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Abstract: Notwithstanding the overall improvement in the ecological condition of the Qilian Moun-
tains, there are localized occurrences of grassland degradation, desertification, and salinization.
Moreover, timely and accurate acquisition of desertification information is a fundamental prerequisite
for effective monitoring and prevention of desertification. Leveraging the Google Earth Engine (GEE)
platform in conjunction with machine learning techniques, this study aims to identify and extract
the spatiotemporal dynamics of desertification in the Qilian Mountain National Park (QMNP) and
its surroundings (QMNPs) spanning from 1988 to 2023. Results show that based on the random
forest algorithm, the multi-index inversion methodology achieves a commendable overall accuracy of
91.9% in desertification extraction. From 1988 to 2023, the gravity center of light desertification shifts
southeastward, while centers characterized by moderate, severe, and extremely severe desertification
display a westward retreat with fluctuations. The area of sandy land shows an expansion trend in the
medium term, but after 2018, desertification in QMNPs reversed. As of 2023, the sandy land area
measured 16,897.35 km2, accounting for 18.29% of the total area of QMNPs. The insights garnered
from this study provide a valuable reference for regional desertification prevention and control in
the future.
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1. Introduction

Desertification is one of the main forms of land degradation and mainly occurs in
arid, semi-arid, and partially semi-humid areas [1]. Desertification is defined as land
degradation caused by the uncoordinated relationship between humans and land, which
is mainly marked by wind and sand activities [2]. China is among the countries most
severely affected by desertification, in which desertification land is mainly distributed
in the northwest, north, and northeast regions. The results of the Sixth National Deser-
tification and Desertification Investigation in China show that as of 2019, the total area
of sandy land reached 168.78 million hectares, accounting for 17.58% of the land area;
the land area with obvious desertification trends is 27.92 million hectares, accounting for
2.91% of the land area [3]. The decrease in land quality caused by desertification exerted
considerable influence on the ecological environment and the sustainable development
of human society [4–7]. The direct economic losses caused by dryland desertification in
China are estimated at 33.1–94.9 × 109 yuan per year [8]. Between 1980 and 2015, the area
of drylands in China expanded by 8.3%. The expansion was primarily concentrated in the
northeastern and southwestern regions of the Qinghai–Tibet Plateau [9].

Obtaining high-quality, reliable, and long-term desertification data, understanding the
current status of desertification, monitoring its spatiotemporal dynamics, and clarifying the
driving mechanisms can provide a basis for the prevention and control of the expansion
of regional desertification. At present, there are many methods to obtain desertification
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information, including field investigation and remote sensing [10,11]. Traditional field
investigation methods have high accuracy but require a great deal of time, expense, and
manpower. In contrast, remote sensing technology has the advantages of convenient acqui-
sition, wide spatial coverage, and low cost, and has been widely used in spatiotemporal
dynamic monitoring of regional desertification [12–14]. Research utilizing satellite imagery
for studying desertification has primarily focused on the causes of desertification, spatial
patterns, evolutionary processes, prevention and control measures, and vulnerability assess-
ment [15–17], among which dynamic monitoring of desertification serves as the foundation
for other studies. Among numerous remote sensing data sources, medium-resolution
remote sensing imagery such as Landsat data can both capture detailed changes in deser-
tification processes and fulfill the requirements for long time-series dynamic monitoring.
Machine learning algorithms offer the capability to establish a relational model between
individual indicator factors and desertification information, capture nonlinear relation-
ships between them, and then yield a desertification evaluation model with enhanced
generalization ability [18]. In the study by Meng et al. [19], six machine learning methods
were employed to categorize the degree of desertification in Mongolia, with the maximum
entropy model demonstrating the highest accuracy. Similarly, Zhan et al. [20] utilized a
hybrid approach, integrating decision trees and nearest neighbors to extract spatiotemporal
dynamics of desertification along the Brahmaputra River.

Several studies applied vegetation indicators, such as NDVI, NPP, and FVC, for
long-term series remote sensing monitoring [21,22]. However, desertification stems from
multiple factors, including climate, vegetation, water, soil, and human activities. Relying
solely on a single indicator complicates the acquisition of comprehensive desertification
characteristics and fails to fully elucidate the desertification process. Land desertification
severity exhibits spatial variation [23], with its progression diverging spatially and tem-
porally [24]. To address this complexity and heterogeneity, a common approach involves
employing multiple indicators to capture various geographical factors and amalgamating
their effects to analyze desertification conditions [25]. This strategy has been integrated
into remote sensing-based desertification monitoring initiatives [26–29].

The advent of cloud platforms such as Google Earth Engine (GEE) [30] has significantly
enhanced the processing capabilities of remote sensing datasets and facilitated timely, accu-
rate, and efficient monitoring of land cover changes. Leveraging cloud computing-based
GEE, researchers utilize functionalities for data collection, preprocessing, feature extraction,
machine learning-based classification, and accuracy evaluation [31,32]. Integration of ma-
chine learning algorithms and deep learning modules has positioned this platform as one of
the foremost tools for large-scale monitoring research over the past decade [33]. Currently,
there is a dearth of studies focusing on harnessing the GEE platform in conjunction with
machine learning methods for land desertification identification.

The Qilian Mountains, recognized as a “natural wet island” and a vital ecological
security barrier in northwest China and the northern margin of the Qinghai–Tibet Plateau,
serve as a crucial water source and biodiversity sanctuary in the Yellow River basin. The
phenomenon of land desertification in this region not only impacts the local ecological
environment and economic development but also reverberates across China’s ecological
and environmental dynamics. It is imperative to monitor the dynamics of desertification,
elucidate the mechanisms driving desertification changes, and discern the primary fac-
tors influencing desertification and their interplay in the Qilian Mountain National Park
(QMNP) and its surroundings. Despite previous studies focusing on the Qinghai–Tibet
Plateau and northern China [34–36], detailed investigations in the Qilian Mountains remain
unexplored. The trajectory of land desertification in the Qilian Mountains over recent
decades, whether it has expanded or reversed, along with the spatial differentials and
temporal dynamics of desertification, currently lack clarity.

Given the above, this study fills the existing gap regarding long-term spatiotemporal
land desertification changes in QMNP. Depending on the Google Earth Engine platform
in conjunction with machine learning techniques, Landsat TM/OLI images are applied to
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examine land desertification in QMNP and its surroundings (QMNPs) spanning from 1988
to 2023. The objective is to offer guidance for the judicious utilization of desertification
lands and their adjacent regions, and in turn, furnish a scientific foundation for optimal
resource allocation and sustainable development.

2. Materials and Methods
2.1. Study Area and Fieldwork

The QMNP, situated on the northeastern margin of the Qinghai–Tibet Plateau, is a
confluence point for the Qinghai–Tibet Plateau, Mongolian Plateau, and Loess Plateau.
Spanning Qinghai and Gansu provinces, the QMNP encompasses a vast area totaling
50,200 km2 with an array of mountain ranges, expansive valleys, and intermountain
basins. The QMNP holds significant ecological functionality and serves as a pivotal area
for biodiversity conservation in China [37]. As a semi-arid area in the northwest, the
QMNP has a typical highland continental climate with a mean annual temperature of 4 ◦C,
and mean annual precipitation of approximately 400 mm [38,39]. Modern climatology
analyses pointed out that the QMNP is affected by the interplay of the Asian summer
monsoon and mid-latitude westerlies [40]. The hydrological network radiates outward
from the Qilian Mountains, principally comprising the Shiyang River, Heihe River, and
Shule River systems, which are fed by precipitation and glacier meltwater inputs [41].
Prominent vegetation types, including alpine meadows, cold temperate coniferous forests,
and temperate desert steppes, exhibit discernible zonal distributions, fostering habitats for
numerous rare and endangered species such as snow leopards, white-billed sparrows, and
black-necked cranes.

Our study area is delineated to encompass the QMNPs ,including both the Hala Lake
and the Halten River (Figure 1), with a total area of 92,401.36 km2. Field investigations
conducted by our team unveiled instances of land desertification in the study area. In Au-
gust 2022, employing drones and assorted instrumentation, we meticulously documented
the surface attributes of various land desertification degrees. Then, the geographical co-
ordinates, environmental parameters, vegetation coverage, and quicksand proportions of
representative sampling points were recorded. Subsequently, we established signposts
for remote sensing image interpretation. A follow-up field investigation was conducted
in August 2023 to validate our findings. A total of 308 sampling points were obtained,
distinguishing between sandy (194) and non-sandy (114) terrain (Figure 1c). These points
were strategically distributed along key geographical features such as the Danghe River,
Yema River, Halten River, the eastern vicinity of Hala Lake, as well as the upper reaches of
the Shule River. This comprehensive sampling strategy facilitated the assessment of the
machine learning model’s classification accuracy across diverse landscape contexts.

Utilizing a combination of field investigation data, remote sensing data, and encap-
sulated functions offered by the GEE platform, we monitored land desertification within
QMNPs. Subsequently, we conducted a thorough analysis of its spatiotemporal changes.
A schematic workflow is illustrated in Figure 2, which can be divided into three parts as
follows: (1) field investigation and construction of land desertification system; (2) construc-
tion of machine learning classification model and extraction of desertification information;
and (3) analysis of spatiotemporal dynamics and evolution of desertification.
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2.2. Remote Sensing Dataset

Utilizing the GEE platform, we acquired Sentinel-2 data from 2022 and Landsat
datasets spanning five-year periods from 1988 to 2023 (Landsat 5 from 1988 to 2008 and
Landsat 8 from 2013 to 2023). These datasets feature spatial resolutions of 10 m and 30 m,
respectively. Notably, all images were carefully selected to correspond to the growing
season, specifically June through August. To ensure data quality, a rigorous cloud masking
procedure was implemented, filtering out images with cloud cover exceeding 20%. Subse-
quently, a median synthesis technique was applied to amalgamate remote sensing images
for each designated period.
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2.3. Classification System for Land Desertification

Scattered and patchy vegetation cover and sand layers are the main landscape features
of grassland desertification areas, providing good visual indicators of environmental
changes and desertification severity [42,43]. Referring to the “Technical code of practice
on the sandified land monitoring” [44], and on-site inspections, a land desertification
classification system suitable for QMNPs is constructed with vegetation coverage and
quicksand ratio as the main criteria to judge the desertification status of grassland (Table 1).
The degree of desertification in QMNPs is divided into five levels, namely no desertification,
light desertification, moderate desertification, severe desertification, and extremely severe
desertification. Among them, light desertification mainly refers to fixed sandy land with
vegetation coverage of 50% or more, moderate desertification refers to fixed sandy land
with vegetation coverage of 30% to 50%, and severe desertification refers to semi-fixed
sandy land and semi-exposed sandy gravel land with vegetation coverage of 10% to 30%.
Extremely severe desertification turns into mobile sandy land and exposed sandy gravel
land with less than 10% vegetation coverage.

Table 1. Classification system of land desertification degree in QMTPs.

Degree FVC Quicksand Ratio Drone Aerial Photography Sentinel-2
(Nir, Red, Green)

Light ≥50%
(fixed sandy land)
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  2.4. Extraction and Construction of Classification Feature Set

Fraction Vegetation Coverage (FVC), Topsoil Grain Size Index (TGSI), albedo, and
Modified Soil Adjusted Vegetation Index (MSAVI) are chosen as key indicators to assess
land desertification in QMNPs. Leveraging the Landsat dataset, these indicators were
extracted and inverted to monitor desertification processes, which yields spatiotemporal
series data from 1988 to 2023.
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Vegetation is a critical component in the assessment of desertification. Under deser-
tification pressures, vegetation growth experiences significant deterioration. Thus, FVC
stands out as a prominent indicator for characterizing desertification conditions [45], which
is calculated using the following formula:

FVC = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) (1)

NDVI = (Bnir − Bred)/(Bnir + Bred) (2)

where NDVIsoil and NDVIveg correspond to the NDVI values representing bare land and
pure vegetation coverage, respectively. Bnir is a near-infrared band of remote sensing
data; Bred is a near-infrared band of remote sensing data. The values of NDVIsoil and
NDVIveg will change with the image. In all years, NDVI values with cumulative probability
distributions of 5% and 95% are selected to represent NDVIsoil and NDVIveg, respectively.

Surface albedo is a critical metric influencing the energy balance and variations in
microclimate parameters such as temperature, aridity, and humidity within desertification-
affected terrestrial environments [46,47]. Inversion of surface albedo is helpful in identifying
surface changes [48], elevated surface albedo levels signify land quality degradation [49],
which is typically attributed to diminished soil organic matter content and moisture lev-
els [50]. Consequently, albedo emerges as a valuable indicator for monitoring desertification,
with its calculation determined by the following formula:

Albedo = 0.356 Bblue + 0.13 Bred + 0.373 Bnir + 0.085 Bswir1 + 0.072 Bswir2 − 0.0018 (3)

where Bred, Bblue, Bnir, Bswir1, and Bswir2 are the red band, blue band, near-infrared band,
swir1 band and swir2 band of remote sensing data, respectively.

Surface soil texture serves as a key indicator of land degradation severity. Zhu et al. [51]
suggested that varying degrees of land desertification led to distinct surface soil textures,
with more severe desertification resulting in thicker surface soil layers. TGSI is developed
based on spectral reflectance analysis of soil surfaces and laboratory investigations of soil
particles [52]. TGSI correlates with the thickness of fine sand composition in the surface
soil, which is indicative of desertification. As desertification intensifies, the surface soil
thickens. Higher TGSI values correspond to increased fine sand content in the surface
soil and reduced clay content. TGSI is widely employed as a desertification evaluation
indicator [53] and is calculated using the following formula:

TGSI = (Bred - Bblue)/(Bred + Bblue + Bgreen) (4)

where Bred, Bgreen, and Bblue are the red band, green band, and blue band of remote sensing
data, respectively.

The research findings of Qi et al. [54] demonstrated that, compared with other com-
monly used vegetation indices, MSAVI mitigates the influence of soil background while
enhancing sensitivity to vegetation. MSAVI is calculated using the following formula:

MSAVI =
(

2Bnir + 1 –
√

(2Bnir + 1)2 – 8 (Bnir – Bred)

)
/2 (5)

where Bred and Bnir are red waves and near-infrared bands of remote sensing data.
In the recognition and classification of remote sensing images, the participation of ter-

rain features can improve the classification accuracy. Therefore, based on the SRTMGL1_003
digital elevation data product, the aspect, slope, and elevation are calculated and added to
the remote sensing image as independent features.

Based on the above feature variables, two sets of feature sets are used to classify
the images. When the feature variable combination is first input, only the spectral in-
dex participates in image classification (S1), and subsequently, the terrain features are
introduced (S2).
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2.5. Machine Learning

The classification process in GEE involves supervised learning with various machine
learning algorithms. The classification algorithms used include random forest (RF), Deci-
sion Tree (CART), Support Vector Machine (SVM), Minimum Distance (MD), K Nearest
Neighbor (KNN), and Gradient Boosted Decision Tree (GTB). Leveraging Sentinel-2 and
Landsat 8 data from 2022, we constructed training samples and feature sets to develop
classification models using the machine learning algorithms above.

Our dataset comprises a total of 3580 sample points, distributed as follows: 239 light
desertification points, 253 moderate desertification points, 901 severe desertification points,
1057 extremely severe desertification points, and 1030 non-desertification points. To ensure
the stability of model training and evaluation, these sample points were randomized, with
70% allocated to the training set and 30% allocated to the test set. The training set serves to
train the classifier, while the test set evaluates model performance indicators. Afterward, we
iteratively identify the optimal parameter settings for each algorithm to optimize classifier
performance (Table 2), maximizing performance on the specific dataset. Crucially, the same
set of training and test samples is used for each algorithm to facilitate reliable comparison
of performance across different methods. This rigorous approach ensures the integrity and
validity of our classification results.

Table 2. Classifier parameter settings.

Classifier Parameter

CART maxNodes = null, minLeafPopulation = 1
RF numberOfTrees = 800

SVM kernelType = RBF, gamma = 10, cost = 0.5
MD metric = Euclidean, kNearest = 1

KNN k = 10
GTB numberOfTrees = 160

The evaluation of model classification accuracy is achieved in two ways. On the one
hand, the overall accuracy (OA), Kappa coefficient (Kappa), and Macro F1 score of model
classification are calculated based on the confusion matrix (Table 3). These quantitative
evaluation indicators can intuitively reflect the accuracy of model classification. On the
other hand, field investigation ground verification points are used to verify the classification
results and further compare their reliability.

Table 3. Detailed information of accuracy evaluation for Classifiers.

Index Expression Explain

OA ∑n
i=1 pii

N
The ratio of the number of samples to the correct sample to the total number

of samples
Kappa N ∑n

i=1 pii−∑n
i=1(pi+×p+i)

N²−∑n
i=1(pi+×p+i)

Measuring the consistency of classification results

Precision pii
pi+

The ratio of the number of samples classified as positive in a certain category to the
actual number of samples in the category

Recall pii
p+i

The ratio of the actual number of samples in a certain category to the number of
samples classified into this category

F1 Precision×Recall
Precision+Recall×2 Harmonic average of recall and precision

Macro F1 ∑n
i=1 F1

n Average F1 scores for each category

Note: n is the total number of columns of the confusion matrix; pii is the number of correctly classified samples in
the i-th row and i-column of the confusion matrix; pi+ and p+i are the total numbers of samples in the i-th row and
i-column; N is used for verification the total number of samples.
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2.6. Center of Gravity Migration Model

The center of gravity change model is used to measure the spatial distribution of
desertification of varying degrees in the QMNPs, and the changes in distance and direction
of the center of gravity are analyzed. The calculation formula of the center of gravity change
model is as follows:

X =
∑n

i=1 XiWi
∑n

i=1 Wi
(6)

Yk =
∑n

i=1 YiWi
∑n

i=1 Wi
(7)

where Xk and Yk are the coordinates of the weighted center of gravity of the kth desertifica-
tion level; Xi and Yi are the coordinates of element i; n is the total number of elements; and
Wi is the weight of element i, represented by the area of element i.

3. Results
3.1. Performance Comparison of Machine Learning Algorithms

Based on remote sensing images in 2022, the classification results of land desertification
in QMNPs are available (Figure 3). When the spectral index feature set (S1) is selected
as the input feature, only three evaluation indicators of MD among the six classification
algorithms are lower than 70%. Concretely, the overall accuracy is 62.09%, the Kappa
coefficient is 50.16%, and the macro F1 score is 56.91%. The RF, KNN, and GTB algorithms
perform well, with OA and macro F1 scores higher than 80% and the Kappa coefficient
higher than 75%. However, such accuracy cannot meet our research requirements, and the
machine learning classification model needs to be further optimized.
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Figure 3. Accuracy evaluation of six classifiers under different combinations of features.

After the introduction of terrain features (S2), the classification accuracy of RF, CART,
and GTB are significantly improved. Among them, the overall accuracy of RF is 91.9%,
the Kappa coefficient is 89.26%, and the macro F1 score is 91.15%; the overall accuracy of
CART is 89.36%, the Kappa coefficient is 85.88%, and the macro F1 score is 89.16%; the
overall accuracy of GTB is 91.81%, the Kappa coefficient is 89.12%, and the macro F1 score
is 91.13%. However, the classification accuracy of SVM, MD, and KNN is significantly
reduced. Among them, the overall accuracy of SVM is 28.25%, the Kappa coefficient is
3.79%, and the macro F1 score is 14.44%; the overall accuracy of MD is 27.59%, the Kappa
coefficient is 5.93%, and the macro F1 score is 20.25%; the overall accuracy of KNN is
43.88%, the Kappa coefficient is 23.82%, and the macro F1 score is 34.53%.
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The classification accuracy indicators of RF, CART, and GTB are all above 85%, while
the classification performance of RF and GTB algorithms are very similar due to their
integrated learning characteristics. In order to further test the classification performance
and model stability, as well as the transfer learning ability of the models, five represen-
tative areas, including four typical desertification areas and one non-desertification area,
were selected for visual comparison of these three algorithms of the 2023 classification
results (Figures 4 and 5). In general, CART can better identify desertification areas, but
the classification effect of non-desertification areas is poor with a large-scale misclassi-
fication phenomenon. Nevertheless, RF and GTB can better distinguish desertification
areas from non-desertification areas. As depicted in Figure 5, the CART algorithm exhibits
limitations by failing to identify all sandy land regions (Figure 5a) and misclassifying
non-desertification areas (Figure 5c,d). In contrast, RF and GTB algorithms demonstrate fa-
vorable classification outcomes in areas a, b, c, and d. However, in area e, RF outperformed
GTB in classifying non-desertification areas. In addition, we tested the reliability of the
results by field investigation. The results show that the RF misclassification rate is 11.69%,
the CART misclassification rate is 26.62%, and the GTB misclassification rate is 12.34%.

In summary, the classification results of the RF algorithm have higher consistency in
the overall spatial distribution of different degrees of land desertification. It shows that
the multi-index inversion technology based on the random forest algorithm can accurately
extract and monitor desertification dynamics.
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Figure 4. Classification results of RF, CART, and GTB algorithms in 2023. a (Halten River), b (Danghe
River), c (Hala Lake), d (upper reaches of Shule River), and e (non-desertification area) represent the
typical cases for regional comparison.
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3.2. Spatiotemporal Dynamics of Land Desertification from 1988 to 2023

Based on the Model-based Transfer Learning and Landsat dataset, we utilized the
established random forest classification model to quantitatively extract land desertification
information at five-year intervals from 1988 to 2023. The image classification results are
all post-classified through median filtering to effectively remove salt and pepper noise
in the image. Thus, the spatiotemporal sequence data of land desertification in the past
35 years were constructed (Figure 6). The results show that as of 2023, the total area of
land desertification is 16,897.35 km2, accounting for 18.29% of the total area of the study
area, mainly distributed in the area of 3700~4200 m above sea level. It mainly occurs in the
western region of QMNPs and is distributed along rivers, such as the Shule River, Danghe
River, Yema River, and Halten River et al. Throughout the study period, the distribution of
desertification at each level was spatially consistent.

Through statistics on the desertification areas of each grade (Table 4), it is found
that from 1988 to 2023, the total desertification area expanded from 12,570.95 km2 to
16,897.35 km2, with land desertification encompassing 4.68% of the total area. Notably,
each grade of desertification exhibited distinct expansion patterns. Specifically, the areas
affected by light, moderate, severe, and extremely severe desertification increased by
1269.29 km2, 680.11 km2, 241.12 km2, and 2135.87 km2, respectively. This trend underscores
a general escalation in desertification extent in QMNPs over the past 35 years. The total
desertification area gradually expanded after 1998 until it reversed after 2018. As depicted
in Figure 7, the distribution of different desertification grades varies across different periods.
Severe desertification consistently dominates, fluctuating between 40% and 50% of the total
desertification area. Subsequently, extremely severe desertification occupied 20% to 40% of
the desertification areas. In contrast, the proportions of mild and moderate desertification
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areas remained relatively small, ranging from 6% to 17%. Remarkably, post-2008, there was
an uptick in the proportion of mild and moderate desertification areas, while the shares of
moderate and severe desertification areas gradually declined after 2003. Meanwhile, the
proportion of extremely severe desertification areas exhibits fluctuating trends throughout
the observation period.
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Table 4. Land desertification area from 1988 to 2023 (area in km2).

Year Light Moderate Severe Extremely Severe Total

1988 1061.53 1262.80 6632.26 3614.35 12,570.95
1993 842.68 886.77 7093.57 4184.54 13,007.56
1998 704.54 633.83 4548.58 3807.45 9694.39
2003 838.99 1149.62 5991.69 3027.09 11,007.39
2008 774.01 749.31 6930.50 3888.98 12,342.81
2013 2098.08 2423.16 9192.94 3716.84 17,431.02
2018 1900.06 3176.92 9191.30 4733.99 19,002.27
2023 2330.82 1942.91 6873.38 5750.22 16,897.35
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3.3. Changing Trends of Land Desertification

The desertification extraction results of QMNPs from 1988 to 2023 are utilized to
compare pixel-by-pixel changes in desertification between each two periods. This compar-
ison facilitates the assessment of variations in intensity, area, and spatial distribution of
desertification over time, elucidating the spatiotemporal evolution of desertification.

Figure 8 illustrates regions where land desertification experienced increments or rever-
sals between 1988 and 2023. A changing trend value of 0 denotes unchanged land status,
and values greater than 0 signify the exacerbation of desertification, with higher values
indicating more significant aggravation. Conversely, values less than 0 indicate the reversal
of land desertification, with lower values indicating a deeper reversal. Throughout the
study period, the degree of desertification in the eastern QMNPs exhibits minimal change,
while fluctuating desertification areas are predominantly observed in the western region.
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Figure 8. Spatial change trends of land desertification in various periods.

Figure 9 intuitively shows the transition between desertification degrees in different
periods. Throughout various periods, desertification at different severity levels remains in
a state of instability, continuously transitioning in and out, with severe desertification being
the most notable, while extremely severe desertification tends to exhibit relative stability.

Table 5 presents the desertification transfer matrix from 1988 to 2023. The main di-
agonal values denote areas that remain unchanged at each grade of desertification. The
non-desertification area is recorded as 72,860.28 km2, while the cumulative area consistently
desertified amounts to 7505.62 km2. Specifically, transitions from non-desertification to
various degrees of desertification are delineated as follows: 1227.13 km2 to light, 785.15 km2

to moderate, 2347.25 km2 to severe, and 2610.61 km2 to extremely severe desertification.
The augmentation in light desertification primarily stems from the transformation of previ-
ously non-desertification regions. Conversely, the expansion in moderate desertification is
attributed to both the desertification of non-desertification areas and the reversal of severe
desertification zones. Similarly, the escalation in severe desertification is influenced by both
the desertification of non-desertification areas and the reversal of severe desertification
zones, with a minor contribution from the reversal of extremely severe desertification. The
upsurge in extremely severe desertification is chiefly driven by the severe desertification
of non-desertification regions and the transformation of severe desertification areas. Re-
markably, the reversal of desertification is predominantly evident in the reversal of severe
desertification areas.
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Figure 9. The Sankey map showing the area of transition between different degrees of desertification
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Table 5. Matrices of desertification and changes from 1988 to 2023 (area in km2).

None Light Moderate Severe Extremely
Severe Total

None 72,860.28 1227.13 785.15 2347.25 2610.61 79,830.41
Light 293.70 661.21 96.10 10.04 0.48 1061.53

Moderate 208.68 315.48 495.12 241.71 1.81 1262.80
Severe 1473.61 124.79 559.10 3843.36 631.41 6632.26

Extremely severe 667.74 2.21 7.45 431.03 2505.93 3614.35
Total 75,504.01 2330.82 1942.91 6873.38 5750.22 92,401.36

3.4. Changing Process of Land Desertification Gravity Center

Figure 10 shows the spatiotemporal changes in the center of gravity of desertification
at different degrees. Overall, the gravity centers of desertification in the QMNPs lie between
38◦20′–38◦50′ N and 95◦50′–99◦ E, with the centers of light, moderate, severe, and extremely
severe desertification presenting a spatial pattern successively distributed from east to
west. Among them, the gravity center of light desertification tends to migrate southeast;
the gravity centers of moderate and severe desertification display a trend of fluctuating
westward migration; and the gravity center of extremely severe desertification expands
eastward before 2008 and then migrates westward.
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4. Discussion

Research shows that the desertification trend in some areas of China has been ef-
fectively curbed, and the overall ecological condition continues to improve [55]. The
spatiotemporal evolution of land desertification in the QMNPs based on the Landsat
dataset in this study shows that land desertification reversed after 2018, although it ex-
panded in the middle of the study period. This reversal of desertification may be due
to a series of ecological protection measures in the Qilian Mountains. Since the end of
the 1990s, in order to cope with climate change and protect the ecological environment, a
series of ecological restoration projects such as the “returning farmland to forest project”,
“natural forest protection project” [56], and “returning pasture to grassland project” have
been implemented in the Qilian Mountains [57]. In 2017, a pilot project of QMNP was
established. In December 2012, the National Development and Reform Commission of
China officially approved the “Qilian Mountain Ecological Protection and Comprehensive
Management Plan (2012–2020)” and its implementation was fully launched in August 2014.
The biological desertification control project of Aksai County in 2020 was performed by
means of sand barriers, natural vegetation restoration, and other methods, and 30,000 acres
of desertification were controlled. In 2022, targeting key areas such as the Heihe River and
Shule River, the construction of the water source conservation and ecological restoration
project at the northern foot of the Qilian Mountains further promotes the comprehensive
desertification prevention and control forest and grass project and plans to complete the
comprehensive treatment of 74,600 acres of sandy land. The reversal of desertification since
2018 indicates that these engineering measures for sand control have begun to show effec-
tiveness. However, the task of desertification prevention and control in QMNPs remains
extremely challenging, as sand control is a long-term and continuous endeavor.

Cao et al. [58] pointed out that cost-effective and scientifically based strategies for
dryland restoration require careful evaluation of local environmental conditions, long-
term monitoring, and technological utilization, and the restoration of sandy areas is no
exception. Large-scale afforestation on sandy and degraded lands is considered one of the
most feasible methods for protecting the ecological environment [59–61]. However, some
studies have suggested that planting water-demanding trees in arid and semi-arid areas
of China may not be suitable as it could exacerbate land aridity and desertification, and
alter watershed hydrological dynamics [62,63]. Furthermore, practical restoration efforts
in Chinese drylands have shown low survival rates for many tree-planting initiatives [64].
In QMNPs, severe desertification, and extremely severe desertification always occupy a
high proportion, reaching more than 70% (Figure 7). Research shows that for areas with
severe and extremely severe desertification, shrubs have strong adaptability to the natural
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conditions of sandy land. Establishing shrub forests is one of the important approaches
to reverse desertification, and the vegetation type should be adjusted according to local
conditions such as precipitation [65,66]. Therefore, it is recommended to prioritize the
protection of shrub forests for natural recovery and to carry out rational artificial restora-
tion and planting initiatives. Future desertification control strategies must be carefully
planned, well-monitored, and thoroughly assessed to protect non-desertification land,
prevent further exacerbation of already desertified land, and achieve sustained reversal of
land desertification.

In all, based on Sentinel-2 remote sensing images, we established training samples
at a higher resolution to improve the accuracy of the samples. However, some of the
Landsat data are missing due to cloud coverage. Four spectral indices of FVC, albedo,
MSAVI, and TGSI were selected, and terrain features were introduced to construct a
desertification monitoring model, which showed that the addition of terrain features can
significantly improve the performance of machine learning classification. In the future,
more characteristic variables can be considered to build a more effective desertification
monitoring model. Taking five years as a time interval, the desertification results will be
inevitably affected by climate change events. Subsequent desertification-related research
can consider a more appropriate time interval.

5. Conclusions

Utilizing the Landsat dataset from 1988 to 2023 obtained via the GEE platform, we ex-
tract monitoring indicators and integrate them with machine learning techniques to develop
a spatiotemporal desertification monitoring model tailored to the QMNPs. Subsequently,
we employ change detection and gravity change models to analyze the spatiotemporal
dynamics of desertification. Our conclusions are as follows: (1) Comparative analysis of
machine learning algorithms on the GEE platform reveals that ensemble learning based on
decision trees, particularly the random forest algorithm, exhibits robust performance in
identifying land desertification information. By harnessing multi-temporal remote sensing
data and multi-index feature sets available on the GEE platform, regional desertification
information can be promptly and accurately identified and extracted. (2) Long-term series
analysis underscores the persistent existence of the land desertification process in the
QMNPs over the past 35 years, with significant expansion in desertification areas. How-
ever, desertification has been reversed since 2018. Through management efforts, the land
desertification in QMNPs is in the initial stage of recovery, requiring further consolidation
and enhancement of management effectiveness. The task of desertification prevention and
control remains formidable.
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