ, τ and :: · · · :: ,

denoting the normal ordering with respect to flavor vacuum state |0⟩ f .
The oscillation formulae are obtained by computing, in the Heisenberg picture, the

expectation values of the above charges on the (flavor) neutrino state, defined at t = 0, as∣∣∣νr†
k⃗,σ

(0)
〉
= αr†

k⃗,νσ
(0)|0⟩ f . At fixed momentum k⃗, they are given by

Qr,⃗k
νρ→νσ

(t) ≡
〈

νr
k⃗,ρ
(t)
∣∣∣ :: Qνσ ::

∣∣∣νr
k⃗,ρ
(t)
〉
− f ⟨0| :: Qνσ :: |0⟩ f , (23)

and explicitly
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Qr,⃗k
νe→νe(t) = 1 − sin2(2θ12) cos4(θ13)

[∣∣∣Γrr
12;⃗k

∣∣∣2 sin2
(

∆r
12;⃗k

t
)
+
∣∣∣Σrr

12;⃗k

∣∣∣2 sin2
(

Ωr
12;⃗k

t
)]

− sin2(2θ13) cos2(θ12)

[∣∣∣Γrr
13;⃗k

∣∣∣2 sin2
(

∆r
13;⃗k

t
)
+
∣∣∣Σrr

13;⃗k

∣∣∣2 sin2
(

Ωr
13;⃗k

t
)]

− sin2(2θ13) sin2(θ12)

[∣∣∣Γrr
23;⃗k

∣∣∣2 sin2
(

∆r
23;⃗k

t
)
+
∣∣∣Σrr

23;⃗k

∣∣∣2 sin2
(

Ωr
23;⃗k

t
)]

, (24)

Qr,⃗k
νe→νµ

(t) = 2JCP

[∣∣∣Γrr
12;⃗k

∣∣∣2 sin
(

2∆r
12;⃗k

t
)
−
∣∣∣Σrr

12;⃗k

∣∣∣2 sin
(

2Ωr
12;⃗k

t
)
+

(∣∣∣Γrr
12;⃗k

∣∣∣2 − ∣∣∣Σrr
13;⃗k

∣∣∣2) sin
(

2∆r
23;⃗k

t
)

+

(∣∣∣Σrr
12;⃗k

∣∣∣2 − ∣∣∣Σrr
13;⃗k

∣∣∣2) sin
(

2Ωr
23;⃗k

t
)
−
∣∣∣Γrr

13;⃗k

∣∣∣2 sin
(

2∆r
13;⃗k

t
)
+
∣∣∣Σrr

13;⃗k

∣∣∣2 sin
(

2Ωr
13;⃗k

t
)]

+ cos2(θ13) sin(θ13)
[
cos δ sin(2θ12) sin(2θ23) + 4 cos2(θ12) sin θ13 sin2 θ23

]
×

×
[∣∣∣Γrr

13;⃗k

∣∣∣2 sin2(∆r
13;⃗k

t) +
∣∣∣Σrr

13;⃗k

∣∣∣2 sin2(Ωr
13;⃗k

t)
]

− cos2 θ13 sin θ13

[
cos δ sin(2θ12) sin(2θ23)− 4 sin4 θ12 sin θ13 sin2 θ23

]
×

×
[∣∣∣Γrr

23;⃗k

∣∣∣2 sin2(∆r
23;⃗k

t) +
∣∣∣Σrr

23;⃗k

∣∣∣2 sin2(Ωr
23;⃗k

t)
]

+ cos2 θ13 sin(2θ12)
[(

cos2 θ23 − sin2 θ23 sin2 θ13

)
sin(2θ12)

+ cos δ cos(2θ12) sin θ13 sin(2θ23)]

[∣∣∣Γrr
12;⃗k

∣∣∣2 sin2(∆r
12;⃗k

t) +
∣∣∣Γrr

12;⃗k

∣∣∣2 sin2(Ωr
12;⃗k

t)
]

, (25)

Qr,⃗k
νe→ντ

(t) = −2JCP

[∣∣∣Γrr
12;⃗k

∣∣∣2 sin
(

2∆r
12;⃗k

t
)
−
∣∣∣Σrr

12;⃗k

∣∣∣2 sin
(

2Ωr
12;⃗k

t
)
+

(∣∣∣Γrr
12;⃗k

∣∣∣2 − ∣∣∣Σrr
13;⃗k

∣∣∣2) sin
(

2∆r
23;⃗k

t
)

+

(∣∣∣Σrr
12;⃗k

∣∣∣2 − ∣∣∣Σrr
13;⃗k

∣∣∣2) sin
(

2Ωr
23;⃗k

t
)
−
∣∣∣Γrr

13;⃗k

∣∣∣2 sin
(

2∆r
13;⃗k

t
)
+
∣∣∣Σrr

13;⃗k

∣∣∣2 sin
(

2Ωr
13;⃗k

t
)]

− cos2(θ13) sin(θ13)
[
cos δ sin(2θ12) sin(2θ23)− 4 cos2(θ12) sin θ13 cos2 θ23

]
×

×
[∣∣∣Γrr

13;⃗k

∣∣∣2 sin2(∆r
13;⃗k

t) +
∣∣∣Σrr

13;⃗k

∣∣∣2 sin2(Ωr
13;⃗k

t)
]

+ cos2 θ13 sin θ13

[
cos δ sin(2θ12) sin(2θ23) + 4 sin4 θ12 sin θ13 cos2 θ23

]
×

×
[∣∣∣Γrr

23;⃗k

∣∣∣2 sin2(∆r
23;⃗k

t) +
∣∣∣Σrr

23;⃗k

∣∣∣2 sin2(Ωr
23;⃗k

t)
]

+ cos2 θ13 sin(2θ12)
[(

sin2 θ23 − sin2 θ13 cos2 θ23

)
sin(2θ12)

− cos δ cos(2θ12) sin θ13 sin(2θ23)]

[∣∣∣Γrr
12;⃗k

∣∣∣2 sin2(∆r
12;⃗k

t) +
∣∣∣Σrr

12;⃗k

∣∣∣2 sin2(Ωr
12;⃗k

t)
]

, (26)

where r = ±, ∆r
ij;⃗k

≡
Er

j;⃗k
−Er

i;⃗k
2 , Ωr

ij;⃗k
≡

Er
j;⃗k
+Er

i;⃗k
2 , and JCP denotes the Jarlskog invariant

JCP ≡ Im
(

uiαujβu∗
iβu∗

jα

)
. In the parameterization under consideration, JCP is given by

JCP = 1
8 sin δ sin(2θ12) sin(2θ13) cos(θ13) sin(2θ23) . Notice that Qr,⃗k

νρ→νe(t) + Qr,⃗k
νρ→νµ(t) +

Qr,⃗k
νρ→ντ (t) = 1 . It is also easy to check that the above oscillation formulae reduce to the

Pontecorvo formulae in the absence of torsion in ultrarelativistic limit |⃗k| ≫ m1, m2, m3.

Then, the oscillation formulae are highly spin-dependent, Q↑ k⃗
νσ→νρ

(t) ̸= Q↓ k⃗
νσ→νρ

(t), since
in the QFT framework, the oscillation amplitudes and the frequencies are spin-dependent.
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Notice that, in QM mixing treatment, the spin orientation affects only frequencies ∆ij, in
this case Γ±±

ij;⃗k
= 1, Σ±±

ij;⃗k
= Ω±

ij;⃗k
= 0.

In the following, we analyze the behavior of the oscillation formulae for constant and
time-dependent torsions.

4.1. Neutrino Oscillation with Constant Torsion

We report the transition formulae for sample values of torsion and momentum. We
consider values of neutrino masses m1 ≈ 10−3 eV, m2 ≈ 9× 10−3 eV, and m3 ≈ 2× 10−2 eV,
in order that ∆m2

12 ≈ 7.56 × 10−5 eV2 and ∆m2
23 ≈ 2.5 × 10−3 eV2, and of mixing angles

such that sin2(2θ13) = 0.10, sin2(2θ23) = 0.97, and sin2(2θ12) = 0.861, which are compatible
with the experimental data. We also consider δ = π/4, and a fixed value of momentum

k ≃ 2 × 10−2 eV and of torsion |T3| ≃ 2 × 10−4 eV. In Figures 1–3, we plot Q↑ k⃗
νe→νσ

(t)

and Q↓ k⃗
νe→νσ

(t), with σ = e, µ, τ, as a function of time, and we compare such formulae
with the corresponding quantum mechanics ones. Such formulae can be obtained from
Equations (24)–(26) by setting Γ±±

ij;⃗k
= 1, Σ±±

ij;⃗k
= 0 and Ω±

ij;⃗k
= 0.

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

t (eV-1)

Qe→e(t)

0 100 200 300 400 500 600

0.6

0.8

1

t (eV-1)

Qe→e(t)

Figure 1. Color on line. Plots of the oscillation formulae in a constant torsion background: in the

left-hand panel Q↑ k⃗
νe→νe

(t) (blue line) and Q↓ k⃗
νe→νe

(t) (red line) as a function of time. Torsion was
picked to be comparable to the momentum as T3 = 2 × 10−4 eV. In the right panel, the detail of the
same formulae and the comparison with the corresponding quantum mechanics oscillation formulae
(dashed line) are reported.

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

t (eV-1)

Qe→μ(t)

0 100 200 300 400 500 600

0

0.2

0.4

t (eV-1)

Qe->μ(t)

Figure 2. Color on line. In the left-hand panel, plots of Q↑ k⃗
νe→νµ

(t) (blue line) and Q↓ k⃗
νe→νµ

(t) (red
line) as a function of time. In the right panel, details of the same formulae and comparison with the
corresponding QM oscillation formulae (dashed line).
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0 2000 4000 6000 8000 10000

0

0.2
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t (eV-1)

Qe→τ(t)

0 100 200 300 400 500 600

0

0.08

0.16

t (eV-1)

Qe→τ(t)

Figure 3. Color on line. In the left-hand panel, plots of Q↑ k⃗
νe→ντ

(t) (blue line) and Q↓ k⃗
νe→ντ

(t) (red
line) as a function of time. In the right panel, details of the same formulae and comparison with the
corresponding QM formulae (dashed line).

The plots of the neutrino oscillation formulae for the constant torsion background
displayed in Figures 1–3 show their strong dependence on spin orientation. The difference
is maximal when the torsion is comparable with the neutrino momentum and neutrino
masses. On the other hand, for very big values of torsion, T3 ≫ mi, |⃗k|, the energy terms
are dominated by the torsion; indeed, (E±

k⃗,i
)2 = k⃗2 + (m̃±

i )
2 ≃ (m̃±

i )
2 ≃

(
± 3

2 T3)2
, so that

E+ ≃ E−. This implies that both the Bogoliubov coefficients Ξrr, χrr and the phase factors
∆r, Ωr become essentially independent of the spin, and the flavor oscillations become
independent from spin orientation. We also note that a torsion large enough can effectively
inhibit the flavor oscillations, since for T3 ≫ mi, the energy differences due to the mass
differences (e.g., ∆m12, ∆m13 and ∆m23) become irrelevant with respect to the common
torsional energy term.

4.2. Neutrino Oscillations with Time-Dependent Torsion

The neutrino oscillation formulae, in the case of linearly time-dependent torsion for
fixed momentum k⃗ and spin (↑), are given in Equations (24)–(26) with the Bogoliubov
coefficients expressed in Equations (21) and (22). By utilizing the same values of the
masses, of the angles, and of the momentum used in Figures 1–3, for constant torsion,
we plot, in Figures 4–6, the oscillation formulae for time-dependent torsion. We assume
ηT̆0 ≃ 5 × 10−3 eV. We observe that, also in this case, the formulae strongly depend on
the orientation of the spin. In the computations presented here, we neglect the spin–flip
transition due to the torsion term. This analysis is carried out in a forthcoming work.

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

t (eV-1)

Qe→e(t)

0 100 200 300 400 500 600

0.6

0.8

1

t (eV-1)

Qe→e(t)

Figure 4. Color on line. Plots of the oscillation formulae in a time-dependent torsion: in the left-

hand panel, Q↑ k⃗
νe→νe

(t) (blue line) and Q↓ k⃗
νe→νe

(t) (red line) are plotted as a function of time. In the
right panel, the details of the same formulae and the comparison with the corresponding quantum
mechanics oscillation formulae (dashed line) are reported. We consider ηT̆0 = 5 × 10−3 eV.
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0 2000 4000 6000 8000 10000

0
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0.6

t (eV-1)

Qe→μ(t)

0 100 200 300 400 500 600

0

0.2

t (eV-1)

Qe->μ(t)

Figure 5. Color on line. In the left-hand panel, Q↑ k⃗
νe→νµ

(t) (blue line) and Q↓ k⃗
νe→νµ

(t) (red line) ae
plotted as a function of time. In the right panel, the details of the same formulae and the comparison
with the corresponding QM formulae (dashed line) are presented.

0 2000 4000 6000 8000 10000

0
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0.4

t (eV-1)

Qe→τ(t)

0 100 200 300 400 500 600

0

0.08

t (eV-1)

Qe→τ(t)

Figure 6. Color on line. In the left-hand panel, Q↑ k⃗
νe→ντ

(t) (blue line) and Q↓ k⃗
νe→ντ

(t) (red line) are
plotted as a function of time. In the right panel, the details of the same formulae and the comparison
with the corresponding QM formulae (dashed line) are reported.

As in the general case, quantum field theoretical effects on neutrino oscillations are
relevant at low momenta and this remains true also in the presence of torsion. As it has
been discussed in reference . . . , the quantum field theoretical effects may indeed affect the
capture rate of experiments dealing with low-energy neutrinos, such as Ptolemy. Other
experiments, such as DUNE [107,108], which feature much more energetic neutrinos, are
essentially unaffected by quantum field theoretical effects.

5. CP Violation and Flavor Vacuum

We now study the impact of torsion on the CP violation in neutrino oscillation due
to the presence of Dirac phase in the mixing matrix. For fixed spin orientation, say ↑, the
CP asymmetry ∆ρσ

↑;CP can be defined in QFT, in a similar way to what was achieved in

ref. [73]; and then, ∆ρσ
↑;CP(t) ≡ Q↑ k⃗

νρ→νσ
(t) +Q↑ k⃗

νρ→νσ
(t) , where ρ, σ = e, µ, τ. Notice that a

+ sign appears in front of the probabilities for the antineutrinos in place of −, because the
antineutrino states already carry a negative flavor charge Qσ. For νe → νµ transition, with
r = ↑, ↓, the CP asymmetry is explicitly
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∆eµ
r;CP(t) = 4JCP

[∣∣∣Γ±±
12;⃗k

∣∣∣2 sin
(

2∆±
12;⃗k

t
)
−
∣∣∣Σ±±

12;⃗k

∣∣∣2 sin
(

2Ω±
12;⃗k

t
)
+ +

(∣∣∣Γ±±
12;⃗k

∣∣∣2 − ∣∣∣Σ±±
13;⃗k

∣∣∣2) sin
(

2∆±
23;⃗k

t
)

+

(∣∣∣Σ±±
12;⃗k

∣∣∣2 − ∣∣∣Σ±±
13;⃗k

∣∣∣2) sin
(

2Ω±
23;⃗k

t
)
−
∣∣∣Γ±±

13;⃗k

∣∣∣2 sin
(

2∆±
13;⃗k

t
)
+
∣∣∣Σ±±

13;⃗k

∣∣∣2 sin
(

2Ω±
13;⃗k

t
)]

, (27)

where one has to consider Γ++
ij;⃗k

and Σ++
ij;⃗k

for spin up and Γ−−
ij;⃗k

and Σ−−
ij;⃗k

for spin down. One

also has ∆eτ
r;CP(t) = −∆eµ

r;CP(t) with r = ↑, ↓. Remarkably, the presence of torsion induces a
CP asymmetry depending on spin orientation.

Furthermore, we make some observations on the condensate structure of the flavor
vacuum in the presence of torsion. In this case, |0 f (t)⟩ breaks the spin symmetry, resulting
in a different condensation density for particles of spin up and down. Such densities are
evaluated by computing the expectation values of the number operators for free fields
Nr

αj ,⃗k
= αr†

k⃗,j
αr

k⃗,j
and Nr

β j ,⃗k
= βr†

k⃗,j
βr

k⃗,j
, on |0 f (t)⟩. One has

N r
1;⃗k

= f ⟨0(t)|Nr
α1 ,⃗k

|0(t)⟩ f = f ⟨0(t)|Nr
β1 ,⃗k

|0(t)⟩ f = s2
12c2

13

∣∣∣Σ±±
12;⃗k

∣∣∣2 + s2
13

∣∣∣Σ±±
13;⃗k

∣∣∣2 , (28)

N r
2;⃗k

= f ⟨0(t)|Nr
α2 ,⃗k

|0(t)⟩ f = f ⟨0(t)|Nr
β2 ,⃗k

|0(t)⟩ f =
∣∣∣−s12c23 + eiδc12s23s13

∣∣∣2∣∣∣Σ±±
12;⃗k

∣∣∣2 + s2
23c2

13

∣∣∣Σ±±
23;⃗k

∣∣∣2 , (29)

N r
3;⃗k

= f ⟨0(t)|Nr
α3 ,⃗k

|0(t)⟩ f = f ⟨0(t)|Nr
β3 ,⃗k

|0(t)⟩ f

=
∣∣∣−c12s23 + eiδs12c23s13

∣∣∣2∣∣∣Σ±±
23;⃗k

∣∣∣2 + ∣∣∣s12s23 + eiδc12c23s13

∣∣∣2∣∣∣Σ±±
13;⃗k

∣∣∣2 , (30)

where, r = ↑, ↓.
It is important to note that flavor vacuum condensation is a general consequence of the

quantum field theory treatment of neutrino mixing [72,73]. In the presence of torsion, the
novelty is represented by the spin orientation dependent on such condensation yielding, as
shown in the above equation, distinct condensation density for different spin orientations.
The physical implications of the flavor condensation are represented by correction to the
amplitude of the neutrino oscillation formulae and by possible contributions to the dark
components of the Universe [65–67].

5.1. CP Violation and Flavor Vacuum Condensate with Constant Torsion

For constant torsion, we plot, in Figure 7, ∆eµ
↑;CP(t) and ∆eµ

↓;CP(t) as a function of time,

and in Figure 8, we plot N ↑
i;⃗k

and N ↓
i;⃗k

with i = 1, 2, 3 as a function of
∣∣∣⃗k∣∣∣. We use the same

values of the parameters adopted in the plots of the oscillation formulae.

0 2000 4000 6000

-0.2

0

0.2

t (eV-1)

ΔCP
eμ (t)

Figure 7. Color on line. Plot of ∆eµ
↑;CP(t) (blue line) and ∆eµ

↓;CP(t) (red line) as a function of time for
the values of the parameters used in Figures 1–3.
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Figure 8. Color on line. (Left panel) Plots of N ↑
i;⃗k

as a function of
∣∣∣⃗k∣∣∣ in eV: N1 (blue solid), N2 (red

dashed line) and N3 (orange dotted line). (Right panel) Plots of N ↓
i;⃗k

as a function of
∣∣∣⃗k∣∣∣. We use the

same parameters as adopted in Figures 1–3.

5.2. CP Violation and Flavor Vacuum Condensate for Time-Dependent Torsion

In the case of linearly time-dependent torsion, the CP violation and the condensation
densities are plotted in Figure 9 and Figure 10, respectively, for the same values of the
parameters used for Figures 4–6.

0 2000 4000 6000

-0.2

0

0.2

t (eV-1)

ΔCP
eμ (t)

Figure 9. Color on line. Plot of ∆eµ
↑;CP(t) (blue) ∆eµ

↓;CP(t) (red) as a function of time for the same
parameters used in Figures 4–6.

0 0.02 0.04
0
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0.06

0.07
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0 0.02 0.04

0

0.05

k (eV)

N (k)

Figure 10. Color on line. In the left panel, we plot N ↑
i;⃗k

as a function of
∣∣∣⃗k∣∣∣: N1 in blue line, N2 in red

line, and N3 in orange line for the same values of the parameters used in Figures 4–6. In the right

panel, plots of N ↓
i;⃗k

as a function of
∣∣∣⃗k∣∣∣ for the same choice of parameters are displayed.
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It is worth noting that the well shape appearing in the right panel of Figure 10 is due to
the proportionality of Υ−−

i,j,⃗p to (p − ηT̆0) (see Equation (22)), so that it vanishes for p = ηT̆0,
also bringing the condensation density to zero.

6. Conclusions

We analyzed the Einstein–Cartan theory and by studying the neutrino propagation
on a torsion background in the QFT framework. We derived new oscillation formulae
which are dependent on the spin orientations of the neutrino fields. Indeed, we showed
that the energy splitting induced by the torsion term affects the oscillation frequencies and
the Bogoliubov coefficients which represent the amplitudes of the oscillation formulae. We
considered flat space-time and two different kinds of torsion terms, the constant, and the
linearly time-dependent torsion.

The two analyzed cases share the following behavior: the spin dependence of the
oscillation is maximal for values of torsion comparable to the neutrino momentum and
masses, while much larger values of torsion lead to flavor oscillations which are almost
independent from the spin. Moreover, a large enough torsion can effectively inhibit the
flavor oscillations. Such behaviors also characterize the CP asymmetry.

The torsion effects are relevant on neutrino oscillations in non-relativistic regimes.
Therefore, experiments studying neutrinos with very low momenta, such as PTOLEMY,
could provide verification of such results in the future.
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Appendix A. Useful Formulae

For reader convenience, we report formulae useful for the computations. We consider
the PNMS matrix. Then, denoting with ψT

f =
(
νe, νµ, ντ

)
, the flavor fields and with

ΨT
m = (ν1, ν2, ν3) the fields with definite masses, the mixing relations are

Ψ f (x) =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

Ψm(x) .

Here, cij = cos θij, sij = sin θij and δ is the Dirac CP-violating phase.
The mixing generator Iθ is given by Iθ(t) = I23(t)I13(t)I12(t) , where

I12(t) ≡ exp
[
θ12
∫

d3x
(
ν†

1 (x)ν2(x)− ν†
2 (x)ν1(x)

)]
,

I23(t) ≡ exp
[
θ23
∫

d3x
(
ν†

2 (x)ν3(x)− ν†
3 (x)ν2(x)

)]
,

I13(t) ≡ exp
[
θ13
∫

d3x
(
ν†

1 (x)ν3(x)e−iδ − ν†
3 (x)ν1(x)eiδ)] ,

with νi free field solutions of Dirac equations with torsion terms.
Bogoliubov coefficients Γrs

ij;⃗k
and Σrs

ij;⃗k
satisfy the following identities:
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Σrr
23;⃗k

(t)
(

Σrr
13;⃗k

(t)
)∗

+
(

Γrr
23;⃗k

(t)
)∗

Γrr
13;⃗k

(t) = Γrr
12;⃗k

(t) ,

Σrr
23;⃗k

(t)
(

Γrr
13;⃗k

(t)
)∗

−
(

Γrr
23;⃗k

(t)
)∗

Σrr
13;⃗k

(t) = −Σrr
12;⃗k

(t) ,

Γrr
12;⃗k

(t)Γrr
23;⃗k

(t)−
(

Σrr
12;⃗k

(t)
)∗

Σrr
23;⃗k

(t) = Γrr
13;⃗k

(t) ,

Γrr
23;⃗k

(t)Σrr
12;⃗k

(t) +
(

Γrr
12;⃗k

(t)
)∗

Σrr
23;⃗k

(t) = Σrr
13;⃗k

(t) ,(
Σrr

12;⃗k
(t)
)∗

Σrr
13;⃗k

(t) +
(

Γrr
12;⃗k

(t)
)∗

Γrr
13;⃗k

(t) = Σrr
23;⃗k

(t) ,

Σrr
12;⃗k

(t)Σrr
13;⃗k

(t)− Σrr
12;⃗k

(t)Σrr
13;⃗k

(t) = −Σrr
12;⃗k

(t) ,

ξrr
13;⃗k

= ξrr
12;⃗k

+ ξrr
23;⃗k

, ξrr
ij;⃗k

= arctan


∣∣∣∣Σrr

ij;⃗k

∣∣∣∣∣∣∣∣Γrr
ij;⃗k

∣∣∣∣
 .

Appendix B. Charges for Three Flavor Mixing with Torsion

Charges are introduced using the symmetries of the Lagrangian for free field operators:
L = ψm(x)(iγµ∂µ − M)ψm(x). The Lagrangian is invariant under global transformation of
phase factor U(1) of the type Ψ′

m = eiαΨm. Then, a charge is introduced via Noether’s theo-
rem: Q =

∫
d3xΨm(x)γ0Ψm; it represents the total charge of the system. Considering field

transformation Ψm under global transformation SU(3), we obtain Noether charges Qm,j

of the form Qm,j(t) ≡
∫

d3xJ0
m,j(x) , with j = 1, 2, · · · , 8 and J0

m,j(x), the time component of
SU(3) currents. The charges satisfy SU(3) algebra:

[
Qm,j(t), Qm,k(t)

]
= i f jklQm,l(t) . Note

that only charges Qm,3 and Qm,8, which are not time-dependent. Appropriate combinations
of these charges allow to define the following quantities: Q1 ≡ 1

3 Q + Qm,3 +
1√
3

Qm,8 ,

Q2 ≡ 1
3 Q − Qm,3 +

1√
3

Qm,8 , and Q3 ≡ 1
3 Q − 2√

3
Qm,8 . The normal ordering of charge

operators for free fields are, then,
: Qi : ≡ ∑r

∫
d3k

(
αr†

k⃗,i
αr

k⃗,i
− βr†

−⃗k,i
βr
−⃗k,i

)
with i = 1, 2, 3, where : · · · : is used to denote

the normal ordered with respect to vacuum state |0⟩m. The flavor charges can be directly
derived from the above Noether charges by applying the mixing generator to them:

:: Qνσ (t) ::= I−1
θ (t) : Qi : Iθ(t) , (A1)

with (σ, i) = (e, 1), (µ, 2), (τ, 3).
In terms of the flavour annihilators, we have

:: Qνσ ::= ∑
r

∫
d3k
(

αr†
k⃗,νσ

(t)αr
k⃗,νσ

(t)− βr†
k⃗,νσ

(t)βr
k⃗,νσ

(t)
)

, σ = e, µ, τ

where :: · · · :: is normal-ordered with respect to the vacuum state, indicating |0⟩ f .
Note that flavor charge Qνσ can be written as the sum of the charges for definite spin

orientation as
:: Qνσ ::=:: ∑

r
Qr

νσ
:: (A2)

where Qr
νσ

=
∫

d3k
(

αr†
k⃗,i

αr
k⃗,i
− βr†

−⃗k,i
βr
−⃗k,i

)
. The neutrino oscillation formula at fixed mo-

mentum k⃗ and spin (↑) are obtained in the Heisenberg picture by computing the following
expectation values:

Q↑ k⃗
νρ→νσ

(t) ≡
〈

ν↑
k⃗,ρ
(t)
∣∣∣∣ :: Qνσ ::

∣∣∣∣ν↑k⃗,ρ
(t)
〉
− f ⟨0| :: Qνσ :: |0⟩ f

=

∣∣∣∣{α↑
k⃗,νσ

(t), α↑†
k⃗,νρ

(0)
}∣∣∣∣2 + ∣∣∣∣{β↑†

−⃗k,νσ
(t), α↑†

k⃗,νρ
(0)
}∣∣∣∣2 .
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Similarly, for the antiparticle,

Q↑ k⃗
νρ→νσ

(t) ≡
〈

ν↑
k⃗,ρ
(t)
∣∣∣∣ :: Qνσ ::

∣∣∣∣ν↑k⃗,ρ
(t)
〉
− f ⟨0| :: Qνσ :: |0⟩ f

= −
∣∣∣∣{β↑

k⃗,νσ
(t), β↑†

k⃗,νρ
(0)
}∣∣∣∣2 − ∣∣∣∣{α↑†

−⃗k,νσ
(t), β↑†

k⃗,νρ
(0)
}∣∣∣∣2 .

Similar formulae are obtained for spin down.

Note
1 In the ultrarelativistic case (p ≫ mj), one has:

Πrr
p⃗ (t) −→ 1 , Υrr

p⃗ (t) −→ 0

for any t. Moreover, in the absence of torsion (i.e., T̆µ = 0) these coefficients coincide with those presented in the Minkowski
metric.
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